organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,7,8-Tri­methyl-2H-chromen-2-one

aInstitute of Materials and Chemical Engineering, Hainan University, Haikou 570228, People's Republic of China, and bInstitute of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650093, People's Republic of China
*Correspondence e-mail: yangjxmail@sohu.com

(Received 6 February 2012; accepted 5 March 2012; online 10 March 2012)

The mol­ecule of the title compound, C12H12O2, is essentially planar, with a maximum deviation from the mean plane of all non-H atoms of 0.038 (1) Å for the methyl C atom in the 8-position. The crystal structure is characterized by anti­parallel ππ stacking along the c axis, with centroid–centroid distances as short as 3.866 (1) Å. In the crystal, C—H⋯O hydrogen bonds connect the mol­ecules across the stacks into ribbons in the a-axis direction.

Related literature

For general background to the pharmacological activity of coumarin derivatives, see: Xie et al. (2001[Xie, L., Takeuchi, Y., Cosentino, L. M., McPhail, A. T. & Lee, K. H. (2001). J. Med. Chem. 44, 664-671.]); Tanitame et al. (2004[Tanitame, A., Oyamada, Y., Ofuji, K., Kyoya, Y., Suzuki, K., Ito, H., Kawasaki, M., Nagai, K., Wachi, M. & Yamagishi, J. (2004). J. Med. Chem. 47, 3693-, 3696.]); Shao et al. (1997[Shao, X., Ekstrand, D. H. L., Bhikhabhai, R., Kallander, C. F. R. & Gronowitz, J. S. (1997). Antivir. Chem. Chemother. 8, 149-159.]); Rendenbach-Müller et al. (1994[Rendenbach-Müller, B., Schelcker, R., Traut, M. & Weifenbach, H. (1994). Bioorg. Med. Chem. Lett. 4, 1195-1198.]); Pochet et al. (1996[Pochet, L., Doucet, C., Schynts, M., Thierry, N., Boggeto, N., Pirotte, B., Jiang, K. Y., Masereel, B., Tulio, P. D., Delarge, J. & Reboud-Ravaux, M. (1996). J. Med. Chem. 39, 2579-2585.]). For a related structure, see: Gowda et al. (2010[Gowda, R., Gowda, K. V. A., Basanagouda, M. & Kulkarni, M. V. (2010). Acta Cryst. E66, o3352.]).

[Scheme 1]

Experimental

Crystal data
  • C12H12O2

  • Mr = 188.22

  • Monoclinic, P 21 /c

  • a = 7.276 (3) Å

  • b = 18.075 (6) Å

  • c = 7.246 (3) Å

  • β = 97.055 (5)°

  • V = 945.8 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 153 K

  • 0.44 × 0.31 × 0.26 mm

Data collection
  • Rigaku AFC10/Saturn724+ diffractometer

  • 8545 measured reflections

  • 2747 independent reflections

  • 2176 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.112

  • S = 1.00

  • 2747 reflections

  • 130 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2i 0.95 2.56 3.460 (2) 159
C10—H10C⋯O2ii 0.98 2.54 3.493 (2) 164
Symmetry codes: (i) -x+2, -y, -z+2; (ii) x-1, y, z.

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Coumarin derivatives exhibit a wide variety of pharmacological activities including anti-HIV (Xie et al., 2001), antibacterial (Tanitame et al., 2004), antioxidant (Shao et al., 1997), antithrombotic (Rendenbach-Müller et al., 1994) and antiinflammatory (Pochet et al., 1996) activities.

The molecular structure is shown in Fig. 1. In the crystal the molecules are linked by C—H···O hydrogen bonds to form ribbon-like motives (Table 1 and Fig. 2).

Related literature top

For general background to thepharmacological activity of coumarin derivatives, see: Xie et al. (2001); Tanitame et al. (2004); Shao et al. (1997); Rendenbach-Müller et al. (1994); Pochet et al. (1996). For a related structure, see: Gowda et al. (2010).

Experimental top

2,3-Dimethyl phenol (10.50 mmol) was slowly added at 278–288 K to a mixture of para-toluenesulfonic acid (0.5 g) and acetylacetic ester (10.50 mmol) while stirring for 30 min. The reaction mixture was stirred continuously for 12 more hours at room temperature and then poured into ice–water mixture (100 ml). The obtained solid was filtered off, washed with cold water and dried at room temperature. Colorless crystals of the title compound suitable for X-ray structure analysis were obtained by slow evaporation of a solution in the mixture of ethanol/ether over a period of two days.

Refinement top

H atoms were placed in calculated positions with C—H = 0.93 (aromatic) and 0.96 Å (methyl), and refined in riding mode with Uiso(H) = 1.2Ueq(C) (aromatic) and Uiso(H) = 1.5Ueq(C) (methyl). The positions of the methyl H atoms were optimized rotationally.

Structure description top

Coumarin derivatives exhibit a wide variety of pharmacological activities including anti-HIV (Xie et al., 2001), antibacterial (Tanitame et al., 2004), antioxidant (Shao et al., 1997), antithrombotic (Rendenbach-Müller et al., 1994) and antiinflammatory (Pochet et al., 1996) activities.

The molecular structure is shown in Fig. 1. In the crystal the molecules are linked by C—H···O hydrogen bonds to form ribbon-like motives (Table 1 and Fig. 2).

For general background to thepharmacological activity of coumarin derivatives, see: Xie et al. (2001); Tanitame et al. (2004); Shao et al. (1997); Rendenbach-Müller et al. (1994); Pochet et al. (1996). For a related structure, see: Gowda et al. (2010).

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. H-bonding in the crystals of the title compound. Intermolecular hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. ππ stacking in the crystal of te title compound.
4,7,8-Trimethyl-2H-chromen-2-one top
Crystal data top
C12H12O2F(000) = 400
Mr = 188.22Dx = 1.322 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.276 (3) ÅCell parameters from 3283 reflections
b = 18.075 (6) Åθ = 2.3–30.0°
c = 7.246 (3) ŵ = 0.09 mm1
β = 97.055 (5)°T = 153 K
V = 945.8 (6) Å3Prism, colorless
Z = 40.44 × 0.31 × 0.26 mm
Data collection top
Rigaku AFC10/Saturn724+
diffractometer
2176 reflections with I > 2σ(I)
Radiation source: Rotating AnodeRint = 0.028
Graphite monochromatorθmax = 30.1°, θmin = 3.1°
Detector resolution: 28.5714 pixels mm-1h = 910
phi and ω scansk = 2425
8545 measured reflectionsl = 1010
2747 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0269P)2 + 0.551P]
where P = (Fo2 + 2Fc2)/3
2747 reflections(Δ/σ)max = 0.001
130 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C12H12O2V = 945.8 (6) Å3
Mr = 188.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.276 (3) ŵ = 0.09 mm1
b = 18.075 (6) ÅT = 153 K
c = 7.246 (3) Å0.44 × 0.31 × 0.26 mm
β = 97.055 (5)°
Data collection top
Rigaku AFC10/Saturn724+
diffractometer
2176 reflections with I > 2σ(I)
8545 measured reflectionsRint = 0.028
2747 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.00Δρmax = 0.28 e Å3
2747 reflectionsΔρmin = 0.33 e Å3
130 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H20.83640.03750.99620.029*
H50.43460.23560.83890.030*
H60.47080.36290.84970.030*
H10A0.53360.03810.86160.035*
H10B0.47260.10970.73920.035*
H10C0.41830.10260.94590.035*
H11A0.64320.46980.91530.037*
H11B0.85810.46250.89140.037*
H11C0.79410.46341.09490.037*
H12A1.15050.31391.17560.036*
H12B1.06320.39531.16930.036*
H12C1.14830.36330.99210.036*
C11.01364 (18)0.12436 (7)1.07922 (18)0.0243 (3)
C20.84235 (18)0.08992 (7)1.00252 (18)0.0244 (3)
C30.69054 (18)0.12937 (7)0.93951 (18)0.0224 (3)
C40.69972 (17)0.20939 (7)0.94548 (17)0.0207 (2)
C50.55137 (18)0.25623 (7)0.88512 (19)0.0248 (3)
C60.57298 (19)0.33200 (7)0.89207 (19)0.0251 (3)
C70.74262 (18)0.36425 (7)0.96038 (18)0.0234 (3)
C80.89411 (18)0.31925 (7)1.02295 (18)0.0221 (3)
C90.86750 (17)0.24271 (7)1.01382 (17)0.0206 (2)
C100.51347 (19)0.09170 (8)0.8651 (2)0.0296 (3)
C110.7611 (2)0.44726 (7)0.9660 (2)0.0305 (3)
C121.08022 (19)0.35066 (8)1.0964 (2)0.0299 (3)
O11.02050 (12)0.20031 (5)1.07807 (13)0.0240 (2)
O21.15405 (14)0.09227 (6)1.14331 (15)0.0338 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0259 (6)0.0213 (6)0.0259 (6)0.0034 (5)0.0042 (5)0.0003 (5)
C20.0277 (7)0.0189 (6)0.0268 (6)0.0011 (5)0.0041 (5)0.0012 (5)
C30.0246 (6)0.0225 (6)0.0205 (6)0.0035 (5)0.0040 (5)0.0007 (5)
C40.0213 (6)0.0211 (6)0.0200 (6)0.0004 (4)0.0038 (5)0.0002 (5)
C50.0202 (6)0.0273 (6)0.0262 (6)0.0003 (5)0.0001 (5)0.0003 (5)
C60.0238 (6)0.0258 (6)0.0254 (6)0.0048 (5)0.0014 (5)0.0024 (5)
C70.0276 (6)0.0204 (6)0.0223 (6)0.0014 (5)0.0039 (5)0.0018 (5)
C80.0223 (6)0.0222 (6)0.0220 (6)0.0010 (5)0.0028 (5)0.0000 (5)
C90.0196 (6)0.0209 (6)0.0214 (6)0.0018 (4)0.0025 (5)0.0007 (5)
C100.0283 (7)0.0267 (7)0.0329 (7)0.0080 (5)0.0006 (6)0.0005 (6)
C110.0366 (8)0.0209 (6)0.0335 (8)0.0024 (5)0.0016 (6)0.0023 (5)
C120.0265 (7)0.0257 (7)0.0359 (7)0.0052 (5)0.0021 (6)0.0010 (6)
O10.0205 (4)0.0212 (4)0.0296 (5)0.0020 (3)0.0004 (4)0.0000 (4)
O20.0287 (5)0.0271 (5)0.0439 (6)0.0075 (4)0.0030 (4)0.0006 (4)
Geometric parameters (Å, º) top
C1—C21.4421 (19)C8—C121.5042 (18)
C2—H20.9500C10—H10A0.9800
C2—C31.3465 (18)C10—H10B0.9800
C3—C41.4484 (18)C10—H10C0.9800
C3—C101.4979 (18)C11—H11A0.9800
C4—C51.3990 (18)C11—H11B0.9800
C4—C91.3964 (17)C11—H11C0.9800
C5—H50.9500C12—H12A0.9800
C5—C61.3788 (19)C12—H12B0.9800
C6—H60.9500C12—H12C0.9800
C6—C71.3994 (19)O1—C11.3739 (16)
C7—C81.3998 (18)O1—C91.3842 (15)
C7—C111.5067 (19)O2—C11.2163 (16)
C8—C91.3973 (18)
O1—C1—C2117.34 (11)C9—C8—C12120.26 (12)
O2—C1—C2125.95 (13)C4—C9—C8123.63 (11)
O2—C1—O1116.71 (12)O1—C9—C4120.83 (11)
C1—C2—H2118.8O1—C9—C8115.54 (11)
C3—C2—H2118.8H10A—C10—H10B109.5
C3—C2—C1122.43 (12)H10A—C10—H10C109.5
C2—C3—C4119.07 (12)H10B—C10—H10C109.5
C2—C3—C10120.99 (12)C3—C10—H10A109.5
C4—C3—C10119.94 (12)C3—C10—H10B109.5
C5—C4—C3124.33 (12)C3—C10—H10C109.5
C9—C4—C3118.45 (11)H11A—C11—H11B109.5
C9—C4—C5117.21 (12)H11A—C11—H11C109.5
C4—C5—H5119.7H11B—C11—H11C109.5
C6—C5—H5119.7C7—C11—H11A109.5
C6—C5—C4120.63 (12)C7—C11—H11B109.5
C5—C6—H6119.4C7—C11—H11C109.5
C5—C6—C7121.22 (12)H12A—C12—H12B109.5
C7—C6—H6119.4H12A—C12—H12C109.5
C6—C7—C8119.86 (12)H12B—C12—H12C109.5
C6—C7—C11119.76 (12)C8—C12—H12A109.5
C8—C7—C11120.39 (12)C8—C12—H12B109.5
C7—C8—C12122.29 (12)C8—C12—H12C109.5
C9—C8—C7117.45 (12)C1—O1—C9121.80 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.952.563.460 (2)159
C10—H10C···O2ii0.982.543.493 (2)164
Symmetry codes: (i) x+2, y, z+2; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC12H12O2
Mr188.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)153
a, b, c (Å)7.276 (3), 18.075 (6), 7.246 (3)
β (°) 97.055 (5)
V3)945.8 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.44 × 0.31 × 0.26
Data collection
DiffractometerRigaku AFC10/Saturn724+
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8545, 2747, 2176
Rint0.028
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.112, 1.00
No. of reflections2747
No. of parameters130
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.33

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009), SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.952.563.460 (2)159
C10—H10C···O2ii0.982.543.493 (2)164
Symmetry codes: (i) x+2, y, z+2; (ii) x1, y, z.
 

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (No. 20962007) and the Creative Talents Plan of the Hainan University 211 Project.

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGowda, R., Gowda, K. V. A., Basanagouda, M. & Kulkarni, M. V. (2010). Acta Cryst. E66, o3352.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPochet, L., Doucet, C., Schynts, M., Thierry, N., Boggeto, N., Pirotte, B., Jiang, K. Y., Masereel, B., Tulio, P. D., Delarge, J. & Reboud-Ravaux, M. (1996). J. Med. Chem. 39, 2579–2585.  CrossRef CAS PubMed Web of Science Google Scholar
First citationRendenbach-Müller, B., Schelcker, R., Traut, M. & Weifenbach, H. (1994). Bioorg. Med. Chem. Lett. 4, 1195–1198.  CrossRef Web of Science Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationShao, X., Ekstrand, D. H. L., Bhikhabhai, R., Kallander, C. F. R. & Gronowitz, J. S. (1997). Antivir. Chem. Chemother. 8, 149–159.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTanitame, A., Oyamada, Y., Ofuji, K., Kyoya, Y., Suzuki, K., Ito, H., Kawasaki, M., Nagai, K., Wachi, M. & Yamagishi, J. (2004). J. Med. Chem. 47, 3693–, 3696.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, L., Takeuchi, Y., Cosentino, L. M., McPhail, A. T. & Lee, K. H. (2001). J. Med. Chem. 44, 664–671.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds