organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4-Nitro­phen­yl)morpholine

aState Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, People's Republic of China, and bDepartment of Applied Chemistry, College of Chemical Engineering, Sichuan University, Chengdu 610041, People's Republic of China
*Correspondence e-mail: yangli@scu.edu.cn

(Received 2 December 2011; accepted 21 March 2012; online 31 March 2012)

Aromatic ππ stacking inter­actions stabilize the crystal structure of the title compound, C10H12N2O3, the perpendic­ular distance between parallel planes being 3.7721 (8) Å. The morpholine ring adopts a chair comformation.

Related literature

For the biological activity and synthesis of 4-(4-nitro­phen­yl)morpholine derivatives, see: Wang et al. (2010[Wang, S. D., Midgley, C. A., Scaerou, F., Grabarek, J. B., Griffiths, G., Jackson, W., Kontopidis, G., McClue, S. J., McInnes, C., Meades, C., Mezna, M., Plater, A., Stuart, I., Thomas, M. P., Wood, G., Clarke, R. G., Blake, D. G., Zheleva, D. I., Lane, D. P., Jackson, R. C., Glover, D. M. & Fischer, P. M. (2010). J. Med. Chem. 53, 4367-4378.]). For a related structure, see: Yang et al. (2011[Yang, L.-L., Zheng, R.-L., Li, G.-B., Sun, Q.-Z. & Xie, Y.-M. (2011). Acta Cryst. E67, o754.]).

[Scheme 1]

Experimental

Crystal data
  • C10H12N2O3

  • Mr = 208.22

  • Orthorhombic, P b c a

  • a = 14.5445 (6) Å

  • b = 8.3832 (3) Å

  • c = 16.2341 (6) Å

  • V = 1979.42 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.35 × 0.33 × 0.30 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.992, Tmax = 1.000

  • 4949 measured reflections

  • 2023 independent reflections

  • 1377 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.121

  • S = 1.03

  • 2023 reflections

  • 184 parameters

  • All H-atom parameters refined

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

4-(4-nitrophenyl)morpholine derivatives are of great importance due to their anticancer activity (Wang et al., 2010;). The title compound is one of the key intermediates in our synthetic investigations of antitumor drugs. We synthesized the title compound and report its crystal structure in this paper.

In the title compound, C10H12N2O3, (Fig. 1) the bond lengths and angles are within normal ranges (Yang et al., 2011). Aromatic ππ stacking interactions help to stabilize the crystal structure (Fig. 2). The perpendicular distance between the parallel ring planes is 3.7721 (8) Å, the distance between the centres of gravity CgCg(-x,-y,1 - z) is 3.8499 (11) Å.

Related literature top

For the biological activity and synthesis of 4-(4-nitrophenyl)morpholine derivatives, see: Wang et al. (2010). For a related structure, see: Yang et al. (2011).

Experimental top

The title compound was prepared by a method similar to that of Shudong Wang et al. (2010), which Crystals suitable for X-ray analysis were obtained by slow evaporation from a solution of dichloromethane.

Refinement top

All H atoms were positioned in the difference map and refined freely.

Structure description top

4-(4-nitrophenyl)morpholine derivatives are of great importance due to their anticancer activity (Wang et al., 2010;). The title compound is one of the key intermediates in our synthetic investigations of antitumor drugs. We synthesized the title compound and report its crystal structure in this paper.

In the title compound, C10H12N2O3, (Fig. 1) the bond lengths and angles are within normal ranges (Yang et al., 2011). Aromatic ππ stacking interactions help to stabilize the crystal structure (Fig. 2). The perpendicular distance between the parallel ring planes is 3.7721 (8) Å, the distance between the centres of gravity CgCg(-x,-y,1 - z) is 3.8499 (11) Å.

For the biological activity and synthesis of 4-(4-nitrophenyl)morpholine derivatives, see: Wang et al. (2010). For a related structure, see: Yang et al. (2011).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2006); cell refinement: CrysAlis PRO (Oxford Diffraction, 2006); data reduction: CrysAlis PRO (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound. The dotted line indicates the CgCg(-x,-y,1 - z) distance.
4-(4-Nitrophenyl)morpholine top
Crystal data top
C10H12N2O3Dx = 1.397 Mg m3
Mr = 208.22Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 1704 reflections
a = 14.5445 (6) Åθ = 2.9–29.2°
b = 8.3832 (3) ŵ = 0.11 mm1
c = 16.2341 (6) ÅT = 293 K
V = 1979.42 (13) Å3Block, yellow
Z = 80.35 × 0.33 × 0.30 mm
F(000) = 880
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
2023 independent reflections
Radiation source: Enhance (Mo) X-ray Source1377 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Detector resolution: 16.0874 pixels mm-1θmax = 26.4°, θmin = 2.9°
ω scansh = 918
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
k = 610
Tmin = 0.992, Tmax = 1.000l = 2012
4949 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: difference Fourier map
wR(F2) = 0.121All H-atom parameters refined
S = 1.03 w = 1/[σ2(Fo2) + (0.050P)2 + 0.3012P]
where P = (Fo2 + 2Fc2)/3
2023 reflections(Δ/σ)max < 0.001
184 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C10H12N2O3V = 1979.42 (13) Å3
Mr = 208.22Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 14.5445 (6) ŵ = 0.11 mm1
b = 8.3832 (3) ÅT = 293 K
c = 16.2341 (6) Å0.35 × 0.33 × 0.30 mm
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
2023 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
1377 reflections with I > 2σ(I)
Tmin = 0.992, Tmax = 1.000Rint = 0.018
4949 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.121All H-atom parameters refined
S = 1.03Δρmax = 0.12 e Å3
2023 reflectionsΔρmin = 0.15 e Å3
184 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.11977 (11)0.40333 (15)0.24876 (9)0.0774 (5)
O20.15361 (12)0.3154 (2)0.66760 (10)0.0931 (6)
O30.09389 (13)0.47156 (17)0.57725 (10)0.0907 (6)
N10.12607 (10)0.15429 (16)0.36653 (8)0.0488 (4)
N20.12312 (11)0.3406 (2)0.59853 (11)0.0642 (5)
C10.17590 (18)0.4172 (3)0.31932 (13)0.0674 (6)
H1A0.2408 (16)0.378 (2)0.3051 (12)0.083 (7)*
H1B0.1775 (14)0.531 (2)0.3339 (12)0.072 (6)*
C20.14099 (17)0.3205 (2)0.39042 (13)0.0587 (5)
H2A0.1869 (14)0.327 (2)0.4354 (12)0.067 (6)*
H2B0.0823 (14)0.367 (2)0.4102 (12)0.068 (6)*
C30.07821 (15)0.1361 (3)0.28780 (11)0.0567 (5)
H3A0.0113 (15)0.159 (2)0.2958 (12)0.081 (7)*
H3B0.0813 (13)0.028 (2)0.2697 (11)0.064 (6)*
C40.11879 (17)0.2413 (2)0.22354 (13)0.0647 (5)
H4A0.0814 (13)0.237 (2)0.1743 (13)0.072 (6)*
H4B0.1848 (14)0.205 (2)0.2122 (12)0.077 (6)*
C50.12154 (11)0.03660 (19)0.42504 (10)0.0440 (4)
C60.08684 (14)0.1153 (2)0.40613 (12)0.0589 (5)
H60.0618 (13)0.137 (2)0.3546 (12)0.069 (6)*
C70.08671 (14)0.2364 (2)0.46268 (12)0.0598 (5)
H70.0634 (14)0.340 (2)0.4490 (12)0.078 (6)*
C80.12173 (12)0.2108 (2)0.54007 (11)0.0501 (4)
C90.15440 (14)0.0625 (2)0.56225 (12)0.0563 (5)
H90.1773 (13)0.045 (2)0.6160 (13)0.065 (6)*
C100.15375 (13)0.0592 (2)0.50585 (11)0.0536 (5)
H100.1772 (13)0.161 (2)0.5228 (11)0.064 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1061 (12)0.0596 (8)0.0664 (9)0.0081 (8)0.0178 (9)0.0111 (7)
O20.1083 (13)0.0960 (12)0.0748 (11)0.0164 (10)0.0257 (10)0.0297 (9)
O30.1163 (13)0.0583 (9)0.0974 (12)0.0137 (9)0.0058 (10)0.0163 (8)
N10.0586 (9)0.0459 (7)0.0418 (8)0.0054 (7)0.0048 (7)0.0049 (6)
N20.0576 (10)0.0686 (11)0.0665 (11)0.0035 (9)0.0008 (9)0.0131 (9)
C10.0868 (16)0.0538 (12)0.0615 (13)0.0091 (12)0.0020 (12)0.0044 (10)
C20.0720 (13)0.0498 (10)0.0544 (11)0.0060 (10)0.0003 (11)0.0067 (9)
C30.0624 (13)0.0599 (12)0.0477 (11)0.0024 (10)0.0086 (9)0.0048 (9)
C40.0829 (15)0.0636 (12)0.0478 (11)0.0061 (12)0.0116 (11)0.0029 (9)
C50.0428 (9)0.0475 (8)0.0418 (9)0.0013 (8)0.0019 (7)0.0054 (7)
C60.0722 (13)0.0569 (11)0.0476 (11)0.0143 (10)0.0093 (10)0.0055 (9)
C70.0682 (12)0.0497 (10)0.0617 (12)0.0106 (10)0.0015 (10)0.0030 (9)
C80.0467 (9)0.0521 (9)0.0514 (10)0.0024 (8)0.0028 (8)0.0037 (8)
C90.0626 (12)0.0622 (11)0.0443 (10)0.0015 (9)0.0044 (9)0.0042 (8)
C100.0656 (11)0.0495 (9)0.0458 (10)0.0081 (9)0.0035 (9)0.0069 (8)
Geometric parameters (Å, º) top
O1—C11.411 (2)C3—H3B0.958 (19)
O1—C41.418 (2)C3—C41.488 (3)
O2—N21.224 (2)C4—H4A0.97 (2)
O3—N21.227 (2)C4—H4B1.02 (2)
N1—C21.463 (2)C5—C61.404 (2)
N1—C31.463 (2)C5—C101.406 (2)
N1—C51.371 (2)C6—H60.93 (2)
N2—C81.444 (2)C6—C71.369 (3)
C1—H1A1.03 (2)C7—H70.96 (2)
C1—H1B0.98 (2)C7—C81.373 (3)
C1—C21.499 (3)C8—C91.378 (2)
C2—H2A0.99 (2)C9—H90.95 (2)
C2—H2B0.99 (2)C9—C101.371 (3)
C3—H3A1.00 (2)C10—H100.957 (18)
C1—O1—C4108.61 (15)O1—C4—C3111.68 (18)
C2—N1—C3113.67 (15)O1—C4—H4A106.5 (11)
C5—N1—C2120.60 (14)O1—C4—H4B109.0 (11)
C5—N1—C3120.47 (14)C3—C4—H4A109.4 (11)
O2—N2—O3122.50 (17)C3—C4—H4B108.9 (11)
O2—N2—C8118.51 (17)H4A—C4—H4B111.5 (16)
O3—N2—C8118.98 (17)N1—C5—C6121.23 (15)
O1—C1—H1A108.8 (12)N1—C5—C10122.24 (15)
O1—C1—H1B106.8 (11)C6—C5—C10116.50 (16)
O1—C1—C2112.60 (18)C5—C6—H6121.2 (12)
H1A—C1—H1B110.1 (17)C7—C6—C5121.78 (18)
C2—C1—H1A108.2 (12)C7—C6—H6117.0 (12)
C2—C1—H1B110.3 (12)C6—C7—H7121.1 (12)
N1—C2—C1111.18 (17)C6—C7—C8119.81 (18)
N1—C2—H2A110.4 (11)C8—C7—H7119.1 (12)
N1—C2—H2B109.4 (11)C7—C8—N2119.25 (17)
C1—C2—H2A108.0 (11)C7—C8—C9120.55 (17)
C1—C2—H2B109.2 (11)C9—C8—N2120.20 (17)
H2A—C2—H2B108.6 (16)C8—C9—H9120.3 (11)
N1—C3—H3A109.2 (12)C10—C9—C8119.62 (18)
N1—C3—H3B110.2 (11)C10—C9—H9120.1 (11)
N1—C3—C4111.20 (16)C5—C10—H10120.4 (11)
H3A—C3—H3B105.7 (16)C9—C10—C5121.68 (17)
C4—C3—H3A111.2 (12)C9—C10—H10117.9 (11)
C4—C3—H3B109.2 (11)

Experimental details

Crystal data
Chemical formulaC10H12N2O3
Mr208.22
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)14.5445 (6), 8.3832 (3), 16.2341 (6)
V3)1979.42 (13)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.35 × 0.33 × 0.30
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
Tmin, Tmax0.992, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
4949, 2023, 1377
Rint0.018
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.121, 1.03
No. of reflections2023
No. of parameters184
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.12, 0.15

Computer programs: CrysAlis PRO (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

 

Acknowledgements

We thank the Analytical and Testing Center of Sichuan University for the X-ray measurements.

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, S. D., Midgley, C. A., Scaerou, F., Grabarek, J. B., Griffiths, G., Jackson, W., Kontopidis, G., McClue, S. J., McInnes, C., Meades, C., Mezna, M., Plater, A., Stuart, I., Thomas, M. P., Wood, G., Clarke, R. G., Blake, D. G., Zheleva, D. I., Lane, D. P., Jackson, R. C., Glover, D. M. & Fischer, P. M. (2010). J. Med. Chem. 53, 4367–4378.  Web of Science CrossRef CAS PubMed Google Scholar
First citationYang, L.-L., Zheng, R.-L., Li, G.-B., Sun, Q.-Z. & Xie, Y.-M. (2011). Acta Cryst. E67, o754.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds