organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o1255-o1256

3-Methyl-1-benzo­furan-2-carbohydrazide

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia, bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 25 March 2012; accepted 26 March 2012; online 31 March 2012)

In the asymmetric unit of the title benzofuran derivative, C10H10N2O2, there are three crystallograpically independent mol­ecules, which are slightly twisted; the dihedral angle between the benzofuran ring system and the plane of the carbohydrazide unit is 8.64 (11)° in one mol­ecule, whereas the dihedral angles are 9.58 (11) and 6.89 (10)° in the other two mol­ecules. In the crystal, the three independent mol­ecules are linked to each other through N—H⋯N hydrogen bonds, forming a trimer. The trimers are further linked by weak N—H⋯O and C—H⋯O hydrogen bonds into a three-dimensional network. ππ inter­actions with centroid–centroid distances in the range 3.4928 (11)–3.8561 (10) Å are also observed.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For background to and the bioactivity of benzofuran derivatives, see: Abdel-Aziz & Mekawey (2009[Abdel-Aziz, H. A. & Mekawey, A. A. I. (2009). Eur. J. Med. Chem. 44, 4985-4997.]); Abdel-Aziz, Mekawey & Dawood (2009[Abdel-Aziz, H. A., Mekawey, A. A. I. & Dawood, K. M. (2009). Eur. J. Med. Chem. 44, 3637-3644.]); Abdel-Wahab et al. (2009[Abdel-Wahab, B. F., Abdel-Aziz, H. A. & Ahmed, E. M. (2009). Eur. J. Med. Chem. 44, 2632-2635.]); Dawood et al. (2005[Dawood, K. M., Farag, A. M. & Abdel-Aziz, H. A. (2005). Heteroat. Chem. 16, 621-627.]); Hu et al. (2011[Hu, Z.-F., Chen, L.-L., Qi, J., Wang, Y.-H., Zhang, H. & Yu, B.-Y. (2011). Fitoterapia, 82, 190-192.]); Ryu et al. (2010[Ryu, C.-K., Song, A.-L., Lee, J.-Y., Hong, J.-A., Yoon, J.-H. & Kim, A. (2010). Bioorg. Med. Chem. Lett. 20, 6777-6780.]); Ungwitayatorn et al. (2001[Ungwitayatorn, J., Wiwat, C., Matayatsuk, C., Sripha, K. & Kamalanonth, P. (2001). Songklanakarin J. Sci. Technol. 23, 235-245.]). For related structures, see: Ma et al. (2010[Ma, B., Zhao, Z. & Li, H. (2010). Acta Cryst. E66, o2657.]); Wang et al. (2011[Wang, L., Liu, X., Yang, C., Zhao, S. & Li, K. (2011). Acta Cryst. E67, o493.]).

[Scheme 1]

Experimental

Crystal data
  • C10H10N2O2

  • Mr = 190.20

  • Monoclinic, P 21 /c

  • a = 10.9391 (4) Å

  • b = 18.1257 (6) Å

  • c = 14.1818 (5) Å

  • β = 94.157 (2)°

  • V = 2804.55 (17) Å3

  • Z = 12

  • Cu Kα radiation

  • μ = 0.80 mm−1

  • T = 296 K

  • 0.59 × 0.58 × 0.07 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.651, Tmax = 0.946

  • 19906 measured reflections

  • 5271 independent reflections

  • 3618 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.133

  • S = 1.00

  • 5271 reflections

  • 419 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1N1⋯N2C 0.91 (2) 2.13 (2) 3.034 (2) 171.4 (17)
N1B—H2N1⋯N2A 0.93 (2) 2.15 (2) 3.081 (2) 173.1 (17)
N1C—H3N1⋯N2B 0.89 (2) 2.12 (2) 3.016 (2) 179 (3)
N2A—H2N2⋯O1Bi 0.86 (2) 2.58 (2) 3.275 (2) 140 (2)
N2B—H4N2⋯O1Aii 0.93 (2) 2.33 (2) 3.176 (2) 150.4 (18)
N2C—H6N2⋯O1Ciii 0.92 (2) 2.22 (2) 3.137 (2) 175.5 (17)
C6A—H6AA⋯O1Aiv 0.93 2.55 3.444 (3) 162
C5C—H5CA⋯O1Bv 0.93 2.59 3.333 (3) 137
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) -x+2, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Benzofuran derivatives have been reported to possess various biological activities such as antimicrobial (Abdel-Aziz & Mekawey, 2009; Abdel-Aziz, Mekawey & Dawood, 2009; Abdel-Wahab et al., 2009), antifungal (Ryu et al., 2010) and anti-inflammatory (Hu et al., 2011) properties as well as being a non-nucleoside HIV-1 reverse transcriptase inhibitor (Ungwitayatorn et al., 2001). We have during the course of our medicinal chemistry research reported the synthesis and bioactivity of benzofuran derivatives (Abdel-Aziz & Mekawey, 2009; Abdel-Aziz, Mekawey & Dawood, 2009; Abdel-Wahab et al., 2009; ). The title compound (I) was synthesized and its crystal structure was reported.

There are three crystallographic independent molecules A, B and C in the asymmetric unit of (I) with differences in bond angles (Fig. 1). The molecule of the title benzofuran derivative, C10H10N2O2, is slightly twisted. The carbohydrazide fragment in molecules A and B are slightly twisted whereas it is planar in molecule C as indicated by the torsion angles of N2–N1–C9–O1 being -173.31 (17), -6.8 (3) and -179.64 (17)°, in molecules A, B and C, respectively. The dihedral angle between the mean plane through carbohydrazide fragment and the benzofuran ring is 8.64 (11)° in molecule A whereas they are 9.58 (11)) and 6.89 (10)° in molecules B and C, respectively. The bond distances agree with the literature values (Allen et al., 1987) and are comparable with the related structures (Ma et al., 2010; Wang et al., 2011).

In the crystal packing (Fig. 2), the molecules are linked by N—H···N and N—H···O hydrogen bonds together with weak C—H···O interactions (Table 1). ππ interactions with the distances of Cg1···Cg4i = 3.8561 (10) Å, Cg2···Cg7iii = 3.4928 (11) Å, Cg2···Cg8iii = 3.8179 (11) Å, Cg4···Cg7vi = 3.7318 (10) Å and Cg4···Cg8vi = 3.5891 (11) Å [symmetry code (vi) = 2-x, -1/2+y, 3/2-z] are also observed; Cg1, Cg2, Cg4, Cg7 and Cg8 are the centroids of C1A–C3A/C8A/O2A, C3A–C8A, C1B–C3B/C8B/O2B, C1C–C3C/C8C/O2C and C3C–C8C rings, respectively.

Related literature top

For bond-length data, see: Allen et al. (1987). For background to and the bioactivity of benzofuran derivatives, see: Abdel-Aziz & Mekawey (2009); Abdel-Aziz, Mekawey & Dawood (2009); Abdel-Wahab et al. (2009); Dawood et al. (2005); Hu et al. (2011); Ryu et al. (2010); Ungwitayatorn et al. (2001). For related structures, see: Ma et al. (2010); Wang et al. (2011).

Experimental top

The title compound was prepared from the reaction of ethyl 3-methyl-2-benzofurancarboxylate with hydrazine according to the reported method (Dawood et al., 2005). Single crystals of the title compound suitable for X-ray structure determination were recrystallized from ethanol by the slow evaporation of the solvent at room temperature after several days.

Refinement top

Hydrazide H atoms were located in a difference Fourier map and refined isotropically. The remaining H atoms were placed in calculated positions with C—H = 0.93 Å for aromatic and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups.

Structure description top

Benzofuran derivatives have been reported to possess various biological activities such as antimicrobial (Abdel-Aziz & Mekawey, 2009; Abdel-Aziz, Mekawey & Dawood, 2009; Abdel-Wahab et al., 2009), antifungal (Ryu et al., 2010) and anti-inflammatory (Hu et al., 2011) properties as well as being a non-nucleoside HIV-1 reverse transcriptase inhibitor (Ungwitayatorn et al., 2001). We have during the course of our medicinal chemistry research reported the synthesis and bioactivity of benzofuran derivatives (Abdel-Aziz & Mekawey, 2009; Abdel-Aziz, Mekawey & Dawood, 2009; Abdel-Wahab et al., 2009; ). The title compound (I) was synthesized and its crystal structure was reported.

There are three crystallographic independent molecules A, B and C in the asymmetric unit of (I) with differences in bond angles (Fig. 1). The molecule of the title benzofuran derivative, C10H10N2O2, is slightly twisted. The carbohydrazide fragment in molecules A and B are slightly twisted whereas it is planar in molecule C as indicated by the torsion angles of N2–N1–C9–O1 being -173.31 (17), -6.8 (3) and -179.64 (17)°, in molecules A, B and C, respectively. The dihedral angle between the mean plane through carbohydrazide fragment and the benzofuran ring is 8.64 (11)° in molecule A whereas they are 9.58 (11)) and 6.89 (10)° in molecules B and C, respectively. The bond distances agree with the literature values (Allen et al., 1987) and are comparable with the related structures (Ma et al., 2010; Wang et al., 2011).

In the crystal packing (Fig. 2), the molecules are linked by N—H···N and N—H···O hydrogen bonds together with weak C—H···O interactions (Table 1). ππ interactions with the distances of Cg1···Cg4i = 3.8561 (10) Å, Cg2···Cg7iii = 3.4928 (11) Å, Cg2···Cg8iii = 3.8179 (11) Å, Cg4···Cg7vi = 3.7318 (10) Å and Cg4···Cg8vi = 3.5891 (11) Å [symmetry code (vi) = 2-x, -1/2+y, 3/2-z] are also observed; Cg1, Cg2, Cg4, Cg7 and Cg8 are the centroids of C1A–C3A/C8A/O2A, C3A–C8A, C1B–C3B/C8B/O2B, C1C–C3C/C8C/O2C and C3C–C8C rings, respectively.

For bond-length data, see: Allen et al. (1987). For background to and the bioactivity of benzofuran derivatives, see: Abdel-Aziz & Mekawey (2009); Abdel-Aziz, Mekawey & Dawood (2009); Abdel-Wahab et al. (2009); Dawood et al. (2005); Hu et al. (2011); Ryu et al. (2010); Ungwitayatorn et al. (2001). For related structures, see: Ma et al. (2010); Wang et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 40% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the a axis. Hydrogen bonds are shown as dashed lines.
3-Methyl-1-benzofuran-2-carbohydrazide top
Crystal data top
C10H10N2O2F(000) = 1200
Mr = 190.20Dx = 1.351 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 5217 reflections
a = 10.9391 (4) Åθ = 4.0–69.9°
b = 18.1257 (6) ŵ = 0.80 mm1
c = 14.1818 (5) ÅT = 296 K
β = 94.157 (2)°Plate, colorless
V = 2804.55 (17) Å30.59 × 0.58 × 0.07 mm
Z = 12
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5271 independent reflections
Radiation source: fine-focus sealed tube3618 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
φ and ω scansθmax = 69.9°, θmin = 4.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1312
Tmin = 0.651, Tmax = 0.946k = 2122
19906 measured reflectionsl = 1716
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.0825P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.003
5271 reflectionsΔρmax = 0.23 e Å3
419 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00139 (18)
Crystal data top
C10H10N2O2V = 2804.55 (17) Å3
Mr = 190.20Z = 12
Monoclinic, P21/cCu Kα radiation
a = 10.9391 (4) ŵ = 0.80 mm1
b = 18.1257 (6) ÅT = 296 K
c = 14.1818 (5) Å0.59 × 0.58 × 0.07 mm
β = 94.157 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5271 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3618 reflections with I > 2σ(I)
Tmin = 0.651, Tmax = 0.946Rint = 0.048
19906 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.23 e Å3
5271 reflectionsΔρmin = 0.17 e Å3
419 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N1A0.66559 (14)0.25954 (9)0.45740 (10)0.0571 (4)
N2A0.73238 (19)0.22213 (10)0.53133 (12)0.0631 (4)
O1A0.63038 (14)0.15700 (7)0.36927 (10)0.0709 (4)
O2A0.56996 (11)0.34643 (6)0.31969 (8)0.0561 (3)
C1A0.56634 (15)0.27126 (9)0.30302 (11)0.0524 (4)
C2A0.51543 (15)0.25509 (10)0.21547 (12)0.0562 (4)
C3A0.48558 (15)0.32498 (10)0.17160 (12)0.0556 (4)
C4A0.43569 (18)0.34786 (13)0.08226 (14)0.0717 (6)
H4AA0.41230.31360.03560.086*
C5A0.42246 (19)0.42181 (14)0.06571 (16)0.0810 (6)
H5AA0.39100.43770.00650.097*
C6A0.4547 (2)0.47400 (13)0.13506 (18)0.0801 (6)
H6AA0.44190.52380.12180.096*
C7A0.50514 (18)0.45342 (12)0.22282 (15)0.0685 (5)
H7AA0.52790.48790.26940.082*
C8A0.51987 (15)0.37872 (10)0.23764 (12)0.0550 (4)
C9A0.62203 (16)0.22390 (10)0.37883 (12)0.0534 (4)
C10A0.4931 (2)0.18129 (11)0.17137 (16)0.0808 (6)
H10D0.49480.14430.21980.121*
H10E0.55570.17100.12910.121*
H10F0.41440.18100.13670.121*
N1B0.83956 (14)0.29089 (8)0.71808 (11)0.0569 (4)
N2B0.82765 (19)0.36857 (9)0.71889 (12)0.0633 (4)
O1B0.92755 (12)0.28638 (7)0.86711 (9)0.0695 (4)
O2B0.83348 (11)0.14361 (6)0.70444 (8)0.0566 (3)
C1B0.87755 (15)0.17365 (9)0.79039 (11)0.0507 (4)
C2B0.90239 (15)0.12155 (10)0.85708 (13)0.0560 (4)
C3B0.87230 (16)0.05251 (10)0.81085 (14)0.0609 (5)
C4B0.8743 (2)0.02149 (13)0.8389 (2)0.0897 (7)
H4BA0.89950.03490.90050.108*
C5B0.8378 (3)0.07389 (13)0.7722 (3)0.1080 (10)
H5BA0.83850.12340.78970.130*
C6B0.8001 (3)0.05510 (13)0.6802 (2)0.0974 (8)
H6BA0.77760.09230.63710.117*
C7B0.7950 (2)0.01714 (11)0.65068 (18)0.0770 (6)
H7BA0.76850.03020.58920.092*
C8B0.83170 (16)0.06907 (10)0.71809 (14)0.0587 (4)
C9B0.88443 (15)0.25460 (10)0.79526 (12)0.0527 (4)
C10B0.94992 (19)0.13066 (13)0.95756 (14)0.0740 (6)
H10A0.92720.17840.97980.111*
H10B1.03760.12630.96220.111*
H10C0.91550.09320.99550.111*
N1C0.69717 (14)0.46541 (9)0.57073 (10)0.0594 (4)
N2C0.64389 (18)0.42386 (9)0.49354 (12)0.0623 (4)
O1C0.64284 (13)0.57510 (7)0.50655 (9)0.0699 (4)
O2C0.79491 (11)0.52731 (6)0.72827 (8)0.0567 (3)
C1C0.75346 (15)0.57452 (9)0.65594 (11)0.0506 (4)
C2C0.77132 (16)0.64592 (9)0.67945 (13)0.0531 (4)
C3C0.82728 (16)0.64574 (10)0.77463 (13)0.0554 (4)
C4C0.86680 (19)0.69945 (12)0.84080 (16)0.0729 (6)
H4CA0.86020.74940.82610.088*
C5C0.9156 (2)0.67689 (15)0.92799 (16)0.0819 (7)
H5CA0.94270.71220.97230.098*
C6C0.92547 (19)0.60330 (15)0.95160 (15)0.0834 (7)
H6CA0.95850.59011.01150.100*
C7C0.88740 (19)0.54871 (13)0.88830 (14)0.0730 (5)
H7CA0.89380.49890.90370.088*
C8C0.83918 (15)0.57222 (10)0.80065 (12)0.0562 (4)
C9C0.69353 (15)0.53881 (9)0.57113 (11)0.0512 (4)
C10C0.7425 (2)0.71305 (11)0.62159 (15)0.0730 (6)
H10G0.70810.69870.56010.110*
H10H0.81620.74080.61530.110*
H10I0.68460.74290.65210.110*
H1N10.6655 (17)0.3094 (11)0.4641 (14)0.063 (6)*
H2N10.8052 (18)0.2666 (11)0.6644 (15)0.069 (6)*
H3N10.7349 (17)0.4363 (12)0.6145 (15)0.069 (6)*
H1N20.687 (2)0.1863 (14)0.5467 (18)0.085 (8)*
H2N20.792 (2)0.2002 (13)0.5072 (17)0.080 (8)*
H3N20.901 (2)0.3877 (13)0.7343 (17)0.086 (7)*
H4N20.777 (2)0.3793 (12)0.7671 (17)0.078 (7)*
H5N20.667 (2)0.4472 (13)0.4439 (18)0.084 (7)*
H6N20.560 (2)0.4227 (12)0.4966 (14)0.074 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N1A0.0717 (9)0.0530 (8)0.0446 (7)0.0021 (7)0.0089 (7)0.0002 (6)
N2A0.0743 (11)0.0612 (9)0.0518 (8)0.0026 (9)0.0096 (8)0.0054 (7)
O1A0.0983 (10)0.0501 (7)0.0630 (7)0.0067 (6)0.0030 (7)0.0019 (6)
O2A0.0668 (7)0.0534 (7)0.0465 (6)0.0018 (5)0.0076 (5)0.0024 (5)
C1A0.0559 (9)0.0535 (9)0.0471 (8)0.0030 (7)0.0009 (7)0.0047 (7)
C2A0.0533 (9)0.0648 (11)0.0500 (9)0.0054 (8)0.0002 (7)0.0090 (8)
C3A0.0489 (9)0.0718 (11)0.0456 (8)0.0015 (8)0.0012 (7)0.0016 (8)
C4A0.0622 (11)0.1009 (16)0.0505 (10)0.0052 (10)0.0048 (8)0.0012 (10)
C5A0.0694 (12)0.1060 (18)0.0668 (12)0.0175 (12)0.0008 (10)0.0258 (13)
C6A0.0745 (13)0.0802 (14)0.0854 (15)0.0155 (11)0.0048 (11)0.0208 (12)
C7A0.0692 (12)0.0644 (12)0.0717 (12)0.0061 (9)0.0025 (9)0.0068 (10)
C8A0.0489 (9)0.0647 (10)0.0510 (9)0.0025 (8)0.0004 (7)0.0040 (8)
C9A0.0574 (10)0.0529 (9)0.0498 (9)0.0076 (7)0.0026 (7)0.0030 (7)
C10A0.0981 (16)0.0753 (13)0.0661 (12)0.0077 (12)0.0138 (11)0.0197 (10)
N1B0.0728 (9)0.0451 (8)0.0501 (8)0.0014 (6)0.0125 (7)0.0022 (6)
N2B0.0806 (12)0.0473 (8)0.0595 (9)0.0021 (8)0.0122 (9)0.0034 (7)
O1B0.0821 (9)0.0679 (8)0.0548 (7)0.0060 (6)0.0213 (6)0.0025 (6)
O2B0.0682 (8)0.0521 (7)0.0482 (6)0.0001 (5)0.0049 (5)0.0029 (5)
C1B0.0499 (8)0.0546 (9)0.0464 (8)0.0024 (7)0.0041 (7)0.0038 (7)
C2B0.0494 (9)0.0615 (10)0.0564 (9)0.0061 (8)0.0003 (7)0.0130 (8)
C3B0.0552 (10)0.0550 (10)0.0726 (11)0.0080 (8)0.0057 (8)0.0115 (9)
C4B0.0939 (17)0.0652 (14)0.1089 (19)0.0150 (12)0.0006 (14)0.0312 (13)
C5B0.117 (2)0.0477 (12)0.159 (3)0.0043 (13)0.009 (2)0.0132 (16)
C6B0.1091 (19)0.0569 (13)0.126 (2)0.0038 (12)0.0069 (17)0.0131 (14)
C7B0.0823 (14)0.0633 (12)0.0856 (15)0.0028 (10)0.0065 (12)0.0092 (11)
C8B0.0580 (10)0.0490 (9)0.0695 (11)0.0038 (7)0.0071 (8)0.0024 (8)
C9B0.0515 (9)0.0557 (9)0.0496 (8)0.0002 (7)0.0041 (7)0.0034 (8)
C10B0.0720 (12)0.0882 (14)0.0593 (11)0.0057 (10)0.0118 (9)0.0227 (10)
N1C0.0726 (10)0.0529 (8)0.0498 (8)0.0019 (7)0.0151 (7)0.0022 (7)
N2C0.0713 (11)0.0607 (9)0.0524 (8)0.0012 (8)0.0128 (8)0.0061 (7)
O1C0.0846 (9)0.0649 (8)0.0573 (7)0.0083 (7)0.0151 (6)0.0084 (6)
O2C0.0694 (7)0.0503 (6)0.0485 (6)0.0037 (5)0.0082 (5)0.0003 (5)
C1C0.0515 (9)0.0513 (9)0.0483 (8)0.0039 (7)0.0004 (7)0.0017 (7)
C2C0.0500 (9)0.0505 (9)0.0592 (9)0.0001 (7)0.0074 (7)0.0004 (7)
C3C0.0483 (9)0.0595 (10)0.0585 (9)0.0050 (7)0.0045 (7)0.0090 (8)
C4C0.0694 (12)0.0664 (12)0.0832 (14)0.0098 (10)0.0067 (11)0.0193 (10)
C5C0.0709 (13)0.1076 (19)0.0653 (12)0.0078 (12)0.0072 (10)0.0302 (12)
C6C0.0697 (13)0.121 (2)0.0577 (11)0.0053 (13)0.0098 (10)0.0120 (12)
C7C0.0753 (12)0.0858 (14)0.0557 (10)0.0078 (10)0.0100 (9)0.0016 (10)
C8C0.0551 (9)0.0620 (10)0.0505 (9)0.0020 (8)0.0031 (7)0.0083 (8)
C9C0.0508 (9)0.0542 (9)0.0484 (9)0.0046 (7)0.0012 (7)0.0029 (7)
C10C0.0824 (14)0.0541 (10)0.0826 (14)0.0009 (9)0.0056 (11)0.0101 (10)
Geometric parameters (Å, º) top
N1A—C9A1.345 (2)C3B—C4B1.399 (3)
N1A—N2A1.408 (2)C4B—C5B1.378 (4)
N1A—H1N10.908 (19)C4B—H4BA0.9300
N2A—H1N20.86 (3)C5B—C6B1.383 (4)
N2A—H2N20.86 (2)C5B—H5BA0.9300
O1A—C9A1.224 (2)C6B—C7B1.374 (3)
O2A—C8A1.380 (2)C6B—H6BA0.9300
O2A—C1A1.3829 (19)C7B—C8B1.380 (3)
C1A—C2A1.355 (2)C7B—H7BA0.9300
C1A—C9A1.473 (2)C10B—H10A0.9600
C2A—C3A1.438 (3)C10B—H10B0.9600
C2A—C10A1.489 (3)C10B—H10C0.9600
C3A—C8A1.384 (2)N1C—C9C1.331 (2)
C3A—C4A1.405 (2)N1C—N2C1.419 (2)
C4A—C5A1.367 (3)N1C—H3N10.89 (2)
C4A—H4AA0.9300N2C—H5N20.87 (2)
C5A—C6A1.392 (3)N2C—H6N20.92 (2)
C5A—H5AA0.9300O1C—C9C1.227 (2)
C6A—C7A1.376 (3)O2C—C8C1.371 (2)
C6A—H6AA0.9300O2C—C1C1.3867 (19)
C7A—C8A1.378 (3)C1C—C2C1.347 (2)
C7A—H7AA0.9300C1C—C9C1.477 (2)
C10A—H10D0.9600C2C—C3C1.441 (3)
C10A—H10E0.9600C2C—C10C1.488 (2)
C10A—H10F0.9600C3C—C8C1.386 (3)
N1B—C9B1.339 (2)C3C—C4C1.399 (3)
N1B—N2B1.414 (2)C4C—C5C1.373 (3)
N1B—H2N10.93 (2)C4C—H4CA0.9300
N2B—H3N20.88 (2)C5C—C6C1.378 (3)
N2B—H4N20.93 (2)C5C—H5CA0.9300
O1B—C9B1.234 (2)C6C—C7C1.380 (3)
O2B—C8B1.365 (2)C6C—H6CA0.9300
O2B—C1B1.389 (2)C7C—C8C1.382 (2)
C1B—C2B1.350 (2)C7C—H7CA0.9300
C1B—C9B1.471 (2)C10C—H10G0.9600
C2B—C3B1.440 (3)C10C—H10H0.9600
C2B—C10B1.490 (3)C10C—H10I0.9600
C3B—C8B1.391 (3)
C9A—N1A—N2A121.28 (16)C4B—C5B—H5BA119.0
C9A—N1A—H1N1124.1 (13)C6B—C5B—H5BA119.0
N2A—N1A—H1N1113.9 (13)C7B—C6B—C5B121.6 (2)
N1A—N2A—H1N2105.9 (16)C7B—C6B—H6BA119.2
N1A—N2A—H2N2107.2 (16)C5B—C6B—H6BA119.2
H1N2—N2A—H2N2103 (2)C6B—C7B—C8B115.8 (2)
C8A—O2A—C1A105.61 (13)C6B—C7B—H7BA122.1
C2A—C1A—O2A111.99 (15)C8B—C7B—H7BA122.1
C2A—C1A—C9A131.56 (16)O2B—C8B—C7B125.68 (18)
O2A—C1A—C9A116.38 (13)O2B—C8B—C3B109.94 (16)
C1A—C2A—C3A105.73 (15)C7B—C8B—C3B124.39 (18)
C1A—C2A—C10A128.52 (18)O1B—C9B—N1B122.75 (17)
C3A—C2A—C10A125.75 (16)O1B—C9B—C1B121.31 (15)
C8A—C3A—C4A118.09 (18)N1B—C9B—C1B115.92 (14)
C8A—C3A—C2A106.57 (14)C2B—C10B—H10A109.5
C4A—C3A—C2A135.32 (18)C2B—C10B—H10B109.5
C5A—C4A—C3A118.3 (2)H10A—C10B—H10B109.5
C5A—C4A—H4AA120.9C2B—C10B—H10C109.5
C3A—C4A—H4AA120.9H10A—C10B—H10C109.5
C4A—C5A—C6A121.81 (19)H10B—C10B—H10C109.5
C4A—C5A—H5AA119.1C9C—N1C—N2C121.54 (14)
C6A—C5A—H5AA119.1C9C—N1C—H3N1126.9 (13)
C7A—C6A—C5A121.3 (2)N2C—N1C—H3N1111.5 (13)
C7A—C6A—H6AA119.4N1C—N2C—H5N2103.8 (16)
C5A—C6A—H6AA119.4N1C—N2C—H6N2109.3 (13)
C6A—C7A—C8A116.1 (2)H5N2—N2C—H6N2113 (2)
C6A—C7A—H7AA122.0C8C—O2C—C1C105.44 (13)
C8A—C7A—H7AA122.0C2C—C1C—O2C112.09 (15)
C7A—C8A—O2A125.48 (17)C2C—C1C—C9C132.11 (16)
C7A—C8A—C3A124.43 (17)O2C—C1C—C9C115.72 (14)
O2A—C8A—C3A110.09 (15)C1C—C2C—C3C105.88 (15)
O1A—C9A—N1A122.86 (16)C1C—C2C—C10C128.88 (17)
O1A—C9A—C1A121.78 (15)C3C—C2C—C10C125.23 (16)
N1A—C9A—C1A115.33 (15)C8C—C3C—C4C118.17 (18)
C2A—C10A—H10D109.5C8C—C3C—C2C106.07 (15)
C2A—C10A—H10E109.5C4C—C3C—C2C135.75 (18)
H10D—C10A—H10E109.5C5C—C4C—C3C118.6 (2)
C2A—C10A—H10F109.5C5C—C4C—H4CA120.7
H10D—C10A—H10F109.5C3C—C4C—H4CA120.7
H10E—C10A—H10F109.5C4C—C5C—C6C121.7 (2)
C9B—N1B—N2B120.72 (15)C4C—C5C—H5CA119.1
C9B—N1B—H2N1122.5 (12)C6C—C5C—H5CA119.1
N2B—N1B—H2N1116.3 (12)C5C—C6C—C7C121.4 (2)
N1B—N2B—H3N2108.1 (15)C5C—C6C—H6CA119.3
N1B—N2B—H4N2105.9 (14)C7C—C6C—H6CA119.3
H3N2—N2B—H4N2108 (2)C6C—C7C—C8C116.2 (2)
C8B—O2B—C1B105.74 (13)C6C—C7C—H7CA121.9
C2B—C1B—O2B112.32 (16)C8C—C7C—H7CA121.9
C2B—C1B—C9B131.15 (16)O2C—C8C—C7C125.56 (18)
O2B—C1B—C9B116.47 (13)O2C—C8C—C3C110.51 (15)
C1B—C2B—C3B105.15 (16)C7C—C8C—C3C123.92 (18)
C1B—C2B—C10B129.11 (18)O1C—C9C—N1C123.01 (16)
C3B—C2B—C10B125.75 (17)O1C—C9C—C1C121.52 (16)
C8B—C3B—C4B118.2 (2)N1C—C9C—C1C115.47 (14)
C8B—C3B—C2B106.85 (16)C2C—C10C—H10G109.5
C4B—C3B—C2B134.9 (2)C2C—C10C—H10H109.5
C5B—C4B—C3B117.9 (2)H10G—C10C—H10H109.5
C5B—C4B—H4BA121.0C2C—C10C—H10I109.5
C3B—C4B—H4BA121.0H10G—C10C—H10I109.5
C4B—C5B—C6B122.0 (2)H10H—C10C—H10I109.5
C8A—O2A—C1A—C2A0.71 (19)C1B—O2B—C8B—C7B179.46 (19)
C8A—O2A—C1A—C9A176.44 (14)C1B—O2B—C8B—C3B0.71 (19)
O2A—C1A—C2A—C3A0.9 (2)C6B—C7B—C8B—O2B179.66 (19)
C9A—C1A—C2A—C3A175.65 (18)C6B—C7B—C8B—C3B0.2 (3)
O2A—C1A—C2A—C10A178.90 (18)C4B—C3B—C8B—O2B178.62 (17)
C9A—C1A—C2A—C10A4.5 (3)C2B—C3B—C8B—O2B0.7 (2)
C1A—C2A—C3A—C8A0.80 (19)C4B—C3B—C8B—C7B1.2 (3)
C10A—C2A—C3A—C8A179.05 (18)C2B—C3B—C8B—C7B179.49 (18)
C1A—C2A—C3A—C4A177.5 (2)N2B—N1B—C9B—O1B6.8 (3)
C10A—C2A—C3A—C4A2.7 (4)N2B—N1B—C9B—C1B172.22 (16)
C8A—C3A—C4A—C5A0.7 (3)C2B—C1B—C9B—O1B6.4 (3)
C2A—C3A—C4A—C5A178.8 (2)O2B—C1B—C9B—O1B176.64 (16)
C3A—C4A—C5A—C6A1.2 (3)C2B—C1B—C9B—N1B172.58 (18)
C4A—C5A—C6A—C7A2.1 (3)O2B—C1B—C9B—N1B4.4 (2)
C5A—C6A—C7A—C8A0.8 (3)C8C—O2C—C1C—C2C0.82 (19)
C6A—C7A—C8A—O2A179.05 (18)C8C—O2C—C1C—C9C176.23 (15)
C6A—C7A—C8A—C3A1.2 (3)O2C—C1C—C2C—C3C0.7 (2)
C1A—O2A—C8A—C7A179.92 (17)C9C—C1C—C2C—C3C175.70 (18)
C1A—O2A—C8A—C3A0.17 (18)O2C—C1C—C2C—C10C178.58 (17)
C4A—C3A—C8A—C7A2.0 (3)C9C—C1C—C2C—C10C5.0 (3)
C2A—C3A—C8A—C7A179.37 (17)C1C—C2C—C3C—C8C0.3 (2)
C4A—C3A—C8A—O2A178.24 (16)C10C—C2C—C3C—C8C179.00 (17)
C2A—C3A—C8A—O2A0.39 (19)C1C—C2C—C3C—C4C178.5 (2)
N2A—N1A—C9A—O1A4.9 (3)C10C—C2C—C3C—C4C2.1 (4)
N2A—N1A—C9A—C1A173.31 (17)C8C—C3C—C4C—C5C0.2 (3)
C2A—C1A—C9A—O1A0.9 (3)C2C—C3C—C4C—C5C178.9 (2)
O2A—C1A—C9A—O1A175.59 (16)C3C—C4C—C5C—C6C0.5 (3)
C2A—C1A—C9A—N1A179.11 (18)C4C—C5C—C6C—C7C0.4 (3)
O2A—C1A—C9A—N1A2.6 (2)C5C—C6C—C7C—C8C0.0 (3)
C8B—O2B—C1B—C2B0.49 (19)C1C—O2C—C8C—C7C178.43 (18)
C8B—O2B—C1B—C9B178.00 (14)C1C—O2C—C8C—C3C0.59 (19)
O2B—C1B—C2B—C3B0.1 (2)C6C—C7C—C8C—O2C179.19 (18)
C9B—C1B—C2B—C3B177.12 (17)C6C—C7C—C8C—C3C0.3 (3)
O2B—C1B—C2B—C10B179.60 (18)C4C—C3C—C8C—O2C179.28 (16)
C9B—C1B—C2B—C10B2.6 (3)C2C—C3C—C8C—O2C0.2 (2)
C1B—C2B—C3B—C8B0.4 (2)C4C—C3C—C8C—C7C0.2 (3)
C10B—C2B—C3B—C8B179.95 (18)C2C—C3C—C8C—C7C178.86 (18)
C1B—C2B—C3B—C4B178.8 (2)N2C—N1C—C9C—O1C1.3 (3)
C10B—C2B—C3B—C4B0.9 (3)N2C—N1C—C9C—C1C179.64 (17)
C8B—C3B—C4B—C5B1.1 (3)C2C—C1C—C9C—O1C3.4 (3)
C2B—C3B—C4B—C5B179.9 (2)O2C—C1C—C9C—O1C172.87 (16)
C3B—C4B—C5B—C6B0.1 (4)C2C—C1C—C9C—N1C177.44 (18)
C4B—C5B—C6B—C7B1.2 (4)O2C—C1C—C9C—N1C6.2 (2)
C5B—C6B—C7B—C8B1.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1N1···N2C0.91 (2)2.13 (2)3.034 (2)171.4 (17)
N1B—H2N1···N2A0.93 (2)2.15 (2)3.081 (2)173.1 (17)
N1C—H3N1···N2B0.89 (2)2.12 (2)3.016 (2)179 (3)
N2A—H2N2···O1Bi0.86 (2)2.58 (2)3.275 (2)140 (2)
N2B—H4N2···O1Aii0.93 (2)2.33 (2)3.176 (2)150.4 (18)
N2C—H6N2···O1Ciii0.92 (2)2.22 (2)3.137 (2)175.5 (17)
C6A—H6AA···O1Aiv0.932.553.444 (3)162
C5C—H5CA···O1Bv0.932.593.333 (3)137
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x+1, y+1/2, z+1/2; (v) x+2, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC10H10N2O2
Mr190.20
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)10.9391 (4), 18.1257 (6), 14.1818 (5)
β (°) 94.157 (2)
V3)2804.55 (17)
Z12
Radiation typeCu Kα
µ (mm1)0.80
Crystal size (mm)0.59 × 0.58 × 0.07
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.651, 0.946
No. of measured, independent and
observed [I > 2σ(I)] reflections
19906, 5271, 3618
Rint0.048
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.133, 1.00
No. of reflections5271
No. of parameters419
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.17

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1N1···N2C0.91 (2)2.13 (2)3.034 (2)171.4 (17)
N1B—H2N1···N2A0.93 (2)2.15 (2)3.081 (2)173.1 (17)
N1C—H3N1···N2B0.89 (2)2.12 (2)3.016 (2)179 (3)
N2A—H2N2···O1Bi0.86 (2)2.58 (2)3.275 (2)140 (2)
N2B—H4N2···O1Aii0.93 (2)2.33 (2)3.176 (2)150.4 (18)
N2C—H6N2···O1Ciii0.92 (2)2.22 (2)3.137 (2)175.5 (17)
C6A—H6AA···O1Aiv0.932.553.444 (3)162
C5C—H5CA···O1Bv0.932.593.333 (3)137
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x+1, y+1/2, z+1/2; (v) x+2, y+1, z+2.
 

Footnotes

Thomson Reuters ResearcherID: A-5085-2009.

§College of Pharmacy (Visiting Professor), King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia. Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank the Deanship of Scientific Research and the Research Center, College of Pharmacy, King Saud University. HKF and SC thank Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. HKF also thanks King Saud University, Riyadh, Saudi Arabia, for the award of a visiting Professorship (December 23rd 2011 to January 14th 2012).

References

First citationAbdel-Aziz, H. A. & Mekawey, A. A. I. (2009). Eur. J. Med. Chem. 44, 4985–4997.  Web of Science PubMed CAS Google Scholar
First citationAbdel-Aziz, H. A., Mekawey, A. A. I. & Dawood, K. M. (2009). Eur. J. Med. Chem. 44, 3637–3644.  Web of Science PubMed CAS Google Scholar
First citationAbdel-Wahab, B. F., Abdel-Aziz, H. A. & Ahmed, E. M. (2009). Eur. J. Med. Chem. 44, 2632–2635.  Web of Science PubMed CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDawood, K. M., Farag, A. M. & Abdel-Aziz, H. A. (2005). Heteroat. Chem. 16, 621–627.  Web of Science CrossRef CAS Google Scholar
First citationHu, Z.-F., Chen, L.-L., Qi, J., Wang, Y.-H., Zhang, H. & Yu, B.-Y. (2011). Fitoterapia, 82, 190–192.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMa, B., Zhao, Z. & Li, H. (2010). Acta Cryst. E66, o2657.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRyu, C.-K., Song, A.-L., Lee, J.-Y., Hong, J.-A., Yoon, J.-H. & Kim, A. (2010). Bioorg. Med. Chem. Lett. 20, 6777-6780.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUngwitayatorn, J., Wiwat, C., Matayatsuk, C., Sripha, K. & Kamalanonth, P. (2001). Songklanakarin J. Sci. Technol. 23, 235–245.  Google Scholar
First citationWang, L., Liu, X., Yang, C., Zhao, S. & Li, K. (2011). Acta Cryst. E67, o493.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o1255-o1256
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds