organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o1173-o1174

2-[(E)-(1,10-Phenanthrolin-5-yl)imino­meth­yl]phenol methanol monosolvate

aInorganic Chemistry Department, Howard University, Washington, DC 20059, USA, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cYíldíz Technical University, Faculty of Arts and Sciences, Chemistry Department, 34210 Esenler, Istanbul, Turkey, and dDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com

(Received 12 March 2012; accepted 19 March 2012; online 24 March 2012)

In the title multi-donor Schiff base compound, C19H13N3O·CH3OH, the dihedral angle between the mean planes of the phenanthroline and phenol rings is 59.3 (1)°. The Schiff base mol­ecule is linked to the solvent mol­ecule by an O—H⋯O hydrogen bond. In the crystal, the components are linked by O—H⋯N hydrogen bonds, weak O—H⋯N inter­actions and ππ stacking inter­actions [centroid–centroid distances = 3.701 (1) and 3.656 (1) Å].

Related literature

For the role played by 1,10-phenanthroline and its derivatives as mol­ecular scaffolds for supra­molecular assemblies, see: Balzani et al. (1996[Balzani, V., Juris, A., Campagna, S. & Serroni, S. (1996). Chem. Rev. pp. 759-833.]). For the metal-chelating properties of the 1,10-phenanthroline ligand, see: Sammes & Yahioglu (1994[Sammes, P. G. & Yahioglu, G. (1994). Chem. Soc. Rev. 23, 327-336.]). For the photochemical and redox properties of phenanthroline rings, see: Camren et al. (1996[Camren, H., Chang, M. Y., Zeng, L. & Mc Guire, M. E. (1996). Synth. Commun. 26, 1247-1252.]); Bolger et al. (1996[Bolger, J., Gourdon, A., Ishow, E. & Launay, J. P. (1996). Inorg. Chem. 35, 2937-2944.]); Msood & Hodgson (1993[Msood, A. & Hodgson, D. J. (1993). Inorg. Chem. 32, 4839-4844.]). For Schiff bases as oxygen-carriers and as photochromic or thermochromic materials, see: Hobday & Smith (1973[Hobday, M. D. & Smith, T. S. (1973). Coord. Chem. Rev. 9, 311-337.]); Gul et al. (1986[Gul, A., Okur, A. I., Cihan, A., Tan, N. & Bekaroglu, O. (1986). Synth. React. Inorg. Met. Org. Chem. 16, 871-884.]); Can & Bekaroglu (1988[Can, S. & Bekaroglu, O. (1988). J. Chem. Soc. Dalton Trans. pp. 2831-2835.]); Avciata et al. (1995[Avciata, U., Bozdogan, A. E., Kocak, M., Gul, A. & Bekaroglu, O. (1995). J. Coord. Chem. 35, 319-323.], 1998[Avciata, U., Demirhan, N. & Gül, A. (1998). Monatsh. Chem. 29, 9-18.]); Demirhan et al. (2002[Demirhan, N., Erden, I. & Avciata, U. (2002). Synth. React. Inorg. Met. Org. Chem. 32, 1567-1577.]). For the synthesis of 5-amino-1,10-phenanthroline, see: Gillard & Hill (1974[Gillard, R. D. & Hill, R. E. E. (1974). J. Chem. Soc. Dalton Trans. pp. 1217-1236.]). For related structures, see: Wu et al. (2011[Wu, X.-Y., Xu, X.-J. & Wang, X.-C. (2011). Acta Cryst. E67, o474.]); Fun et al. (2010[Fun, H.-K., Loh, W.-S., Maity, A. C. & Goswami, S. (2010). Acta Cryst. E66, o1320.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C19H13N3O·CH4O

  • Mr = 331.37

  • Monoclinic, P c

  • a = 11.9398 (12) Å

  • b = 4.6680 (5) Å

  • c = 14.7818 (18) Å

  • β = 101.961 (11)°

  • V = 805.98 (16) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.73 mm−1

  • T = 123 K

  • 1.15 × 0.84 × 0.06 mm

Data collection
  • Oxford Diffraction Gemini-R diffractometer

  • Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]), using a multi-faceted crystal model (Clark & Reid, 1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.505, Tmax = 0.954

  • 3176 measured reflections

  • 1960 independent reflections

  • 1885 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.110

  • S = 1.04

  • 1960 reflections

  • 229 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O1S 0.84 1.81 2.640 (3) 172
O1S—H1S⋯N1i 0.84 2.01 2.829 (3) 163
O1S—H1S⋯N2i 0.84 2.68 3.242 (3) 126
Symmetry code: (i) x+1, y+1, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,10-Phenanthroline and its derivatives play important roles as molecular scaffolding for supramolecular assemblies (Balzani et al., 1996). These have played a major role in the development of polypyridyl metal complexes. The metal chelating property of the 1,10-phenanthroline ligand and its derivatives have been utilized in a range of analytical reagents as well as for the development of bioinorganic probes (Sammes & Yahioglu, 1994). The photochemical and redox properties of complexes can be varied systematically through appropriate substitution on the phenanthroline rings (Camren et al., 1996: Bolger et al., 1996: Msood & Hodgson, 1993).

The coordination chemistry of Schiff bases derived from salicylaldehyde has been the subject of many studies because of their interesting properties; e.g. as oxygen-carriers to mimic some complicated biological systems, as photochromic or thermochromic materials (Hobday & Smith, 1973: Gul et al., 1986: Can & Bekaroglu, 1988: Avciata et al. 1995; Avciata et al. 1998; Demirhan et al. 2002).

We report here the synthesis and characterization a new multidonor Schiff base derivative, (I), carrying N3O donor atoms and prepared from the condensation reaction of 5-amino-1,10-phenanthroline with salicylaldehyde.

The title molecule C19H13N3O.CH3OH, crystallized as a methanol monosolvate (Fig. 1). All bond lengths are as expected (Allen et al., 1987) and are comparable to those observed in related structures (Wu et al., 2011; Fun et al., 2010). The molecule is not planar, forming a dihedral angle of 59.3 (1)° between the mean planes of the phenanthroline (N1/N2/C1—C12) and phenol (C14—C19) rings.

In the crystal, O—H···N hydrogen bonds and weak O—H···N intermolecular interactions are observed (Table 1) as well as weak π-π stacking interactions [Cg1···Cg2 (x, 1+y, z) = 3.701 (1) Å and Cg1···Cg3 (x, 1+y,z) = 3.656 (1) Å, where Cg1(N1/C1—C4/C12), Cg2(N2/C7—C11) and Cg3(C4—C7/C11—C12) are the centroids of the phenonthroline ring], (Fig. 2).

Related literature top

For the role played by 1,10-phenanthroline and its derivatives as molecular scaffolds for supramolecular assemblies, see: Balzani et al. (1996). For the metal-chelating properties of the 1,10-phenanthroline ligand, see: Sammes & Yahioglu (1994). For the photochemical and redox properties of phenanthroline rings, see: Camren et al. (1996); Bolger et al. (1996); Msood & Hodgson (1993). For Schiff bases as oxygen-carriers and as photochromic or thermochromic materials, see: Hobday & Smith (1973); Gul et al. (1986); Can & Bekaroglu (1988); Avciata et al. (1995, 1998); Demirhan et al. (2002). For the synthesis of 5-amino-1,10-phenanthroline, see: Gillard & Hill (1974). For related structures, see: Wu et al. (2011); Fun et al. (2010). For standard bond lengths, see: Allen et al. (1987).

Experimental top

5-Amino-1,10-phenanthroline (Gillard & Hill, 1974) (1.5 g, 7.69 mmol) in 50 ml absolute methanol was added to salicylaldehyde (0.93 g, 7.69 mmol) dissolved in 20 ml diethylether and 100 ml absolute ethanol. After refluxing this mixture for 4.5 h, the precipitate was filtered off and then washed with water and ether. The product was obtained as a yellow precipitate (70° yield). It was soluble in methanol, ethanol and chloroform. Yield 1.79 g (78%). m.p. 451–453 K; Anal. Calcd. for C19H13N3O.CH3OH (299.32 g/mol) C, 74.24; H, 4.38; N, 14.04. Found: C, 74.86; H, 4.12; N, 14.66.

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with O—H = 0.84 Å, C—H = 0.95–0.98 Å and Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5 Ueq(CH3 and O).

Structure description top

1,10-Phenanthroline and its derivatives play important roles as molecular scaffolding for supramolecular assemblies (Balzani et al., 1996). These have played a major role in the development of polypyridyl metal complexes. The metal chelating property of the 1,10-phenanthroline ligand and its derivatives have been utilized in a range of analytical reagents as well as for the development of bioinorganic probes (Sammes & Yahioglu, 1994). The photochemical and redox properties of complexes can be varied systematically through appropriate substitution on the phenanthroline rings (Camren et al., 1996: Bolger et al., 1996: Msood & Hodgson, 1993).

The coordination chemistry of Schiff bases derived from salicylaldehyde has been the subject of many studies because of their interesting properties; e.g. as oxygen-carriers to mimic some complicated biological systems, as photochromic or thermochromic materials (Hobday & Smith, 1973: Gul et al., 1986: Can & Bekaroglu, 1988: Avciata et al. 1995; Avciata et al. 1998; Demirhan et al. 2002).

We report here the synthesis and characterization a new multidonor Schiff base derivative, (I), carrying N3O donor atoms and prepared from the condensation reaction of 5-amino-1,10-phenanthroline with salicylaldehyde.

The title molecule C19H13N3O.CH3OH, crystallized as a methanol monosolvate (Fig. 1). All bond lengths are as expected (Allen et al., 1987) and are comparable to those observed in related structures (Wu et al., 2011; Fun et al., 2010). The molecule is not planar, forming a dihedral angle of 59.3 (1)° between the mean planes of the phenanthroline (N1/N2/C1—C12) and phenol (C14—C19) rings.

In the crystal, O—H···N hydrogen bonds and weak O—H···N intermolecular interactions are observed (Table 1) as well as weak π-π stacking interactions [Cg1···Cg2 (x, 1+y, z) = 3.701 (1) Å and Cg1···Cg3 (x, 1+y,z) = 3.656 (1) Å, where Cg1(N1/C1—C4/C12), Cg2(N2/C7—C11) and Cg3(C4—C7/C11—C12) are the centroids of the phenonthroline ring], (Fig. 2).

For the role played by 1,10-phenanthroline and its derivatives as molecular scaffolds for supramolecular assemblies, see: Balzani et al. (1996). For the metal-chelating properties of the 1,10-phenanthroline ligand, see: Sammes & Yahioglu (1994). For the photochemical and redox properties of phenanthroline rings, see: Camren et al. (1996); Bolger et al. (1996); Msood & Hodgson (1993). For Schiff bases as oxygen-carriers and as photochromic or thermochromic materials, see: Hobday & Smith (1973); Gul et al. (1986); Can & Bekaroglu (1988); Avciata et al. (1995, 1998); Demirhan et al. (2002). For the synthesis of 5-amino-1,10-phenanthroline, see: Gillard & Hill (1974). For related structures, see: Wu et al. (2011); Fun et al. (2010). For standard bond lengths, see: Allen et al. (1987).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level for non-hydrogen atoms. Hydrogen bonds are drawn as dashed lines.
[Figure 2] Fig. 2. The molecular packing of the title compound. Hydrogen bonds are drawn as dashed lines.
2-[(E)-(1,10-Phenanthrolin-5-yl)iminomethyl]phenol methanol monosolvate top
Crystal data top
C19H13N3O·CH4OF(000) = 348
Mr = 331.37Dx = 1.365 Mg m3
Monoclinic, PcCu Kα radiation, λ = 1.54184 Å
Hall symbol: P -2ycCell parameters from 1347 reflections
a = 11.9398 (12) Åθ = 3.1–75.2°
b = 4.6680 (5) ŵ = 0.73 mm1
c = 14.7818 (18) ÅT = 123 K
β = 101.961 (11)°Triangular plate, yellow
V = 805.98 (16) Å31.15 × 0.84 × 0.06 mm
Z = 2
Data collection top
Oxford Diffraction Gemini-R
diffractometer
1960 independent reflections
Radiation source: Enhance (Cu) X-ray Source1885 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 10.5081 pixels mm-1θmax = 75.2°, θmin = 3.1°
ω scansh = 1314
Absorption correction: analytical
[CrysAlis RED (Oxford Diffraction, 2007), using a multi-faceted crystal model (Clark & Reid, 1995)]
k = 55
Tmin = 0.505, Tmax = 0.954l = 1812
3176 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0747P)2 + 0.0897P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
1960 reflectionsΔρmax = 0.24 e Å3
229 parametersΔρmin = 0.17 e Å3
2 restraintsAbsolute structure: Flack, H. D. (1983). Acta Cryst. A39, 876–881, 303 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 1.5 (18)
Crystal data top
C19H13N3O·CH4OV = 805.98 (16) Å3
Mr = 331.37Z = 2
Monoclinic, PcCu Kα radiation
a = 11.9398 (12) ŵ = 0.73 mm1
b = 4.6680 (5) ÅT = 123 K
c = 14.7818 (18) Å1.15 × 0.84 × 0.06 mm
β = 101.961 (11)°
Data collection top
Oxford Diffraction Gemini-R
diffractometer
1960 independent reflections
Absorption correction: analytical
[CrysAlis RED (Oxford Diffraction, 2007), using a multi-faceted crystal model (Clark & Reid, 1995)]
1885 reflections with I > 2σ(I)
Tmin = 0.505, Tmax = 0.954Rint = 0.030
3176 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.110Δρmax = 0.24 e Å3
S = 1.04Δρmin = 0.17 e Å3
1960 reflectionsAbsolute structure: Flack, H. D. (1983). Acta Cryst. A39, 876–881, 303 Friedel pairs
229 parametersAbsolute structure parameter: 1.5 (18)
2 restraints
Special details top

Experimental. The crystal was very fragile. On cutting the crystal shattered so an incident collimator of 1.0 mm was used.

IR (KBr): 3435(Ar—OH), 3020(Ar), 1616 (C=N—C). 13 C NMR, 167 (C—OH), 165 (C=C—N), 150,152 and 148 (C=N) p.p.m.. LC—MS, m/z (%): 298 (M-1). In the electronic spectrum two band appears at 281 and 340 nm which can be assigned to the π -π * and n-π * transition of C=C and C=N group.

The FTIR spectra were obtained on a Perkin Elmer Spectrum One Bv 5.0 spectrophotometer. 1H NMR and 13C NMR spectra were recorded on a Varian UNITY INOVA 500 MHz s pectrometer. Mass spectra were measured on a FinniganTM LCQTM Advantage MAX spectrometer. Electronic spectra were obtained on a Agilent 8453 UV-Vis. Spectroscopy System. Elemental analyses were obtained on a Thermo Finnigan Flash EA 112. All other chemicals employed were of the highest grade available.

Absorption correction: CrysAlis RED, (Oxford Diffraction, 2007) Analytical numeric absorption correction using a multifaceted crystal model (Clark & Reid, 1995).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.98484 (16)1.4695 (5)0.63127 (14)0.0337 (4)
H11.05141.52600.65450.051*
O1S1.18635 (15)1.6610 (4)0.71862 (14)0.0307 (4)
H1S1.24971.63210.70380.046*
N10.41348 (18)0.5215 (5)0.70687 (15)0.0254 (4)
N20.32594 (18)0.8980 (5)0.56783 (15)0.0268 (4)
N30.70428 (17)1.0456 (5)0.50248 (15)0.0256 (4)
C10.4567 (2)0.3337 (6)0.77219 (17)0.0275 (5)
H1A0.40610.24680.80580.033*
C20.5729 (2)0.2556 (6)0.79469 (18)0.0291 (5)
H2A0.59970.12060.84240.035*
C30.6463 (2)0.3780 (5)0.74647 (18)0.0265 (5)
H3A0.72520.32820.76000.032*
C40.60430 (19)0.5796 (5)0.67619 (16)0.0233 (5)
C50.6784 (2)0.7166 (5)0.62454 (17)0.0237 (5)
H5A0.75770.67110.63720.028*
C60.63612 (19)0.9123 (5)0.55719 (16)0.0234 (5)
C70.5151 (2)0.9788 (5)0.53588 (16)0.0227 (5)
C80.4682 (2)1.1790 (6)0.46665 (17)0.0258 (5)
H8A0.51591.27610.43260.031*
C90.3527 (2)1.2309 (6)0.44944 (19)0.0299 (5)
H9A0.31911.36390.40300.036*
C100.2852 (2)1.0854 (6)0.50113 (19)0.0297 (5)
H10A0.20521.12230.48790.036*
C110.4404 (2)0.8465 (5)0.58528 (16)0.0233 (5)
C120.48604 (19)0.6424 (5)0.65842 (16)0.0221 (5)
C130.8014 (2)1.1466 (6)0.54239 (17)0.0252 (5)
H13A0.82291.13750.60790.030*
C140.8805 (2)1.2756 (5)0.49080 (18)0.0258 (5)
C150.9738 (2)1.4372 (5)0.53890 (18)0.0268 (5)
C161.0503 (2)1.5581 (6)0.4904 (2)0.0311 (5)
H16A1.11381.66550.52260.037*
C171.0351 (2)1.5235 (6)0.3963 (2)0.0358 (6)
H17A1.08781.60800.36410.043*
C180.9425 (2)1.3650 (8)0.3476 (2)0.0382 (6)
H18A0.93231.34050.28260.046*
C190.8661 (2)1.2446 (6)0.39525 (18)0.0305 (5)
H19A0.80271.13870.36230.037*
C1S1.1695 (2)1.9603 (6)0.7274 (2)0.0368 (6)
H1S11.20452.02170.79030.055*
H1S21.08732.00200.71500.055*
H1S31.20512.06360.68290.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0270 (8)0.0449 (11)0.0295 (9)0.0100 (8)0.0067 (7)0.0060 (8)
O1S0.0226 (8)0.0333 (9)0.0364 (10)0.0025 (7)0.0064 (7)0.0027 (8)
N10.0220 (9)0.0255 (10)0.0282 (10)0.0003 (8)0.0040 (8)0.0010 (9)
N20.0228 (9)0.0262 (10)0.0310 (11)0.0006 (8)0.0047 (8)0.0015 (8)
N30.0223 (10)0.0280 (10)0.0269 (10)0.0002 (8)0.0061 (8)0.0011 (8)
C10.0298 (12)0.0264 (12)0.0271 (12)0.0032 (10)0.0081 (10)0.0005 (10)
C20.0306 (12)0.0284 (12)0.0262 (12)0.0009 (10)0.0011 (9)0.0011 (9)
C30.0243 (11)0.0253 (11)0.0277 (12)0.0021 (9)0.0002 (9)0.0014 (10)
C40.0227 (12)0.0209 (10)0.0255 (12)0.0011 (9)0.0029 (9)0.0024 (9)
C50.0203 (10)0.0243 (11)0.0260 (11)0.0004 (9)0.0035 (8)0.0032 (9)
C60.0236 (11)0.0220 (10)0.0244 (11)0.0013 (9)0.0044 (9)0.0041 (9)
C70.0227 (10)0.0212 (10)0.0233 (11)0.0013 (8)0.0025 (9)0.0029 (9)
C80.0286 (12)0.0246 (11)0.0242 (11)0.0008 (9)0.0053 (9)0.0010 (9)
C90.0309 (13)0.0298 (11)0.0272 (11)0.0032 (10)0.0022 (10)0.0041 (10)
C100.0225 (12)0.0290 (12)0.0363 (13)0.0035 (9)0.0032 (10)0.0019 (11)
C110.0221 (11)0.0217 (10)0.0250 (11)0.0013 (8)0.0024 (9)0.0033 (9)
C120.0206 (10)0.0206 (11)0.0246 (11)0.0011 (8)0.0034 (9)0.0023 (9)
C130.0241 (11)0.0259 (11)0.0257 (11)0.0017 (9)0.0057 (8)0.0000 (9)
C140.0214 (10)0.0268 (11)0.0294 (12)0.0020 (9)0.0056 (9)0.0022 (10)
C150.0222 (10)0.0275 (11)0.0308 (12)0.0021 (9)0.0056 (9)0.0002 (10)
C160.0215 (11)0.0326 (13)0.0397 (14)0.0031 (10)0.0072 (10)0.0021 (11)
C170.0248 (11)0.0432 (14)0.0417 (15)0.0030 (11)0.0123 (10)0.0150 (12)
C180.0313 (13)0.0560 (18)0.0273 (12)0.0040 (12)0.0061 (10)0.0063 (12)
C190.0228 (11)0.0403 (14)0.0279 (12)0.0011 (10)0.0039 (9)0.0007 (11)
C1S0.0318 (13)0.0350 (14)0.0451 (16)0.0016 (11)0.0115 (11)0.0054 (12)
Geometric parameters (Å, º) top
O1—C151.353 (3)C7—C81.413 (3)
O1—H10.8400C8—C91.371 (4)
O1S—C1S1.421 (3)C8—H8A0.9500
O1S—H1S0.8400C9—C101.396 (4)
N1—C11.327 (3)C9—H9A0.9500
N1—C121.356 (3)C10—H10A0.9500
N2—C101.333 (3)C11—C121.459 (3)
N2—C111.359 (3)C13—C141.462 (3)
N3—C131.277 (3)C13—H13A0.9500
N3—C61.406 (3)C14—C191.395 (4)
C1—C21.406 (4)C14—C151.410 (3)
C1—H1A0.9500C15—C161.393 (3)
C2—C31.365 (4)C16—C171.374 (4)
C2—H2A0.9500C16—H16A0.9500
C3—C41.414 (4)C17—C181.399 (4)
C3—H3A0.9500C17—H17A0.9500
C4—C121.412 (3)C18—C191.382 (4)
C4—C51.434 (3)C18—H18A0.9500
C5—C61.368 (3)C19—H19A0.9500
C5—H5A0.9500C1S—H1S10.9800
C6—C71.447 (3)C1S—H1S20.9800
C7—C111.407 (3)C1S—H1S30.9800
C15—O1—H1109.5C9—C10—H10A118.0
C1S—O1S—H1S109.5N2—C11—C7123.0 (2)
C1—N1—C12117.7 (2)N2—C11—C12117.5 (2)
C10—N2—C11117.1 (2)C7—C11—C12119.5 (2)
C13—N3—C6118.4 (2)N1—C12—C4122.6 (2)
N1—C1—C2124.0 (2)N1—C12—C11118.80 (19)
N1—C1—H1A118.0C4—C12—C11118.6 (2)
C2—C1—H1A118.0N3—C13—C14122.3 (2)
C3—C2—C1118.5 (2)N3—C13—H13A118.9
C3—C2—H2A120.8C14—C13—H13A118.9
C1—C2—H2A120.8C19—C14—C15119.0 (2)
C2—C3—C4119.6 (2)C19—C14—C13121.9 (2)
C2—C3—H3A120.2C15—C14—C13119.1 (2)
C4—C3—H3A120.2O1—C15—C16122.5 (2)
C12—C4—C3117.6 (2)O1—C15—C14118.0 (2)
C12—C4—C5120.8 (2)C16—C15—C14119.4 (2)
C3—C4—C5121.6 (2)C17—C16—C15120.7 (2)
C6—C5—C4120.6 (2)C17—C16—H16A119.7
C6—C5—H5A119.7C15—C16—H16A119.7
C4—C5—H5A119.7C16—C17—C18120.5 (3)
C5—C6—N3122.9 (2)C16—C17—H17A119.7
C5—C6—C7120.2 (2)C18—C17—H17A119.7
N3—C6—C7116.8 (2)C19—C18—C17119.2 (3)
C11—C7—C8117.9 (2)C19—C18—H18A120.4
C11—C7—C6120.3 (2)C17—C18—H18A120.4
C8—C7—C6121.8 (2)C18—C19—C14121.2 (2)
C9—C8—C7118.9 (2)C18—C19—H19A119.4
C9—C8—H8A120.5C14—C19—H19A119.4
C7—C8—H8A120.5O1S—C1S—H1S1109.5
C8—C9—C10119.0 (2)O1S—C1S—H1S2109.5
C8—C9—H9A120.5H1S1—C1S—H1S2109.5
C10—C9—H9A120.5O1S—C1S—H1S3109.5
N2—C10—C9124.1 (2)H1S1—C1S—H1S3109.5
N2—C10—H10A118.0H1S2—C1S—H1S3109.5
C12—N1—C1—C20.7 (4)C6—C7—C11—C120.2 (3)
N1—C1—C2—C30.4 (4)C1—N1—C12—C41.2 (3)
C1—C2—C3—C40.4 (4)C1—N1—C12—C11179.1 (2)
C2—C3—C4—C120.8 (3)C3—C4—C12—N11.2 (3)
C2—C3—C4—C5179.2 (2)C5—C4—C12—N1178.7 (2)
C12—C4—C5—C60.3 (3)C3—C4—C12—C11179.1 (2)
C3—C4—C5—C6179.6 (2)C5—C4—C12—C111.0 (3)
C4—C5—C6—N3177.8 (2)N2—C11—C12—N12.0 (3)
C4—C5—C6—C71.3 (3)C7—C11—C12—N1178.5 (2)
C13—N3—C6—C546.2 (3)N2—C11—C12—C4178.3 (2)
C13—N3—C6—C7137.3 (2)C7—C11—C12—C41.2 (3)
C5—C6—C7—C111.1 (3)C6—N3—C13—C14176.8 (2)
N3—C6—C7—C11177.8 (2)N3—C13—C14—C1913.4 (4)
C5—C6—C7—C8179.8 (2)N3—C13—C14—C15166.3 (2)
N3—C6—C7—C83.1 (3)C19—C14—C15—O1178.7 (2)
C11—C7—C8—C91.3 (3)C13—C14—C15—O11.0 (3)
C6—C7—C8—C9179.6 (2)C19—C14—C15—C161.0 (3)
C7—C8—C9—C100.3 (4)C13—C14—C15—C16179.3 (2)
C11—N2—C10—C90.4 (4)O1—C15—C16—C17179.1 (2)
C8—C9—C10—N20.6 (4)C14—C15—C16—C170.7 (4)
C10—N2—C11—C70.7 (3)C15—C16—C17—C180.3 (4)
C10—N2—C11—C12179.8 (2)C16—C17—C18—C190.3 (4)
C8—C7—C11—N21.6 (3)C17—C18—C19—C140.7 (4)
C6—C7—C11—N2179.3 (2)C15—C14—C19—C181.1 (4)
C8—C7—C11—C12178.9 (2)C13—C14—C19—C18179.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1S0.841.812.640 (3)172
O1S—H1S···N1i0.842.012.829 (3)163
O1S—H1S···N2i0.842.683.242 (3)126
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC19H13N3O·CH4O
Mr331.37
Crystal system, space groupMonoclinic, Pc
Temperature (K)123
a, b, c (Å)11.9398 (12), 4.6680 (5), 14.7818 (18)
β (°) 101.961 (11)
V3)805.98 (16)
Z2
Radiation typeCu Kα
µ (mm1)0.73
Crystal size (mm)1.15 × 0.84 × 0.06
Data collection
DiffractometerOxford Diffraction Gemini-R
Absorption correctionAnalytical
[CrysAlis RED (Oxford Diffraction, 2007), using a multi-faceted crystal model (Clark & Reid, 1995)]
Tmin, Tmax0.505, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
3176, 1960, 1885
Rint0.030
(sin θ/λ)max1)0.627
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.110, 1.04
No. of reflections1960
No. of parameters229
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.17
Absolute structureFlack, H. D. (1983). Acta Cryst. A39, 876–881, 303 Friedel pairs
Absolute structure parameter1.5 (18)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1S0.841.812.640 (3)171.8
O1S—H1S···N1i0.842.012.829 (3)163.2
O1S—H1S···N2i0.842.683.242 (3)125.8
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

RJB acknowledges the NSF–MRI program (grant No. CHE-0619278) for funds to purchase the diffractometer.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAvciata, U., Bozdogan, A. E., Kocak, M., Gul, A. & Bekaroglu, O. (1995). J. Coord. Chem. 35, 319–323.  Web of Science CrossRef CAS Google Scholar
First citationAvciata, U., Demirhan, N. & Gül, A. (1998). Monatsh. Chem. 29, 9–18.  Google Scholar
First citationBalzani, V., Juris, A., Campagna, S. & Serroni, S. (1996). Chem. Rev. pp. 759–833.  CrossRef Web of Science Google Scholar
First citationBolger, J., Gourdon, A., Ishow, E. & Launay, J. P. (1996). Inorg. Chem. 35, 2937–2944.  CrossRef CAS Web of Science Google Scholar
First citationCamren, H., Chang, M. Y., Zeng, L. & Mc Guire, M. E. (1996). Synth. Commun. 26, 1247–1252.  CrossRef CAS Web of Science Google Scholar
First citationCan, S. & Bekaroglu, O. (1988). J. Chem. Soc. Dalton Trans. pp. 2831–2835.  CrossRef Web of Science Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDemirhan, N., Erden, I. & Avciata, U. (2002). Synth. React. Inorg. Met. Org. Chem. 32, 1567–1577.  CrossRef Google Scholar
First citationFun, H.-K., Loh, W.-S., Maity, A. C. & Goswami, S. (2010). Acta Cryst. E66, o1320.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGillard, R. D. & Hill, R. E. E. (1974). J. Chem. Soc. Dalton Trans. pp. 1217–1236.  CrossRef Web of Science Google Scholar
First citationGul, A., Okur, A. I., Cihan, A., Tan, N. & Bekaroglu, O. (1986). Synth. React. Inorg. Met. Org. Chem. 16, 871–884.  CAS Google Scholar
First citationHobday, M. D. & Smith, T. S. (1973). Coord. Chem. Rev. 9, 311–337.  CrossRef CAS Web of Science Google Scholar
First citationMsood, A. & Hodgson, D. J. (1993). Inorg. Chem. 32, 4839–4844.  Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSammes, P. G. & Yahioglu, G. (1994). Chem. Soc. Rev. 23, 327–336.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, X.-Y., Xu, X.-J. & Wang, X.-C. (2011). Acta Cryst. E67, o474.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o1173-o1174
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds