organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Amino-1,3,4-thia­diazol-2(3H)-one

aDepartment of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea
*Correspondence e-mail: skkang@cnu.ac.kr

(Received 21 March 2012; accepted 22 March 2012; online 28 March 2012)

The asymmetric unit of the title compound, C2H3N3OS, contains three independent mol­ecules which are essentially planar, with r.m.s. deviations of 0.011 (2)–0.027 (2) Å from the mean plane defined by the seven non-H atoms. In the crystal, N—H⋯N and N—H⋯O hydrogen bonds link the mol­ecules into a sheet parallel to the (111) plane.

Related literature

For the structures and reactivity of thia­diazole derivatives, see: Parkanyi et al. (1989[Parkanyi, C., Yuan, H. L., Cho, N. S., Jaw, J. J., Woodhouse, T. E. & Aung, T. L. (1989). J. Heterocycl. Chem. 26, 1331-1334.]); Cho, Cho et al. (1996[Cho, N. S., Cho, J. J., Ra, D. Y., Moon, J. H., Song, J. S. & Kang, S. K. (1996). Bull. Korean Chem. Soc. 17, 1170-1174.]); Cho, Ra et al. (1996[Cho, N. S., Ra, C. S., Ra, D. Y., Song, J. S. & Kang, S. K. (1996). J. Heterocycl. Chem. 33, 1201-1206.]). For the biological activity of thia­diazole derivatives, see: Castro et al. (2008[Castro, A., Encinas, A., Gil, C., Brase, S., Porcal, W., Perez, C., Moreno, F. J. & Martinez, A. (2008). Bioorg. Med. Chem. 16, 495-510.]); Ra, Cho & Cho (1998[Ra, D. Y., Cho, N. S. & Cho, J. J. (1998). J. Heterocycl. Chem. 35, 525-530.]); Ra, Cho, Moon & Kang (1998[Ra, D. Y., Cho, N. S., Moon, J. H. & Kang, S. K. (1998). J. Heterocycl. Chem. 35, 1435-1439.]).

[Scheme 1]

Experimental

Crystal data
  • C2H3N3OS

  • Mr = 117.13

  • Triclinic, [P \overline 1]

  • a = 7.2860 (2) Å

  • b = 10.2982 (3) Å

  • c = 10.7727 (3) Å

  • α = 63.721 (3)°

  • β = 73.122 (2)°

  • γ = 76.737 (2)°

  • V = 688.74 (3) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 0.57 mm−1

  • T = 296 K

  • 0.15 × 0.1 × 0.05 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.93, Tmax = 0.97

  • 23857 measured reflections

  • 3433 independent reflections

  • 2526 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.080

  • S = 0.94

  • 3433 reflections

  • 226 parameters

  • All H-atom parameters refined

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯N18 0.854 (19) 2.004 (19) 2.8516 (19) 171.9 (18)
N7—H7A⋯O20i 0.87 (2) 2.07 (2) 2.907 (2) 160 (2)
N10—H10⋯N4 0.98 (2) 1.88 (2) 2.8558 (19) 175.7 (18)
N14—H14A⋯O6ii 0.83 (2) 2.10 (2) 2.897 (2) 162 (2)
N17—H17⋯N11 0.88 (2) 1.97 (2) 2.8424 (18) 179 (4)
N21—H21A⋯O13iii 0.80 (3) 2.10 (3) 2.878 (2) 163 (2)
Symmetry codes: (i) x+1, y-1, z; (ii) x-1, y, z+1; (iii) x, y+1, z-1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

5-Amino-2H-1,2,4-thiadiazolin-3-one heterocycle is an analog of cytosine (Parkanyi et al., 1989). Derivatives of 5-amino-2H-1,2,4-thiadiazolin-3-one have recently attracted attention on the antibacterial activity, potential carcinogenicity, and kinase inhibitor activity (Castro et al., 2008; Cho, Ra et al., 1996; Ra, Cho, Moon & Kang, 1998). 5-Amino-3H-1,3,4-thiadiazolin-2-one is an isomer of 5-amino-2H-1,2,4-thiadiazolin-3-one, which has become an attractive moiety due to potential biological activities (Cho, Cho, Ra, Moon et al., 1996; Ra, Cho & Cho 1998).

In (I), three independent but similar molecules, which are linked by the intermolecular N—H···N hydrogen bonds (Fig. 1), comprise the asymmetric unit. The 1,3,4-thiadiazolin-2-one units are almost planar with r.m.s. deviations of 0.011 (2)–0.027 (2) Å from the corresponding least-squares plane defined by the seven constituent atoms. The bond distance of N4—C5 [1.291 (2) Å; N11—C12, 1.287 (2) Å; N18—C19, 1.282 (2) Å] is shorter than that of C2—N3 [1.333 (2) Å; C9—N10, 1.336 (2) Å; C16—N17, 1.327 Å], which is consistent with double bond character. The crystal structure is stabilized by the intermolecular N—H···N and N—H···O hydrogen bonds, which link the molecules into a two-dimensional sheet parallel to the (111) plane (Table 1 and Fig. 2).

Related literature top

For the structures and reactivity of thiadiazole derivatives, see: Parkanyi et al. (1989); Cho, Cho, Ra, Moon et al. (1996); Cho, Ra et al. (1996). For the biological activity of thiadiazole derivatives, see: Castro et al. (2008); Ra, Cho & Cho (1998); Ra, Cho, Moon & Kang (1998).

Experimental top

Synthesis of 5-amino-2-ethoxy-1,3,4-thiadiazole: Ethyl thiocarbazate (4.8 g, 0.04 mol) was dissolved in 24 ml of 2 N NaOH at 10 °C. Cyanogen bromide (4.2 g, 0.04 mol) dissolved in 20 ml of ethanol was added to the above solution keeping the temperature below 10 °C during 45 minutes. The solid product (4.1 g, 71%) was collected by filtration. To obtain the analytical sample the product was recrystallized from ethanol. m.p. 200–202 °C; IR (KBr, cm-1) 3300 (NH), 3150 (NH), 3000 (CH), 2950 (CH), 1620 (C=O), 1580 (C=N); 1H NMR (DMSO-d6, p.p.m.) 6.65 (2H, b, NH2), 4.25 (2H, q, CH2), 1.29 (3H, t, CH3); 13C NMR (DMSO-d6, p.p.m.) 164.85 (C=N), 162.18 (C—O), 67.48 (CH2), 14.35 (CH3); Anal. Calcd. For C4H7N3OS: C 33.09, H 4.86, N 28.94. Found: C 33.71, H 4.94, N 28.50.

Synthesis of title compound: 5-Amino-2-ethoxy-1,3,4-thiadiazole (5 g, 34.5 mmol) was dissolved in 50 ml of dioxane and 3.5 ml of c-HCl was added. The reaction mixture was refluxed for 4.5 h. The solvent was distilled off under reduced pressure. The residue product was washed with ether (3.7 g, 92.5%). To obtain the analytical sample the product was recrystallized from water. Recrystallization from DMSO afforded the colorless crystals suitable for X-ray diffraction. m.p. 176–178 °C; IR (KBr, cm-1) 3450 (NH), 3150 (NH), 3100, 3000, 2900 (CH), 1700 (C=O), 1610, 1500 (C=N); 1H NMR (DMSO-d6, p.p.m.) 11.3 (1H, b, NH), 6.4 (2H, b, NH2; 13C NMR (DMSO-d6, p.p.m.) 169.4 (C=N), 153.0 (C=O); Anal. Calcd. For C2H3N3OS: C 20.51, H 2.58, N 35.88, S 27.37. Found: C 20.19, H 2.65, N 34.28, S 27.22.

Refinement top

H atoms of the NH and NH2 groups were located in a difference Fourier map and refined freely [refined distances = 0.79 (2)–0.94 (2) Å].

Structure description top

5-Amino-2H-1,2,4-thiadiazolin-3-one heterocycle is an analog of cytosine (Parkanyi et al., 1989). Derivatives of 5-amino-2H-1,2,4-thiadiazolin-3-one have recently attracted attention on the antibacterial activity, potential carcinogenicity, and kinase inhibitor activity (Castro et al., 2008; Cho, Ra et al., 1996; Ra, Cho, Moon & Kang, 1998). 5-Amino-3H-1,3,4-thiadiazolin-2-one is an isomer of 5-amino-2H-1,2,4-thiadiazolin-3-one, which has become an attractive moiety due to potential biological activities (Cho, Cho, Ra, Moon et al., 1996; Ra, Cho & Cho 1998).

In (I), three independent but similar molecules, which are linked by the intermolecular N—H···N hydrogen bonds (Fig. 1), comprise the asymmetric unit. The 1,3,4-thiadiazolin-2-one units are almost planar with r.m.s. deviations of 0.011 (2)–0.027 (2) Å from the corresponding least-squares plane defined by the seven constituent atoms. The bond distance of N4—C5 [1.291 (2) Å; N11—C12, 1.287 (2) Å; N18—C19, 1.282 (2) Å] is shorter than that of C2—N3 [1.333 (2) Å; C9—N10, 1.336 (2) Å; C16—N17, 1.327 Å], which is consistent with double bond character. The crystal structure is stabilized by the intermolecular N—H···N and N—H···O hydrogen bonds, which link the molecules into a two-dimensional sheet parallel to the (111) plane (Table 1 and Fig. 2).

For the structures and reactivity of thiadiazole derivatives, see: Parkanyi et al. (1989); Cho, Cho, Ra, Moon et al. (1996); Cho, Ra et al. (1996). For the biological activity of thiadiazole derivatives, see: Castro et al. (2008); Ra, Cho & Cho (1998); Ra, Cho, Moon & Kang (1998).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-numbering scheme and 30% probability ellipsoids. Intermolecular N—H···N hydrogen bonds are indicated by dashed lines.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound, showing molecules linked by intermolecular N—H···N and N—H···O hydrogen bonds (dashed lines).
5-Amino-1,3,4-thiadiazol-2(3H)-one top
Crystal data top
C2H3N3OSZ = 6
Mr = 117.13F(000) = 360
Triclinic, P1Dx = 1.694 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2860 (2) ÅCell parameters from 5437 reflections
b = 10.2982 (3) Åθ = 2.2–26.1°
c = 10.7727 (3) ŵ = 0.57 mm1
α = 63.721 (3)°T = 296 K
β = 73.122 (2)°Block, colourless
γ = 76.737 (2)°0.15 × 0.1 × 0.05 mm
V = 688.74 (3) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2526 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
φ and ω scansθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 99
Tmin = 0.93, Tmax = 0.97k = 1313
23857 measured reflectionsl = 1414
3433 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080All H-atom parameters refined
S = 0.94 w = 1/[σ2(Fo2) + (0.0423P)2]
where P = (Fo2 + 2Fc2)/3
3433 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C2H3N3OSγ = 76.737 (2)°
Mr = 117.13V = 688.74 (3) Å3
Triclinic, P1Z = 6
a = 7.2860 (2) ÅMo Kα radiation
b = 10.2982 (3) ŵ = 0.57 mm1
c = 10.7727 (3) ÅT = 296 K
α = 63.721 (3)°0.15 × 0.1 × 0.05 mm
β = 73.122 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3433 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2526 reflections with I > 2σ(I)
Tmin = 0.93, Tmax = 0.97Rint = 0.055
23857 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.080All H-atom parameters refined
S = 0.94Δρmax = 0.30 e Å3
3433 reflectionsΔρmin = 0.26 e Å3
226 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.86165 (6)0.07773 (5)0.06572 (4)0.03647 (13)
C20.7587 (2)0.10880 (18)0.13554 (16)0.0339 (4)
N30.6466 (2)0.13649 (15)0.02585 (14)0.0329 (3)
H30.580 (3)0.219 (2)0.0362 (19)0.044 (5)*
N40.62764 (19)0.02538 (14)0.10886 (13)0.0303 (3)
C50.7333 (2)0.09181 (17)0.10313 (16)0.0289 (3)
O60.7853 (2)0.19397 (15)0.26078 (12)0.0517 (4)
N70.7416 (3)0.21857 (17)0.21825 (17)0.0472 (4)
H7A0.825 (3)0.291 (3)0.210 (2)0.072 (7)*
H7B0.672 (3)0.224 (2)0.297 (2)0.052 (6)*
S80.15828 (7)0.02436 (5)0.59226 (4)0.03889 (13)
C90.3260 (2)0.05097 (18)0.47618 (16)0.0338 (4)
N100.3484 (2)0.05559 (15)0.34594 (14)0.0353 (3)
H100.439 (3)0.047 (2)0.262 (2)0.065 (6)*
N110.2481 (2)0.19183 (14)0.32756 (13)0.0354 (3)
C120.1437 (2)0.19073 (18)0.44702 (16)0.0348 (4)
O130.40594 (19)0.17651 (13)0.51031 (13)0.0485 (3)
N140.0375 (3)0.3114 (2)0.4619 (2)0.0592 (5)
H14A0.048 (3)0.297 (2)0.536 (3)0.070 (7)*
H14B0.019 (3)0.387 (2)0.386 (2)0.050 (6)*
S150.23799 (7)0.66689 (5)0.15169 (5)0.04302 (14)
C160.1723 (2)0.55543 (18)0.03347 (17)0.0363 (4)
N170.2688 (2)0.42407 (15)0.05437 (15)0.0353 (3)
H170.262 (3)0.352 (2)0.138 (2)0.053 (6)*
N180.3933 (2)0.40035 (14)0.06009 (13)0.0354 (3)
C190.3895 (2)0.51734 (17)0.17336 (17)0.0356 (4)
O200.0594 (2)0.59341 (14)0.12439 (14)0.0537 (4)
N210.4930 (3)0.5249 (2)0.30232 (18)0.0651 (6)
H21A0.492 (4)0.606 (3)0.363 (3)0.081 (8)*
H21B0.566 (3)0.455 (3)0.304 (2)0.071 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0365 (2)0.0374 (2)0.0315 (2)0.00386 (18)0.00096 (17)0.01947 (18)
C20.0319 (9)0.0371 (9)0.0289 (8)0.0040 (7)0.0003 (7)0.0139 (7)
N30.0386 (8)0.0250 (7)0.0254 (6)0.0032 (6)0.0008 (6)0.0089 (6)
N40.0345 (7)0.0262 (7)0.0233 (6)0.0000 (6)0.0004 (5)0.0091 (5)
C50.0290 (8)0.0292 (8)0.0274 (7)0.0007 (7)0.0024 (6)0.0139 (7)
O60.0631 (9)0.0485 (8)0.0246 (6)0.0049 (7)0.0027 (6)0.0064 (6)
N70.0625 (12)0.0306 (9)0.0324 (8)0.0104 (8)0.0046 (8)0.0096 (7)
S80.0458 (3)0.0368 (2)0.02102 (19)0.00454 (19)0.00086 (17)0.00531 (17)
C90.0375 (9)0.0317 (9)0.0270 (8)0.0028 (7)0.0059 (7)0.0084 (7)
N100.0412 (8)0.0293 (7)0.0241 (6)0.0039 (6)0.0013 (6)0.0080 (6)
N110.0412 (8)0.0276 (7)0.0224 (6)0.0029 (6)0.0011 (6)0.0052 (6)
C120.0366 (9)0.0310 (9)0.0261 (8)0.0022 (7)0.0009 (7)0.0078 (7)
O130.0601 (9)0.0290 (7)0.0423 (7)0.0049 (6)0.0128 (6)0.0056 (6)
N140.0692 (13)0.0386 (10)0.0393 (10)0.0088 (9)0.0126 (9)0.0111 (8)
S150.0533 (3)0.0232 (2)0.0365 (2)0.00734 (19)0.0052 (2)0.00628 (18)
C160.0386 (10)0.0298 (9)0.0342 (9)0.0008 (7)0.0040 (7)0.0121 (7)
N170.0417 (9)0.0258 (7)0.0255 (7)0.0029 (6)0.0009 (6)0.0061 (6)
N180.0423 (8)0.0241 (7)0.0267 (7)0.0036 (6)0.0006 (6)0.0074 (6)
C190.0428 (10)0.0240 (8)0.0305 (8)0.0000 (7)0.0020 (7)0.0083 (7)
O200.0561 (9)0.0453 (8)0.0474 (7)0.0072 (6)0.0046 (6)0.0238 (6)
N210.0938 (16)0.0328 (10)0.0314 (9)0.0067 (10)0.0134 (9)0.0036 (8)
Geometric parameters (Å, º) top
S1—C51.7449 (15)N10—H100.98 (2)
S1—C21.7905 (17)N11—C121.2874 (19)
C2—O61.2270 (19)C12—N141.354 (2)
C2—N31.333 (2)N14—H14A0.83 (2)
N3—N41.3857 (18)N14—H14B0.86 (2)
N3—H30.854 (19)S15—C191.7419 (17)
N4—C51.2905 (19)S15—C161.7876 (17)
C5—N71.349 (2)C16—O201.2298 (19)
N7—H7A0.87 (2)C16—N171.327 (2)
N7—H7B0.84 (2)N17—N181.3853 (18)
S8—C121.7419 (16)N17—H170.88 (2)
S8—C91.7874 (17)N18—C191.2821 (19)
C9—O131.2264 (19)C19—N211.352 (2)
C9—N101.336 (2)N21—H21A0.80 (3)
N10—N111.3817 (18)N21—H21B0.79 (2)
C5—S1—C288.70 (7)C12—N11—N10110.16 (13)
O6—C2—N3126.79 (16)N11—C12—N14123.00 (15)
O6—C2—S1126.30 (13)N11—C12—S8115.37 (12)
N3—C2—S1106.90 (12)N14—C12—S8121.53 (13)
C2—N3—N4119.16 (14)C12—N14—H14A116.1 (16)
C2—N3—H3122.2 (13)C12—N14—H14B117.8 (13)
N4—N3—H3118.5 (13)H14A—N14—H14B118 (2)
C5—N4—N3109.74 (12)C19—S15—C1688.49 (8)
N4—C5—N7122.96 (15)O20—C16—N17126.47 (16)
N4—C5—S1115.48 (12)O20—C16—S15126.48 (13)
N7—C5—S1121.54 (12)N17—C16—S15107.05 (12)
C5—N7—H7A118.8 (15)C16—N17—N18119.02 (14)
C5—N7—H7B119.4 (14)C16—N17—H17122.9 (13)
H7A—N7—H7B122 (2)N18—N17—H17118.0 (13)
C12—S8—C988.73 (7)C19—N18—N17109.75 (13)
O13—C9—N10126.70 (16)N18—C19—N21122.74 (16)
O13—C9—S8126.29 (13)N18—C19—S15115.68 (12)
N10—C9—S8107.01 (12)N21—C19—S15121.57 (13)
C9—N10—N11118.72 (13)C19—N21—H21A113.9 (17)
C9—N10—H10125.0 (12)C19—N21—H21B116.2 (17)
N11—N10—H10116.1 (12)H21A—N21—H21B128 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N180.854 (19)2.004 (19)2.8516 (19)171.9 (18)
N7—H7A···O20i0.87 (2)2.07 (2)2.907 (2)160 (2)
N10—H10···N40.98 (2)1.88 (2)2.8558 (19)175.7 (18)
N14—H14A···O6ii0.83 (2)2.10 (2)2.897 (2)162 (2)
N17—H17···N110.88 (2)1.97 (2)2.8424 (18)179 (4)
N21—H21A···O13iii0.80 (3)2.10 (3)2.878 (2)163 (2)
Symmetry codes: (i) x+1, y1, z; (ii) x1, y, z+1; (iii) x, y+1, z1.

Experimental details

Crystal data
Chemical formulaC2H3N3OS
Mr117.13
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.2860 (2), 10.2982 (3), 10.7727 (3)
α, β, γ (°)63.721 (3), 73.122 (2), 76.737 (2)
V3)688.74 (3)
Z6
Radiation typeMo Kα
µ (mm1)0.57
Crystal size (mm)0.15 × 0.1 × 0.05
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.93, 0.97
No. of measured, independent and
observed [I > 2σ(I)] reflections
23857, 3433, 2526
Rint0.055
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.080, 0.94
No. of reflections3433
No. of parameters226
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.30, 0.26

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N180.854 (19)2.004 (19)2.8516 (19)171.9 (18)
N7—H7A···O20i0.87 (2)2.07 (2)2.907 (2)160 (2)
N10—H10···N40.98 (2)1.88 (2)2.8558 (19)175.7 (18)
N14—H14A···O6ii0.83 (2)2.10 (2)2.897 (2)162 (2)
N17—H17···N110.88 (2)1.97 (2)2.8424 (18)179 (4)
N21—H21A···O13iii0.80 (3)2.10 (3)2.878 (2)163 (2)
Symmetry codes: (i) x+1, y1, z; (ii) x1, y, z+1; (iii) x, y+1, z1.
 

References

First citationBruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCastro, A., Encinas, A., Gil, C., Brase, S., Porcal, W., Perez, C., Moreno, F. J. & Martinez, A. (2008). Bioorg. Med. Chem. 16, 495–510.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCho, N. S., Cho, J. J., Ra, D. Y., Moon, J. H., Song, J. S. & Kang, S. K. (1996). Bull. Korean Chem. Soc. 17, 1170–1174.  CAS Google Scholar
First citationCho, N. S., Ra, C. S., Ra, D. Y., Song, J. S. & Kang, S. K. (1996). J. Heterocycl. Chem. 33, 1201–1206.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationParkanyi, C., Yuan, H. L., Cho, N. S., Jaw, J. J., Woodhouse, T. E. & Aung, T. L. (1989). J. Heterocycl. Chem. 26, 1331–1334.  CAS Google Scholar
First citationRa, D. Y., Cho, N. S. & Cho, J. J. (1998). J. Heterocycl. Chem. 35, 525–530.  CrossRef CAS Google Scholar
First citationRa, D. Y., Cho, N. S., Moon, J. H. & Kang, S. K. (1998). J. Heterocycl. Chem. 35, 1435–1439.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds