organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Acetyl-5-phenyl-1-p-tolyl-1H-pyrazole-4-carbo­nitrile

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia, bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 16 March 2012; accepted 19 March 2012; online 24 March 2012)

In the title pyrazole derivative, C19H15N3O, the central pyrazole ring makes dihedral angles of 42.71 (9) and 61.34 (9)°, respectively, with the phenyl and p-tolyl rings. The dihedral angle between the phenyl and p-tolyl rings is 58.22 (9)°. The 3-acetyl-1H-pyrazole-4-carbonitrile unit is essentially planar, with an r.m.s. deviation of 0.0295 (1) Å for the ten non-H atoms.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For background to and the bioactivity of pyrazole derivatives, see: Abdel-Aziz et al. (2009[Abdel-Aziz, H. A., Gamal-Eldeen, A. M., Hamdy, N. A. & Fakhr, I. M. I. (2009). Arch. Pharm. 342, 230-237.], 2010[Abdel-Aziz, H. A., El-Zahabi, H. S. A. & Dawood, K. M. (2010). Eur. J. Med. Chem. 45, 2427-2432.]); Abdel-Wahab et al. (2009[Abdel-Wahab, B. F., Abdel-Aziz, H. A. & Ahmed, E. M. (2009). Monatsh. Chem. 140, 601-605.]); Dawood et al. (2003[Dawood, K. M., Ragab, E. A. & Farag, A. M. (2003). J. Chem. Res. (S), 11, 685-686.]). For a related structure, see: Abdel-Aziz et al. (2012[Abdel-Aziz, H. A., Ghabbour, H. A., Chantrapromma, S. & Fun, H.-K. (2012). Acta Cryst. E68, o1095-o1096.]).

[Scheme 1]

Experimental

Crystal data
  • C19H15N3O

  • Mr = 301.34

  • Monoclinic, P 21 /c

  • a = 10.2433 (2) Å

  • b = 10.6467 (2) Å

  • c = 15.7547 (3) Å

  • β = 109.684 (1)°

  • V = 1617.76 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.63 mm−1

  • T = 296 K

  • 0.57 × 0.28 × 0.22 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.718, Tmax = 0.876

  • 10344 measured reflections

  • 2720 independent reflections

  • 2427 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.118

  • S = 1.05

  • 2720 reflections

  • 213 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

During the course of our medicinal chemistry research on pyrazole derivatives (Abdel-Aziz et al., 2009, 2010; Abdel-Wahab et al., 2009), we previously reported the crystal structure of 3-acetyl-1,5-diphenyl-1H-pyrazole-4-carbonitrile (I) (Abdel-Aziz et al., 2012). The title compound (II), was synthesized by retaining the core part but changing the phenyl group which was attached to N atom at position 1 of the pyrazole ring in compound (I) to the p-tolyl in order to investigate the influence of the substituents to their biological properties. Herein, the crystal structure of (II) was reported.

The molecule of (II), C19H15N3O, has the same butterfly-like structure as in (I) (Abdel-Aziz et al., 2012). However there are differences in the dihedral angles between the equivalent moieties and the crystal packing of (I) and (II). In (II), the pyrazole ring forms dihedral angles of 42.71 (9) and 61.34 (9)°, respectively, with the C5–C10 and C11-C16 benzene rings [the corresponding values in (I) are 59.31 (8) and 57.24 (8)° ] and the dihedral angle between these two benzene rings is 58.22 (9)° [the corresponding value in (I) is 64.03 (8)°]. The cabonitrile and acetyl substituents in (II) lie essentially on the same plane with the pyrazole ring with the r.m.s. 0.0295 (1) Å for the ten non H atoms (C1–C4/C17/C18/N1–N3/O1) and the dihedral angle between the C-C=O planes of the acetyl unit and pyrazole ring is 4.8 (2)° [whereas in (I) the acetyl moiety is slightly deviated from the pyrazole ring with the dihedral angle between the C-C=O planes of the acetyl and pyrazole moieties being 7.95 (18)°]. The bond distances in (II) are within normal ranges (Allen et al., 1987) and are comparable to the closely related structure (Abdel-Aziz et al., 2012). The crystal packing of (II) is stabilized by van der Waals interactions. Even there is no hydrogen bonds, the crystal packing of (II) was shown in Fig. 2 for comparison with that of (I).

Related literature top

For bond-length data, see: Allen et al. (1987). For background to and the bioactivity of pyrazole derivatives, see: Abdel-Aziz et al. (2009, 2010); Abdel-Wahab et al. (2009); Dawood et al. (2003). For a related structure, see: Abdel-Aziz et al. (2012).

Experimental top

The title compound was prepared according to the reported method (Dawood et al., 2003). Single crystals of the title compound suitable for X-ray structure determination were recrystallized from ethanol by the slow evaporation of the solvent at room temperature after several days.

Refinement top

All H atoms were placed in calculated positions with C—H = 0.93 Å for aromatic and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups.

Structure description top

During the course of our medicinal chemistry research on pyrazole derivatives (Abdel-Aziz et al., 2009, 2010; Abdel-Wahab et al., 2009), we previously reported the crystal structure of 3-acetyl-1,5-diphenyl-1H-pyrazole-4-carbonitrile (I) (Abdel-Aziz et al., 2012). The title compound (II), was synthesized by retaining the core part but changing the phenyl group which was attached to N atom at position 1 of the pyrazole ring in compound (I) to the p-tolyl in order to investigate the influence of the substituents to their biological properties. Herein, the crystal structure of (II) was reported.

The molecule of (II), C19H15N3O, has the same butterfly-like structure as in (I) (Abdel-Aziz et al., 2012). However there are differences in the dihedral angles between the equivalent moieties and the crystal packing of (I) and (II). In (II), the pyrazole ring forms dihedral angles of 42.71 (9) and 61.34 (9)°, respectively, with the C5–C10 and C11-C16 benzene rings [the corresponding values in (I) are 59.31 (8) and 57.24 (8)° ] and the dihedral angle between these two benzene rings is 58.22 (9)° [the corresponding value in (I) is 64.03 (8)°]. The cabonitrile and acetyl substituents in (II) lie essentially on the same plane with the pyrazole ring with the r.m.s. 0.0295 (1) Å for the ten non H atoms (C1–C4/C17/C18/N1–N3/O1) and the dihedral angle between the C-C=O planes of the acetyl unit and pyrazole ring is 4.8 (2)° [whereas in (I) the acetyl moiety is slightly deviated from the pyrazole ring with the dihedral angle between the C-C=O planes of the acetyl and pyrazole moieties being 7.95 (18)°]. The bond distances in (II) are within normal ranges (Allen et al., 1987) and are comparable to the closely related structure (Abdel-Aziz et al., 2012). The crystal packing of (II) is stabilized by van der Waals interactions. Even there is no hydrogen bonds, the crystal packing of (II) was shown in Fig. 2 for comparison with that of (I).

For bond-length data, see: Allen et al. (1987). For background to and the bioactivity of pyrazole derivatives, see: Abdel-Aziz et al. (2009, 2010); Abdel-Wahab et al. (2009); Dawood et al. (2003). For a related structure, see: Abdel-Aziz et al. (2012).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing 40% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. A packing diagram of the title compound viewed along the a axis.
3-Acetyl-5-phenyl-1-p-tolyl-1H-pyrazole-4-carbonitrile top
Crystal data top
C19H15N3OF(000) = 632
Mr = 301.34Dx = 1.237 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 272 reflections
a = 10.2433 (2) Åθ = 4.6–65.0°
b = 10.6467 (2) ŵ = 0.63 mm1
c = 15.7547 (3) ÅT = 296 K
β = 109.684 (1)°Block, colorless
V = 1617.76 (5) Å30.57 × 0.28 × 0.22 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2720 independent reflections
Radiation source: sealed tube2427 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
φ and ω scansθmax = 65.0°, θmin = 4.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1211
Tmin = 0.718, Tmax = 0.876k = 1212
10344 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.050P)2 + 0.2871P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2720 reflectionsΔρmax = 0.20 e Å3
213 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0113 (9)
Crystal data top
C19H15N3OV = 1617.76 (5) Å3
Mr = 301.34Z = 4
Monoclinic, P21/cCu Kα radiation
a = 10.2433 (2) ŵ = 0.63 mm1
b = 10.6467 (2) ÅT = 296 K
c = 15.7547 (3) Å0.57 × 0.28 × 0.22 mm
β = 109.684 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2720 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2427 reflections with I > 2σ(I)
Tmin = 0.718, Tmax = 0.876Rint = 0.032
10344 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.05Δρmax = 0.20 e Å3
2720 reflectionsΔρmin = 0.14 e Å3
213 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.28761 (14)0.55281 (14)0.42141 (9)0.0837 (4)
N10.05513 (13)0.54275 (12)0.68539 (8)0.0536 (3)
N20.05757 (13)0.47588 (13)0.63730 (8)0.0585 (3)
N30.07458 (17)0.81153 (17)0.43476 (10)0.0795 (5)
C10.11442 (15)0.54122 (15)0.56191 (10)0.0544 (4)
C20.03698 (14)0.65058 (14)0.56181 (9)0.0513 (4)
C30.07256 (14)0.64969 (14)0.64318 (9)0.0499 (4)
C40.05890 (15)0.74023 (16)0.49130 (10)0.0578 (4)
C50.18570 (15)0.74010 (15)0.67940 (9)0.0521 (4)
C60.15724 (18)0.86766 (16)0.67039 (11)0.0637 (4)
H6A0.06690.89470.64120.076*
C70.2610 (2)0.9544 (2)0.70412 (14)0.0833 (6)
H7A0.24051.03980.69830.100*
C80.3956 (2)0.9150 (2)0.74673 (14)0.0876 (6)
H8A0.46590.97360.76990.105*
C90.42553 (18)0.7887 (2)0.75483 (13)0.0781 (6)
H9A0.51650.76240.78280.094*
C100.32237 (16)0.70133 (18)0.72207 (11)0.0644 (4)
H10A0.34350.61610.72830.077*
C110.13953 (15)0.49602 (15)0.77206 (9)0.0530 (4)
C120.15432 (17)0.56511 (16)0.84811 (10)0.0587 (4)
H12A0.10960.64200.84420.070*
C130.23678 (17)0.51883 (17)0.93088 (10)0.0625 (4)
H13A0.24700.56540.98270.075*
C140.30436 (16)0.40481 (17)0.93820 (10)0.0605 (4)
C150.2845 (2)0.33649 (18)0.86054 (12)0.0723 (5)
H15A0.32740.25870.86440.087*
C160.2024 (2)0.38067 (17)0.77706 (11)0.0690 (5)
H16A0.19000.33340.72530.083*
C170.24206 (18)0.49704 (17)0.49213 (11)0.0641 (4)
C180.3103 (2)0.3819 (2)0.51218 (15)0.0947 (7)
H18A0.39250.36390.46210.142*
H18B0.33460.39590.56520.142*
H18C0.24750.31220.52220.142*
C190.39693 (19)0.3572 (2)1.02859 (12)0.0778 (5)
H19C0.36020.28001.04250.117*
H19A0.40110.41851.07410.117*
H19B0.48840.34291.02660.117*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0771 (8)0.0812 (9)0.0701 (8)0.0013 (7)0.0049 (6)0.0061 (7)
N10.0510 (7)0.0597 (7)0.0486 (6)0.0035 (5)0.0147 (5)0.0065 (5)
N20.0554 (7)0.0637 (8)0.0545 (7)0.0002 (6)0.0162 (6)0.0032 (6)
N30.0781 (10)0.0908 (11)0.0680 (9)0.0115 (8)0.0223 (7)0.0254 (9)
C10.0505 (8)0.0616 (9)0.0511 (8)0.0074 (7)0.0171 (6)0.0015 (7)
C20.0465 (7)0.0596 (8)0.0488 (7)0.0116 (6)0.0171 (6)0.0055 (6)
C30.0453 (7)0.0566 (8)0.0503 (7)0.0093 (6)0.0194 (6)0.0063 (6)
C40.0488 (8)0.0695 (10)0.0540 (8)0.0105 (7)0.0161 (6)0.0076 (8)
C50.0471 (7)0.0632 (9)0.0467 (7)0.0054 (6)0.0169 (6)0.0085 (6)
C60.0585 (9)0.0638 (10)0.0639 (9)0.0070 (7)0.0144 (7)0.0091 (7)
C70.0894 (14)0.0662 (11)0.0825 (12)0.0095 (10)0.0134 (10)0.0130 (9)
C80.0761 (12)0.0946 (15)0.0774 (12)0.0279 (11)0.0067 (9)0.0208 (11)
C90.0497 (9)0.1040 (15)0.0710 (10)0.0060 (9)0.0075 (7)0.0297 (10)
C100.0502 (8)0.0743 (10)0.0661 (9)0.0068 (7)0.0163 (7)0.0184 (8)
C110.0500 (8)0.0608 (9)0.0486 (7)0.0026 (6)0.0172 (6)0.0099 (6)
C120.0587 (9)0.0603 (9)0.0573 (8)0.0057 (7)0.0198 (7)0.0049 (7)
C130.0638 (9)0.0709 (10)0.0504 (8)0.0040 (8)0.0162 (7)0.0027 (7)
C140.0503 (8)0.0732 (10)0.0569 (8)0.0028 (7)0.0168 (7)0.0164 (8)
C150.0816 (12)0.0679 (10)0.0680 (10)0.0210 (9)0.0259 (9)0.0178 (8)
C160.0836 (12)0.0681 (10)0.0553 (9)0.0156 (9)0.0234 (8)0.0060 (8)
C170.0581 (9)0.0690 (10)0.0606 (9)0.0049 (8)0.0139 (7)0.0033 (8)
C180.0866 (14)0.1014 (16)0.0848 (13)0.0296 (12)0.0139 (11)0.0028 (12)
C190.0634 (10)0.0968 (14)0.0650 (10)0.0000 (9)0.0110 (8)0.0238 (10)
Geometric parameters (Å, º) top
O1—C171.209 (2)C9—H9A0.9300
N1—N21.3507 (18)C10—H10A0.9300
N1—C31.3603 (19)C11—C121.370 (2)
N1—C111.4367 (18)C11—C161.377 (2)
N2—C11.330 (2)C12—C131.384 (2)
N3—C41.140 (2)C12—H12A0.9300
C1—C21.409 (2)C13—C141.383 (3)
C1—C171.473 (2)C13—H13A0.9300
C2—C31.390 (2)C14—C151.378 (3)
C2—C41.424 (2)C14—C191.508 (2)
C3—C51.466 (2)C15—C161.383 (2)
C5—C61.386 (2)C15—H15A0.9300
C5—C101.396 (2)C16—H16A0.9300
C6—C71.373 (3)C17—C181.496 (3)
C6—H6A0.9300C18—H18A0.9600
C7—C81.380 (3)C18—H18B0.9600
C7—H7A0.9300C18—H18C0.9600
C8—C91.375 (3)C19—H19C0.9600
C8—H8A0.9300C19—H19A0.9600
C9—C101.372 (3)C19—H19B0.9600
N2—N1—C3113.27 (12)C12—C11—N1119.94 (14)
N2—N1—C11118.53 (12)C16—C11—N1118.91 (14)
C3—N1—C11128.20 (13)C11—C12—C13119.05 (15)
C1—N2—N1105.05 (13)C11—C12—H12A120.5
N2—C1—C2110.85 (13)C13—C12—H12A120.5
N2—C1—C17120.73 (15)C14—C13—C12121.38 (16)
C2—C1—C17128.41 (14)C14—C13—H13A119.3
C3—C2—C1105.85 (13)C12—C13—H13A119.3
C3—C2—C4126.16 (14)C15—C14—C13117.98 (14)
C1—C2—C4127.87 (13)C15—C14—C19121.26 (17)
N1—C3—C2104.97 (13)C13—C14—C19120.77 (17)
N1—C3—C5125.17 (13)C14—C15—C16121.69 (16)
C2—C3—C5129.86 (13)C14—C15—H15A119.2
N3—C4—C2178.98 (17)C16—C15—H15A119.2
C6—C5—C10118.77 (16)C11—C16—C15118.74 (16)
C6—C5—C3119.47 (13)C11—C16—H16A120.6
C10—C5—C3121.76 (15)C15—C16—H16A120.6
C7—C6—C5120.73 (16)O1—C17—C1120.06 (17)
C7—C6—H6A119.6O1—C17—C18122.28 (17)
C5—C6—H6A119.6C1—C17—C18117.66 (16)
C6—C7—C8119.97 (19)C17—C18—H18A109.5
C6—C7—H7A120.0C17—C18—H18B109.5
C8—C7—H7A120.0H18A—C18—H18B109.5
C9—C8—C7119.85 (19)C17—C18—H18C109.5
C9—C8—H8A120.1H18A—C18—H18C109.5
C7—C8—H8A120.1H18B—C18—H18C109.5
C10—C9—C8120.58 (17)C14—C19—H19C109.5
C10—C9—H9A119.7C14—C19—H19A109.5
C8—C9—H9A119.7H19C—C19—H19A109.5
C9—C10—C5120.08 (17)C14—C19—H19B109.5
C9—C10—H10A120.0H19C—C19—H19B109.5
C5—C10—H10A120.0H19A—C19—H19B109.5
C12—C11—C16121.13 (14)
C3—N1—N2—C10.11 (16)C6—C7—C8—C90.4 (3)
C11—N1—N2—C1179.67 (13)C7—C8—C9—C101.0 (3)
N1—N2—C1—C20.18 (16)C8—C9—C10—C50.5 (3)
N1—N2—C1—C17179.55 (13)C6—C5—C10—C90.5 (2)
N2—C1—C2—C30.39 (16)C3—C5—C10—C9179.78 (15)
C17—C1—C2—C3179.31 (15)N2—N1—C11—C12117.95 (16)
N2—C1—C2—C4175.73 (14)C3—N1—C11—C1261.5 (2)
C17—C1—C2—C44.6 (2)N2—N1—C11—C1660.91 (19)
N2—N1—C3—C20.35 (16)C3—N1—C11—C16119.60 (18)
C11—N1—C3—C2179.86 (13)C16—C11—C12—C131.6 (2)
N2—N1—C3—C5179.96 (13)N1—C11—C12—C13179.59 (14)
C11—N1—C3—C50.5 (2)C11—C12—C13—C140.1 (3)
C1—C2—C3—N10.43 (15)C12—C13—C14—C151.6 (2)
C4—C2—C3—N1175.78 (13)C12—C13—C14—C19178.34 (16)
C1—C2—C3—C5179.98 (14)C13—C14—C15—C161.5 (3)
C4—C2—C3—C53.8 (2)C19—C14—C15—C16178.44 (18)
N1—C3—C5—C6138.02 (15)C12—C11—C16—C151.7 (3)
C2—C3—C5—C642.5 (2)N1—C11—C16—C15179.48 (16)
N1—C3—C5—C1042.7 (2)C14—C15—C16—C110.1 (3)
C2—C3—C5—C10136.79 (16)N2—C1—C17—O1175.12 (16)
C10—C5—C6—C71.1 (3)C2—C1—C17—O15.2 (3)
C3—C5—C6—C7179.61 (16)N2—C1—C17—C184.4 (2)
C5—C6—C7—C80.7 (3)C2—C1—C17—C18175.32 (18)

Experimental details

Crystal data
Chemical formulaC19H15N3O
Mr301.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)10.2433 (2), 10.6467 (2), 15.7547 (3)
β (°) 109.684 (1)
V3)1617.76 (5)
Z4
Radiation typeCu Kα
µ (mm1)0.63
Crystal size (mm)0.57 × 0.28 × 0.22
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.718, 0.876
No. of measured, independent and
observed [I > 2σ(I)] reflections
10344, 2720, 2427
Rint0.032
(sin θ/λ)max1)0.588
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.118, 1.05
No. of reflections2720
No. of parameters213
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.14

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Footnotes

Thomson Reuters ResearcherID: A-5085-2009.

§College of Pharmacy (Visiting Professor), King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia. Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank the Deanship of Scientific Research and the Research Center, College of Pharmacy, King Saud University, and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. HKF also thanks the King Saud University, Riyadh, Saudi Arabia, for the award of a visiting Professorship (December 23rd 2011 to January 14th 2012).

References

First citationAbdel-Aziz, H. A., El-Zahabi, H. S. A. & Dawood, K. M. (2010). Eur. J. Med. Chem. 45, 2427–2432.  Web of Science CAS PubMed Google Scholar
First citationAbdel-Aziz, H. A., Gamal-Eldeen, A. M., Hamdy, N. A. & Fakhr, I. M. I. (2009). Arch. Pharm. 342, 230–237.  CAS Google Scholar
First citationAbdel-Aziz, H. A., Ghabbour, H. A., Chantrapromma, S. & Fun, H.-K. (2012). Acta Cryst. E68, o1095–o1096.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationAbdel-Wahab, B. F., Abdel-Aziz, H. A. & Ahmed, E. M. (2009). Monatsh. Chem. 140, 601–605.  CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDawood, K. M., Ragab, E. A. & Farag, A. M. (2003). J. Chem. Res. (S), 11, 685–686.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds