metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­(2,2′-bi­pyridine-κ2N,N′){(E)-[(5-chloro-2-oxido­benzyl­­idene)amino-κ2N,O]methane­sulfonato-κO}zinc

aHengyang Normal University, Department of Chemistry and Materials Science, Hengyang, Hunan 421008, People's Republic of China
*Correspondence e-mail: yifang7124@163.com, zhangchunhua668@163.com

(Received 10 March 2012; accepted 25 March 2012; online 31 March 2012)

In the title compound, [Zn(C8H6ClNO4S)(C10H8N2)(H2O)], the ZnII atom is six-coordinated by two O atoms and one N atom from a tridentate Schiff base ligand and two N atoms from a chelating 2,2′-bipyridine ligand and one water mol­ecule, forming a slightly distorted octa­hedral geometry. In the crystal, O—H⋯O hydrogen bonds link pairs of complex mol­ecules into dimers. An intra­molecular O—H⋯O hydrogen bond is also present.

Related literature

For related complexes, see: He et al. (2007[He, K.-H., Li, J.-M. & Jiang, Y.-M. (2007). Acta Cryst. E63, m2992-m2993.]); Xu et al. (2007[Xu, J.-S., Zhang, C.-H., Kuang, D.-Z., Feng, Y.-L. & Peng, Y.-L. (2007). Acta Cryst. E63, m2250.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C8H6ClNO4S)(C10H8N2)(H2O)]

  • Mr = 487.22

  • Triclinic, [P \overline 1]

  • a = 7.7332 (6) Å

  • b = 10.8948 (8) Å

  • c = 11.9112 (9) Å

  • α = 103.625 (1)°

  • β = 90.664 (2)°

  • γ = 98.993 (1)°

  • V = 962.08 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.56 mm−1

  • T = 296 K

  • 0.18 × 0.14 × 0.10 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.766, Tmax = 0.860

  • 7155 measured reflections

  • 3719 independent reflections

  • 3345 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.077

  • S = 1.05

  • 3719 reflections

  • 267 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O4i 0.84 (3) 1.96 (3) 2.791 (2) 172 (3)
O1W—H1WB⋯O3 0.82 2.10 2.855 (2) 154
Symmetry code: (i) -x+1, -y+1, -z+2.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff base complexes containing amino acids have been studied for many years, arising interest because of their antiviral, anticancer and antibacterial activity. Herein, we choose amino-methanesulfonic acid-Schiff base to react with Zn(CH3CO2)2.4H2O as well as 2,2'-bipyridine. In the title compound, the ZnII atom forms one five-membered and one six-membered chelating rings with the Schiff base ligand (Fig. 1). The coordinating environment of the ZnII atom is different from that reported by He et al. (2007) and Xu et al. (2007). The bond length of Zn—O(sulfonate) is longer than that of Zn—O(aqua) and also longer than that of Zn—N(imine). It indicates that the coordinating capability of the sulfonate group is weaker than that of water and imine group. In the crystal, O—H···O hydrogen bonds link two complex molecules into a dimer (Table 1). An intramolecular O—H···O hydrogen bond is also present.

Related literature top

For related complexes, see: He et al. (2007); Xu et al. (2007).

Experimental top

The complex was prepared by mixing a methanol-water solution of 5-chlorosalicylaldelyde (1.0 mmol), aminomethanesulfonic acid (1.0 mmol) and potassium hydrate (1.0 mmol) with heating and stirring. After 2 h, an aqueous solution containing zinc acetate (1 mmol) was added dropwise under stirring. The pH value of the mixture was adjusted to 6 with 0.5 mol/L HCl solution, followed by the dropwise addition of a methanol solution containing 2,2'-bipyridine (1 mmol) with stirring. The resulting yellow filtrate was allowed to stand at room temperature and slowly evaporate for one month to afforded yellow block-shaped crystals.

Refinement top

H atoms attached to C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (CH) and 0.97 (CH2) Å and with Uiso(H) = 1.2Ueq(C). The water H atoms were located from a difference Fourier map, one of them was refined isotropically and the other was refind as riding, with Uiso(H) = 1.5Ueq(O).

Structure description top

Schiff base complexes containing amino acids have been studied for many years, arising interest because of their antiviral, anticancer and antibacterial activity. Herein, we choose amino-methanesulfonic acid-Schiff base to react with Zn(CH3CO2)2.4H2O as well as 2,2'-bipyridine. In the title compound, the ZnII atom forms one five-membered and one six-membered chelating rings with the Schiff base ligand (Fig. 1). The coordinating environment of the ZnII atom is different from that reported by He et al. (2007) and Xu et al. (2007). The bond length of Zn—O(sulfonate) is longer than that of Zn—O(aqua) and also longer than that of Zn—N(imine). It indicates that the coordinating capability of the sulfonate group is weaker than that of water and imine group. In the crystal, O—H···O hydrogen bonds link two complex molecules into a dimer (Table 1). An intramolecular O—H···O hydrogen bond is also present.

For related complexes, see: He et al. (2007); Xu et al. (2007).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
Aqua(2,2'-bipyridine-κ2N,N'){(E)-[(5-chloro-2- oxidobenzylidene)amino-κ2N,O]methanesulfonato-κO}zinc top
Crystal data top
[Zn(C8H6ClNO4S)(C10H8N2)(H2O)]Z = 2
Mr = 487.22F(000) = 496
Triclinic, P1Dx = 1.682 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7332 (6) ÅCell parameters from 4928 reflections
b = 10.8948 (8) Åθ = 2.3–27.5°
c = 11.9112 (9) ŵ = 1.56 mm1
α = 103.625 (1)°T = 296 K
β = 90.664 (2)°Block, yellow
γ = 98.993 (1)°0.18 × 0.14 × 0.10 mm
V = 962.08 (13) Å3
Data collection top
Bruker APEX CCD
diffractometer
3719 independent reflections
Radiation source: fine-focus sealed tube3345 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 59
Tmin = 0.766, Tmax = 0.860k = 1313
7155 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.039P)2 + 0.2378P]
where P = (Fo2 + 2Fc2)/3
3719 reflections(Δ/σ)max = 0.001
267 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
[Zn(C8H6ClNO4S)(C10H8N2)(H2O)]γ = 98.993 (1)°
Mr = 487.22V = 962.08 (13) Å3
Triclinic, P1Z = 2
a = 7.7332 (6) ÅMo Kα radiation
b = 10.8948 (8) ŵ = 1.56 mm1
c = 11.9112 (9) ÅT = 296 K
α = 103.625 (1)°0.18 × 0.14 × 0.10 mm
β = 90.664 (2)°
Data collection top
Bruker APEX CCD
diffractometer
3719 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3345 reflections with I > 2σ(I)
Tmin = 0.766, Tmax = 0.860Rint = 0.026
7155 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.27 e Å3
3719 reflectionsΔρmin = 0.52 e Å3
267 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.62092 (3)0.62060 (2)0.841029 (19)0.03292 (9)
C10.8756 (3)0.68019 (19)1.04504 (17)0.0312 (4)
C20.9837 (3)0.6387 (2)1.11991 (18)0.0382 (5)
H20.99380.55241.10460.046*
C31.0741 (3)0.7212 (2)1.21429 (18)0.0382 (5)
H31.14560.69111.26140.046*
C41.0588 (3)0.8500 (2)1.23969 (18)0.0367 (5)
C50.9626 (3)0.8967 (2)1.16761 (18)0.0343 (4)
H50.95730.98381.18390.041*
C60.8707 (2)0.81353 (18)1.06824 (17)0.0298 (4)
C70.7749 (3)0.87525 (18)0.99868 (17)0.0305 (4)
H70.78350.96371.02290.037*
C80.5976 (3)0.90082 (19)0.84771 (18)0.0358 (5)
H8A0.66560.91610.78300.043*
H8B0.59280.98270.90070.043*
C90.8962 (3)0.7207 (2)0.6752 (2)0.0458 (6)
H90.93950.78600.73920.055*
C100.9547 (3)0.7293 (2)0.5682 (2)0.0515 (6)
H101.03740.79800.56000.062*
C110.8876 (3)0.6336 (3)0.4738 (2)0.0500 (6)
H110.92060.63890.40010.060*
C120.7714 (3)0.5298 (2)0.48847 (19)0.0407 (5)
H120.72730.46340.42540.049*
C130.7217 (2)0.52624 (19)0.59897 (17)0.0298 (4)
C140.6071 (2)0.41548 (18)0.62564 (17)0.0299 (4)
C150.5698 (3)0.2974 (2)0.54736 (19)0.0393 (5)
H150.60970.28640.47290.047*
C160.4727 (3)0.1964 (2)0.5817 (2)0.0467 (6)
H160.44580.11660.53020.056*
C170.4161 (3)0.2143 (2)0.6919 (2)0.0495 (6)
H170.35200.14690.71670.059*
C180.4562 (3)0.3343 (2)0.7653 (2)0.0419 (5)
H180.41700.34650.84000.050*
Cl11.15819 (9)0.95211 (6)1.36830 (5)0.05451 (17)
H1WA0.340 (4)0.550 (3)0.984 (2)0.050 (8)*
N10.7798 (2)0.62241 (16)0.69110 (15)0.0341 (4)
N20.5490 (2)0.43414 (15)0.73402 (14)0.0315 (4)
N30.6788 (2)0.81919 (15)0.90636 (14)0.0315 (4)
O10.4109 (2)0.69189 (14)0.73855 (13)0.0399 (4)
O20.3186 (2)0.89098 (16)0.72147 (16)0.0539 (4)
O30.2802 (2)0.81929 (16)0.89951 (15)0.0504 (4)
O40.7824 (2)0.59406 (13)0.96069 (12)0.0381 (3)
O1W0.3995 (2)0.60387 (17)0.95374 (16)0.0495 (4)
H1WB0.33650.65630.94810.074*
S10.38106 (7)0.82061 (5)0.79767 (5)0.03552 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.04229 (15)0.02405 (14)0.02831 (14)0.00326 (10)0.00157 (10)0.00023 (10)
C10.0363 (10)0.0297 (10)0.0269 (10)0.0079 (8)0.0033 (8)0.0039 (8)
C20.0467 (12)0.0351 (11)0.0361 (11)0.0177 (9)0.0029 (9)0.0078 (9)
C30.0365 (11)0.0483 (13)0.0330 (11)0.0121 (9)0.0015 (9)0.0127 (10)
C40.0355 (11)0.0407 (12)0.0302 (11)0.0001 (9)0.0058 (8)0.0060 (9)
C50.0378 (11)0.0279 (10)0.0346 (11)0.0012 (8)0.0033 (8)0.0052 (8)
C60.0316 (10)0.0268 (10)0.0293 (10)0.0033 (8)0.0009 (8)0.0044 (8)
C70.0344 (10)0.0221 (9)0.0320 (10)0.0023 (8)0.0019 (8)0.0022 (8)
C80.0432 (11)0.0285 (10)0.0351 (11)0.0029 (9)0.0066 (9)0.0089 (9)
C90.0433 (12)0.0347 (12)0.0544 (15)0.0009 (10)0.0061 (11)0.0053 (10)
C100.0452 (13)0.0442 (14)0.0691 (17)0.0052 (11)0.0157 (12)0.0223 (13)
C110.0506 (14)0.0620 (16)0.0459 (14)0.0147 (12)0.0137 (11)0.0255 (12)
C120.0427 (12)0.0491 (13)0.0316 (11)0.0126 (10)0.0002 (9)0.0091 (10)
C130.0291 (9)0.0311 (10)0.0297 (10)0.0089 (8)0.0020 (8)0.0057 (8)
C140.0279 (9)0.0298 (10)0.0298 (10)0.0058 (8)0.0046 (8)0.0022 (8)
C150.0435 (12)0.0357 (12)0.0330 (11)0.0064 (9)0.0040 (9)0.0025 (9)
C160.0468 (13)0.0305 (12)0.0524 (14)0.0001 (10)0.0051 (11)0.0061 (10)
C170.0467 (13)0.0311 (12)0.0643 (16)0.0058 (10)0.0063 (12)0.0069 (11)
C180.0437 (12)0.0353 (12)0.0439 (13)0.0006 (9)0.0102 (10)0.0076 (10)
Cl10.0662 (4)0.0497 (4)0.0402 (3)0.0031 (3)0.0221 (3)0.0057 (3)
N10.0362 (9)0.0283 (9)0.0346 (9)0.0031 (7)0.0010 (7)0.0028 (7)
N20.0331 (8)0.0270 (9)0.0313 (9)0.0035 (7)0.0022 (7)0.0019 (7)
N30.0369 (9)0.0246 (8)0.0321 (9)0.0045 (7)0.0043 (7)0.0058 (7)
O10.0480 (9)0.0319 (8)0.0350 (8)0.0072 (6)0.0069 (7)0.0015 (6)
O20.0584 (10)0.0472 (10)0.0587 (11)0.0110 (8)0.0202 (8)0.0173 (8)
O30.0540 (10)0.0400 (9)0.0562 (11)0.0119 (8)0.0149 (8)0.0062 (8)
O40.0517 (9)0.0242 (7)0.0351 (8)0.0062 (6)0.0060 (7)0.0010 (6)
O1W0.0585 (11)0.0410 (10)0.0561 (11)0.0136 (8)0.0200 (9)0.0211 (8)
S10.0397 (3)0.0292 (3)0.0357 (3)0.0067 (2)0.0064 (2)0.0036 (2)
Geometric parameters (Å, º) top
Zn1—O41.9851 (15)C9—C101.376 (3)
Zn1—N32.0936 (16)C9—H90.9300
Zn1—N22.1144 (16)C10—C111.372 (4)
Zn1—N12.1817 (18)C10—H100.9300
Zn1—O1W2.1999 (17)C11—C121.377 (3)
Zn1—O12.3507 (15)C11—H110.9300
C1—O41.318 (2)C12—C131.383 (3)
C1—C21.411 (3)C12—H120.9300
C1—C61.420 (3)C13—N11.343 (3)
C2—C31.367 (3)C13—C141.482 (3)
C2—H20.9300C14—N21.352 (3)
C3—C41.388 (3)C14—C151.386 (3)
C3—H30.9300C15—C161.379 (3)
C4—C51.364 (3)C15—H150.9300
C4—Cl11.754 (2)C16—C171.368 (3)
C5—C61.414 (3)C16—H160.9300
C5—H50.9300C17—C181.378 (3)
C6—C71.446 (3)C17—H170.9300
C7—N31.287 (2)C18—N21.338 (3)
C7—H70.9300C18—H180.9300
C8—N31.459 (3)O1—S11.4682 (15)
C8—S11.788 (2)O2—S11.4416 (17)
C8—H8A0.9700O3—S11.4513 (17)
C8—H8B0.9700O1W—H1WA0.84 (3)
C9—N11.338 (3)O1W—H1WB0.8200
O4—Zn1—N390.71 (6)C11—C10—H10120.9
O4—Zn1—N2102.79 (6)C9—C10—H10120.9
N3—Zn1—N2164.81 (7)C10—C11—C12120.0 (2)
O4—Zn1—N1104.54 (7)C10—C11—H11120.0
N3—Zn1—N193.88 (6)C12—C11—H11120.0
N2—Zn1—N176.17 (6)C11—C12—C13118.6 (2)
O4—Zn1—O1W90.69 (7)C11—C12—H12120.7
N3—Zn1—O1W92.08 (7)C13—C12—H12120.7
N2—Zn1—O1W94.66 (7)N1—C13—C12121.86 (19)
N1—Zn1—O1W163.55 (7)N1—C13—C14115.00 (17)
O4—Zn1—O1165.47 (5)C12—C13—C14123.10 (18)
N3—Zn1—O178.29 (6)N2—C14—C15121.59 (19)
N2—Zn1—O189.43 (6)N2—C14—C13115.84 (16)
N1—Zn1—O185.85 (6)C15—C14—C13122.45 (19)
O1W—Zn1—O180.36 (6)C16—C15—C14119.0 (2)
O4—C1—C2118.78 (18)C16—C15—H15120.5
O4—C1—C6124.10 (18)C14—C15—H15120.5
C2—C1—C6117.09 (18)C17—C16—C15119.6 (2)
C3—C2—C1122.1 (2)C17—C16—H16120.2
C3—C2—H2118.9C15—C16—H16120.2
C1—C2—H2118.9C16—C17—C18118.6 (2)
C2—C3—C4119.88 (19)C16—C17—H17120.7
C2—C3—H3120.1C18—C17—H17120.7
C4—C3—H3120.1N2—C18—C17123.0 (2)
C5—C4—C3120.61 (19)N2—C18—H18118.5
C5—C4—Cl1119.85 (17)C17—C18—H18118.5
C3—C4—Cl1119.50 (16)C9—N1—C13118.41 (19)
C4—C5—C6120.4 (2)C9—N1—Zn1126.34 (15)
C4—C5—H5119.8C13—N1—Zn1113.33 (13)
C6—C5—H5119.8C18—N2—C14118.20 (17)
C5—C6—C1119.71 (18)C18—N2—Zn1125.78 (14)
C5—C6—C7114.88 (17)C14—N2—Zn1116.00 (13)
C1—C6—C7125.40 (17)C7—N3—C8116.93 (17)
N3—C7—C6126.09 (18)C7—N3—Zn1124.61 (14)
N3—C7—H7117.0C8—N3—Zn1118.37 (13)
C6—C7—H7117.0S1—O1—Zn1111.64 (8)
N3—C8—S1107.87 (14)C1—O4—Zn1128.73 (13)
N3—C8—H8A110.1Zn1—O1W—H1WA140.4 (18)
S1—C8—H8A110.1Zn1—O1W—H1WB109.5
N3—C8—H8B110.1H1WA—O1W—H1WB106.3
S1—C8—H8B110.1O2—S1—O3114.48 (11)
H8A—C8—H8B108.4O2—S1—O1113.83 (10)
N1—C9—C10122.9 (2)O3—S1—O1111.93 (10)
N1—C9—H9118.6O2—S1—C8106.08 (10)
C10—C9—H9118.6O3—S1—C8106.82 (10)
C11—C10—C9118.2 (2)O1—S1—C8102.52 (9)
O4—C1—C2—C3175.1 (2)C15—C14—N2—C181.2 (3)
C6—C1—C2—C33.1 (3)C13—C14—N2—C18174.98 (18)
C1—C2—C3—C40.9 (3)C15—C14—N2—Zn1179.59 (15)
C2—C3—C4—C53.9 (3)C13—C14—N2—Zn13.4 (2)
C2—C3—C4—Cl1173.90 (17)O4—Zn1—N2—C1865.54 (19)
C3—C4—C5—C62.6 (3)N3—Zn1—N2—C18142.3 (2)
Cl1—C4—C5—C6175.13 (16)N1—Zn1—N2—C18167.61 (19)
C4—C5—C6—C11.5 (3)O1W—Zn1—N2—C1826.24 (19)
C4—C5—C6—C7179.6 (2)O1—Zn1—N2—C18106.52 (18)
O4—C1—C6—C5173.83 (19)O4—Zn1—N2—C14112.71 (14)
C2—C1—C6—C54.3 (3)N3—Zn1—N2—C1439.5 (3)
O4—C1—C6—C75.0 (3)N1—Zn1—N2—C1410.64 (13)
C2—C1—C6—C7176.93 (19)O1W—Zn1—N2—C14155.51 (14)
C5—C6—C7—N3178.2 (2)O1—Zn1—N2—C1475.23 (14)
C1—C6—C7—N30.6 (3)C6—C7—N3—C8178.30 (19)
N1—C9—C10—C111.2 (4)C6—C7—N3—Zn15.2 (3)
C9—C10—C11—C123.0 (4)S1—C8—N3—C7140.80 (16)
C10—C11—C12—C131.6 (4)S1—C8—N3—Zn135.87 (18)
C11—C12—C13—N11.8 (3)O4—Zn1—N3—C75.63 (17)
C11—C12—C13—C14175.8 (2)N2—Zn1—N3—C7158.6 (2)
N1—C13—C14—N211.9 (2)N1—Zn1—N3—C7110.26 (17)
C12—C13—C14—N2170.33 (19)O1W—Zn1—N3—C785.09 (17)
N1—C13—C14—C15164.25 (19)O1—Zn1—N3—C7164.80 (18)
C12—C13—C14—C1513.5 (3)O4—Zn1—N3—C8177.97 (15)
N2—C14—C15—C160.7 (3)N2—Zn1—N3—C825.0 (3)
C13—C14—C15—C16175.22 (19)N1—Zn1—N3—C873.34 (15)
C14—C15—C16—C170.4 (4)O1W—Zn1—N3—C891.31 (15)
C15—C16—C17—C180.9 (4)O1—Zn1—N3—C811.60 (14)
C16—C17—C18—N20.4 (4)O4—Zn1—O1—S120.4 (3)
C10—C9—N1—C132.1 (3)N3—Zn1—O1—S121.04 (9)
C10—C9—N1—Zn1161.05 (18)N2—Zn1—O1—S1167.95 (10)
C12—C13—N1—C93.6 (3)N1—Zn1—O1—S1115.88 (10)
C14—C13—N1—C9174.19 (19)O1W—Zn1—O1—S173.13 (10)
C12—C13—N1—Zn1161.63 (16)C2—C1—O4—Zn1179.41 (14)
C14—C13—N1—Zn120.6 (2)C6—C1—O4—Zn12.5 (3)
O4—Zn1—N1—C979.2 (2)N3—Zn1—O4—C11.91 (17)
N3—Zn1—N1—C912.5 (2)N2—Zn1—O4—C1174.89 (17)
N2—Zn1—N1—C9179.1 (2)N1—Zn1—O4—C196.10 (17)
O1W—Zn1—N1—C9123.5 (2)O1W—Zn1—O4—C190.18 (17)
O1—Zn1—N1—C990.44 (19)O1—Zn1—O4—C138.5 (3)
O4—Zn1—N1—C13116.92 (14)Zn1—O1—S1—O2154.40 (10)
N3—Zn1—N1—C13151.34 (14)Zn1—O1—S1—O373.84 (11)
N2—Zn1—N1—C1317.03 (13)Zn1—O1—S1—C840.30 (11)
O1W—Zn1—N1—C1340.4 (3)N3—C8—S1—O2168.93 (14)
O1—Zn1—N1—C1373.40 (14)N3—C8—S1—O368.55 (16)
C17—C18—N2—C140.6 (3)N3—C8—S1—O149.28 (16)
C17—C18—N2—Zn1178.84 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O4i0.84 (3)1.96 (3)2.791 (2)172 (3)
O1W—H1WB···O30.822.102.855 (2)154
Symmetry code: (i) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Zn(C8H6ClNO4S)(C10H8N2)(H2O)]
Mr487.22
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.7332 (6), 10.8948 (8), 11.9112 (9)
α, β, γ (°)103.625 (1), 90.664 (2), 98.993 (1)
V3)962.08 (13)
Z2
Radiation typeMo Kα
µ (mm1)1.56
Crystal size (mm)0.18 × 0.14 × 0.10
Data collection
DiffractometerBruker APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.766, 0.860
No. of measured, independent and
observed [I > 2σ(I)] reflections
7155, 3719, 3345
Rint0.026
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.077, 1.05
No. of reflections3719
No. of parameters267
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.52

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O4i0.84 (3)1.96 (3)2.791 (2)172 (3)
O1W—H1WB···O30.822.102.855 (2)154
Symmetry code: (i) x+1, y+1, z+2.
 

Acknowledgements

This work was supported by the Open Fund Project of Key Laboratories in Hunan Universities (11 K009).

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHe, K.-H., Li, J.-M. & Jiang, Y.-M. (2007). Acta Cryst. E63, m2992–m2993.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, J.-S., Zhang, C.-H., Kuang, D.-Z., Feng, Y.-L. & Peng, Y.-L. (2007). Acta Cryst. E63, m2250.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds