organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-(7-oxo-3,5-di­phenyl-1,4-diaze­pan-2-yl)acetate

aDepartment of Physics, Dr MGR Educational and Research Institute, Dr MGR University, Chennai 600 095, India, bDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India, and cOrganic Chemistry Division, Central Leather Research Institute, Adyar, Chennai 600 020, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

(Received 3 February 2012; accepted 20 February 2012; online 10 March 2012)

In the title compound, C21H24N2O3, the diazepane ring adopts a chair conformation. The central diazepane ring forms dihedral angles 67.80 (7) and 72.29 (5)° with the two benzene rings. The eth­oxy­carbonyl group is disordered over two conformations with site-occupancy factors of 0.643 (5) and 0.357 (5). In the crystal, inversion dimers linked by pairs of N—H⋯O hydrogen bonds generate R22(8) loops.

Related literature

For general background to biological activities of diazepane derivatives, see: Hirokawa et al. (1998[Hirokawa, Y., Morie, T., Yamazaki, H., Yoshida, N. & Kato, S. (1998). Bioorg. Med. Chem. Lett. 8, 619-624.]). For a related structure, see: Ravichandran et al. (2009[Ravichandran, K., Ramesh, P., Sethuvasan, S., Ponnuswamy, S. & Ponnuswamy, M. N. (2009). Acta Cryst. E65, o2884.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C21H24N2O3

  • Mr = 352.42

  • Monoclinic, P 21 /c

  • a = 10.3721 (19) Å

  • b = 20.666 (4) Å

  • c = 9.1954 (18) Å

  • β = 104.365 (5)°

  • V = 1909.4 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.30 × 0.30 × 0.25 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker 2008[Bruker (2008). APEXII, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.976, Tmax = 0.980

  • 22045 measured reflections

  • 5000 independent reflections

  • 3284 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.163

  • S = 1.03

  • 5000 reflections

  • 259 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.88 (2) 1.97 (2) 2.846 (2) 174 (1)
Symmetry code: (i) -x+1, -y, -z-1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEXII, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEXII, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The 1,4-diazepane derivatives are of considerable importance due to their wide spectrum of biological activities (Hirokawa et al., 1998).

In the title molecule (Fig. 1), the central diazepane ring (C7–C11/N1/N2) forms dihedral angles 67.80 (7) and 72.29 (5)° with the two benzene rings (C1–C6) and (C12–C17), respectively; the dihedral angle between the two benzene rings is 55.96 (7)°. The sum of the bond angles around the N1 atom (362.9°) of the diazepane ring is in sp2 hybridization, whereas the other atom N2 (335.6°) is in sp3 hybridization.

The diazepane ring adopts a chair conformation with puckering parameters (Cremer & Pople, 1975) q2 = 0.45 (3) Å, q3 = 0.79 (2) Å, φ2= 36.8 (2)° and φ3= -157.5 (2)°. The title compound exhibits structural similarities with another closely related structure (Ravichandran et al., 2009).

The crystal packing is stabilized by N–H···O intermolecular interaction (Tab. 1 and Fig. 2) which results in a dimer which may be described as an R22(8) motif in the graphset notation (Bernstein et al., 1995).

The ethoxy carbonyl moiety is disordered with occupancy factors of 0.643 (5):0.357 (5).

Related literature top

For general background to biological activities of diazepane derivatives, see: Hirokawa et al. (1998). For a related structure, see: Ravichandran et al. (2009). For puckering parameters, see: Cremer & Pople (1975). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

Powdered ethyl 2-(4-oxo-2,6-diphenyl piperidin-3-yl)acetate hydrochloride (2 g) was dissolved in an ice cold conc. H2SO4 placed in a conical flask equipped with magnetic stirrer. After the complete dissolution, the temperature of the solution was brought to 298 K. Sodium azide (600 mg) was added in portions over a period of 20 minutes with vigorous stirring. The solution was then poured slowly on to crushed ice with vigorous stirring, and the pH was adjusted at approximately 8.0 using 4 N sodium hydroxide solution and extracted with chloroform. The combined organic layer was dried over sodium sulfate and evaporated to get the crude product. The crude product was purified by recrystallization from benzene and ethanol (1:1) to afford colourless prismatic crystals of the title compound suitable for X-ray crystallographic studies.

Refinement top

The ethoxy carbonyl moiety was disordered over the positions O2/C19/O3/C20/C21:O2'/C19'/O3'/C20'/C21' with site occupancy factors 0.643 (5):0.357 (5). The hydrogen atoms were placed in calculated positions with C–H = 0.93 to 0.98 Å and refined in the riding model with fixed isotropic displacement parameters: Uiso(H) = 1.5 Ueq(C) for methyl group and Uiso(H) = 1.2 Ueq(C) for other groups. The amino H-atom was allowed to refine freely.

Structure description top

The 1,4-diazepane derivatives are of considerable importance due to their wide spectrum of biological activities (Hirokawa et al., 1998).

In the title molecule (Fig. 1), the central diazepane ring (C7–C11/N1/N2) forms dihedral angles 67.80 (7) and 72.29 (5)° with the two benzene rings (C1–C6) and (C12–C17), respectively; the dihedral angle between the two benzene rings is 55.96 (7)°. The sum of the bond angles around the N1 atom (362.9°) of the diazepane ring is in sp2 hybridization, whereas the other atom N2 (335.6°) is in sp3 hybridization.

The diazepane ring adopts a chair conformation with puckering parameters (Cremer & Pople, 1975) q2 = 0.45 (3) Å, q3 = 0.79 (2) Å, φ2= 36.8 (2)° and φ3= -157.5 (2)°. The title compound exhibits structural similarities with another closely related structure (Ravichandran et al., 2009).

The crystal packing is stabilized by N–H···O intermolecular interaction (Tab. 1 and Fig. 2) which results in a dimer which may be described as an R22(8) motif in the graphset notation (Bernstein et al., 1995).

The ethoxy carbonyl moiety is disordered with occupancy factors of 0.643 (5):0.357 (5).

For general background to biological activities of diazepane derivatives, see: Hirokawa et al. (1998). For a related structure, see: Ravichandran et al. (2009). For puckering parameters, see: Cremer & Pople (1975). For graph-set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme, displacement ellipsoids are drawn at 30% probability level. H–atoms are present as small spheres of arbitary radius. The minor fraction of the disordered ethoxy carbonyl moiety has been represented by broken bonds.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down the a axis, showing hydrogen bonds resulting in R22(8) graph-set ring motif. H–atoms not involved in hydrogen bonds have been excluded for clarity.
Ethyl 2-(7-oxo-3,5-diphenyl-1,4-diazepan-2-yl)acetate top
Crystal data top
C21H24N2O3F(000) = 752
Mr = 352.42Dx = 1.226 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5000 reflections
a = 10.3721 (19) Åθ = 2.0–28.8°
b = 20.666 (4) ŵ = 0.08 mm1
c = 9.1954 (18) ÅT = 293 K
β = 104.365 (5)°Block, colourless
V = 1909.4 (6) Å30.30 × 0.30 × 0.25 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5000 independent reflections
Radiation source: fine-focus sealed tube3284 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω and φ scanθmax = 28.8°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker 2008)
h = 1412
Tmin = 0.976, Tmax = 0.980k = 2727
22045 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0669P)2 + 0.6968P]
where P = (Fo2 + 2Fc2)/3
5000 reflections(Δ/σ)max < 0.001
259 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C21H24N2O3V = 1909.4 (6) Å3
Mr = 352.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.3721 (19) ŵ = 0.08 mm1
b = 20.666 (4) ÅT = 293 K
c = 9.1954 (18) Å0.30 × 0.30 × 0.25 mm
β = 104.365 (5)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5000 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker 2008)
3284 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.980Rint = 0.029
22045 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.163H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.31 e Å3
5000 reflectionsΔρmin = 0.26 e Å3
259 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O20.8227 (16)0.0990 (16)0.341 (3)0.085 (2)0.643 (5)
O30.8931 (6)0.0099 (2)0.1768 (7)0.0628 (9)0.643 (5)
C190.8114 (11)0.0628 (7)0.2506 (9)0.0465 (12)0.643 (5)
C201.0024 (8)0.0023 (4)0.2420 (8)0.125 (2)0.643 (5)
H20A1.02140.03740.28890.150*0.643 (5)
H20B1.07980.01200.16110.150*0.643 (5)
C210.9894 (6)0.0484 (3)0.3406 (8)0.129 (2)0.643 (5)
H21A0.96940.08820.29710.193*0.643 (5)
H21B1.07090.05310.37130.193*0.643 (5)
H21C0.91840.03790.42620.193*0.643 (5)
O2'0.799 (3)0.092 (3)0.348 (6)0.085 (2)0.357 (5)
O3'0.8947 (13)0.0289 (5)0.2026 (14)0.0628 (9)0.357 (5)
C19'0.797 (2)0.0621 (15)0.223 (2)0.0465 (12)0.357 (5)
C20'0.9985 (16)0.0226 (9)0.2859 (16)0.125 (2)0.357 (5)
H20C0.96870.01000.36290.150*0.357 (5)
H20D1.00230.06330.33720.150*0.357 (5)
C21'1.1038 (13)0.0098 (6)0.2240 (14)0.129 (2)0.357 (5)
H21D1.13220.03760.13860.193*0.357 (5)
H21E1.16180.01520.28990.193*0.357 (5)
H21F1.10670.03440.19110.193*0.357 (5)
C10.0824 (2)0.22542 (12)0.4319 (4)0.0848 (9)
H10.04010.18540.44240.102*
C20.0089 (3)0.28135 (16)0.4741 (4)0.1085 (12)
H20.08250.27860.51390.130*
C30.0703 (3)0.34092 (13)0.4575 (3)0.0856 (8)
H30.02050.37820.48700.103*
C40.2037 (2)0.34509 (10)0.3979 (2)0.0626 (5)
H40.24520.38530.38460.075*
C50.27777 (19)0.28931 (9)0.3569 (2)0.0471 (4)
H50.36910.29250.31680.056*
C60.21829 (17)0.22904 (9)0.37441 (19)0.0440 (4)
C70.30111 (16)0.16807 (8)0.33946 (18)0.0408 (4)
H70.24340.13160.32990.049*
C80.36452 (19)0.15567 (9)0.47117 (18)0.0458 (4)
H8A0.29890.16500.56400.055*
H8B0.43760.18580.46360.055*
C90.41619 (18)0.08813 (9)0.48056 (19)0.0449 (4)
C100.58017 (16)0.10519 (8)0.23581 (17)0.0376 (3)
H100.61020.14600.27070.045*
C110.48458 (16)0.12102 (8)0.13579 (17)0.0373 (3)
H110.42710.08360.13360.045*
C120.55952 (16)0.13754 (8)0.02285 (17)0.0391 (4)
C130.62934 (19)0.19509 (9)0.0542 (2)0.0488 (4)
H130.62590.22520.02190.059*
C140.7041 (2)0.20809 (11)0.1978 (2)0.0631 (6)
H140.75090.24680.21750.076*
C150.7099 (2)0.16440 (12)0.3115 (2)0.0664 (6)
H150.76140.17320.40750.080*
C160.6394 (2)0.10777 (12)0.2830 (2)0.0618 (6)
H160.64170.07840.36020.074*
C170.56480 (19)0.09428 (10)0.1392 (2)0.0498 (4)
H170.51760.05560.12050.060*
C180.70240 (17)0.06669 (9)0.15516 (18)0.0441 (4)
H18A0.67540.02320.13610.053*
H18B0.74150.08680.05910.053*
N10.51362 (15)0.06727 (7)0.36699 (16)0.0446 (4)
H1A0.547 (2)0.0287 (11)0.377 (2)0.054*
N20.40150 (15)0.17695 (7)0.19801 (15)0.0419 (3)
H2A0.358 (2)0.1892 (10)0.130 (2)0.050*
O10.36881 (14)0.05339 (7)0.58997 (15)0.0643 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.050 (6)0.142 (7)0.066 (3)0.000 (5)0.023 (5)0.029 (4)
O30.0556 (9)0.074 (3)0.064 (2)0.031 (2)0.0251 (14)0.0246 (16)
C190.037 (3)0.0839 (15)0.023 (4)0.004 (2)0.0146 (19)0.003 (3)
C200.117 (3)0.177 (7)0.111 (5)0.098 (4)0.084 (4)0.075 (4)
C210.136 (5)0.134 (4)0.149 (5)0.038 (3)0.098 (4)0.013 (3)
O2'0.050 (6)0.142 (7)0.066 (3)0.000 (5)0.023 (5)0.029 (4)
O3'0.0556 (9)0.074 (3)0.064 (2)0.031 (2)0.0251 (14)0.0246 (16)
C19'0.037 (3)0.0839 (15)0.023 (4)0.004 (2)0.0146 (19)0.003 (3)
C20'0.117 (3)0.177 (7)0.111 (5)0.098 (4)0.084 (4)0.075 (4)
C21'0.136 (5)0.134 (4)0.149 (5)0.038 (3)0.098 (4)0.013 (3)
C10.0471 (12)0.0646 (14)0.126 (2)0.0075 (11)0.0103 (13)0.0144 (14)
C20.0544 (15)0.093 (2)0.151 (3)0.0259 (14)0.0247 (17)0.018 (2)
C30.0797 (17)0.0709 (16)0.0892 (18)0.0377 (14)0.0114 (14)0.0073 (13)
C40.0752 (14)0.0485 (11)0.0594 (12)0.0135 (10)0.0078 (10)0.0012 (9)
C50.0473 (10)0.0458 (9)0.0454 (9)0.0064 (8)0.0065 (8)0.0004 (7)
C60.0406 (9)0.0483 (9)0.0396 (8)0.0094 (7)0.0032 (7)0.0037 (7)
C70.0396 (8)0.0377 (8)0.0422 (8)0.0014 (7)0.0047 (7)0.0014 (6)
C80.0521 (10)0.0443 (9)0.0354 (8)0.0098 (8)0.0002 (7)0.0033 (7)
C90.0450 (9)0.0473 (9)0.0390 (8)0.0059 (8)0.0038 (7)0.0091 (7)
C100.0399 (8)0.0401 (8)0.0303 (7)0.0020 (7)0.0040 (6)0.0026 (6)
C110.0390 (8)0.0377 (8)0.0335 (7)0.0014 (6)0.0059 (6)0.0009 (6)
C120.0420 (9)0.0437 (9)0.0324 (7)0.0070 (7)0.0106 (6)0.0003 (6)
C130.0576 (11)0.0445 (9)0.0417 (9)0.0013 (8)0.0073 (8)0.0023 (7)
C140.0690 (14)0.0585 (12)0.0541 (11)0.0015 (10)0.0008 (10)0.0151 (9)
C150.0723 (14)0.0845 (16)0.0354 (9)0.0191 (12)0.0005 (9)0.0094 (10)
C160.0681 (13)0.0825 (15)0.0356 (9)0.0183 (12)0.0142 (9)0.0124 (9)
C170.0539 (11)0.0547 (10)0.0422 (9)0.0037 (9)0.0145 (8)0.0081 (8)
C180.0403 (9)0.0547 (10)0.0340 (8)0.0061 (8)0.0033 (7)0.0011 (7)
N10.0464 (8)0.0414 (8)0.0398 (7)0.0096 (6)0.0011 (6)0.0101 (6)
N20.0462 (8)0.0440 (8)0.0334 (7)0.0106 (6)0.0060 (6)0.0020 (6)
O10.0632 (9)0.0623 (8)0.0527 (8)0.0199 (7)0.0136 (6)0.0251 (6)
Geometric parameters (Å, º) top
O2—C191.14 (3)C6—C71.514 (2)
O3—C201.430 (8)C7—N21.462 (2)
O3—C191.445 (15)C7—C81.536 (2)
C19—C181.596 (7)C7—H70.9800
C20—C211.298 (11)C8—C91.505 (2)
C20—H20A0.9700C8—H8A0.9700
C20—H20B0.9700C8—H8B0.9700
C21—H21A0.9600C9—O11.234 (2)
C21—H21B0.9600C9—N11.332 (2)
C21—H21C0.9600C10—N11.460 (2)
O2'—C19'1.30 (5)C10—C181.524 (2)
O3'—C19'1.20 (3)C10—C111.545 (2)
O3'—C20'1.474 (16)C10—H100.9800
C19'—C181.294 (16)C11—N21.470 (2)
C20'—C21'1.130 (18)C11—C121.512 (2)
C20'—H20C0.9700C11—H110.9800
C20'—H20D0.9700C12—C171.385 (2)
C21'—H21D0.9600C12—C131.385 (3)
C21'—H21E0.9600C13—C141.382 (3)
C21'—H21F0.9600C13—H130.9300
C1—C61.379 (3)C14—C151.371 (3)
C1—C21.386 (4)C14—H140.9300
C1—H10.9300C15—C161.370 (3)
C2—C31.377 (4)C15—H150.9300
C2—H20.9300C16—C171.385 (3)
C3—C41.359 (3)C16—H160.9300
C3—H30.9300C17—H170.9300
C4—C51.385 (3)C18—H18A0.9700
C4—H40.9300C18—H18B0.9700
C5—C61.381 (3)N1—H1A0.88 (2)
C5—H50.9300N2—H2A0.89 (2)
C20—O3—C19111.8 (4)C7—C8—H8A108.4
O2—C19—O3132.9 (14)C9—C8—H8B108.4
O2—C19—C18125.4 (17)C7—C8—H8B108.4
O3—C19—C18101.1 (6)H8A—C8—H8B107.5
C21—C20—O3117.8 (8)O1—C9—N1121.47 (16)
C21—C20—H20A107.8O1—C9—C8120.70 (16)
O3—C20—H20A107.8N1—C9—C8117.83 (15)
C21—C20—H20B107.8N1—C10—C18106.70 (13)
O3—C20—H20B107.8N1—C10—C11111.32 (13)
H20A—C20—H20B107.2C18—C10—C11113.57 (13)
C19'—O3'—C20'131.8 (12)N1—C10—H10108.4
O3'—C19'—C18133 (2)C18—C10—H10108.4
O3'—C19'—O2'102 (2)C11—C10—H10108.4
C18—C19'—O2'124 (3)N2—C11—C12108.01 (13)
C21'—C20'—O3'119.9 (12)N2—C11—C10109.60 (13)
C21'—C20'—H20C107.4C12—C11—C10111.71 (13)
O3'—C20'—H20C107.4N2—C11—H11109.2
C21'—C20'—H20D107.4C12—C11—H11109.2
O3'—C20'—H20D107.4C10—C11—H11109.2
H20C—C20'—H20D106.9C17—C12—C13118.39 (16)
C20'—C21'—H21D109.5C17—C12—C11120.79 (16)
C20'—C21'—H21E109.5C13—C12—C11120.77 (15)
H21D—C21'—H21E109.5C14—C13—C12120.41 (18)
C20'—C21'—H21F109.5C14—C13—H13119.8
H21D—C21'—H21F109.5C12—C13—H13119.8
H21E—C21'—H21F109.5C15—C14—C13120.6 (2)
C6—C1—C2120.1 (2)C15—C14—H14119.7
C6—C1—H1120.0C13—C14—H14119.7
C2—C1—H1120.0C16—C15—C14119.77 (19)
C3—C2—C1120.5 (2)C16—C15—H15120.1
C3—C2—H2119.8C14—C15—H15120.1
C1—C2—H2119.8C15—C16—C17119.98 (19)
C4—C3—C2119.9 (2)C15—C16—H16120.0
C4—C3—H3120.1C17—C16—H16120.0
C2—C3—H3120.1C12—C17—C16120.88 (19)
C3—C4—C5119.8 (2)C12—C17—H17119.6
C3—C4—H4120.1C16—C17—H17119.6
C5—C4—H4120.1C19'—C18—C10116.5 (12)
C6—C5—C4121.16 (18)C10—C18—C19112.1 (5)
C6—C5—H5119.4C19'—C18—H18A107.9
C4—C5—H5119.4C10—C18—H18A109.2
C1—C6—C5118.56 (18)C19—C18—H18A109.2
C1—C6—C7120.55 (18)C19'—C18—H18B105.9
C5—C6—C7120.81 (15)C10—C18—H18B109.2
N2—C7—C6109.00 (13)C19—C18—H18B109.2
N2—C7—C8111.87 (14)H18A—C18—H18B107.9
C6—C7—C8107.62 (14)C9—N1—C10125.81 (15)
N2—C7—H7109.4C9—N1—H1A116.7 (13)
C6—C7—H7109.4C10—N1—H1A117.1 (13)
C8—C7—H7109.4C7—N2—C11117.82 (13)
C9—C8—C7115.33 (15)C7—N2—H2A106.8 (13)
C9—C8—H8A108.4C11—N2—H2A107.3 (13)
C20—O3—C19—O27 (3)C10—C11—C12—C1370.74 (19)
C20—O3—C19—C18178.8 (7)C17—C12—C13—C141.1 (3)
C19—O3—C20—C2197.5 (9)C11—C12—C13—C14176.07 (17)
C20'—O3'—C19'—C18177 (2)C12—C13—C14—C150.3 (3)
C20'—O3'—C19'—O2'3 (4)C13—C14—C15—C160.9 (3)
C19'—O3'—C20'—C21'149 (2)C14—C15—C16—C171.2 (3)
C6—C1—C2—C30.7 (5)C13—C12—C17—C160.8 (3)
C1—C2—C3—C40.7 (5)C11—C12—C17—C16176.38 (16)
C2—C3—C4—C51.3 (4)C15—C16—C17—C120.3 (3)
C3—C4—C5—C60.5 (3)O3'—C19'—C18—C10167 (2)
C2—C1—C6—C51.5 (4)O2'—C19'—C18—C105 (4)
C2—C1—C6—C7175.1 (3)O3'—C19'—C18—C19151 (26)
C4—C5—C6—C10.9 (3)O2'—C19'—C18—C1921 (22)
C4—C5—C6—C7175.72 (17)N1—C10—C18—C19'69.2 (14)
C1—C6—C7—N2139.3 (2)C11—C10—C18—C19'167.8 (14)
C5—C6—C7—N244.1 (2)N1—C10—C18—C1967.8 (6)
C1—C6—C7—C899.2 (2)C11—C10—C18—C19169.1 (6)
C5—C6—C7—C877.4 (2)O2—C19—C18—C19'140 (25)
N2—C7—C8—C977.82 (19)O3—C19—C18—C19'32 (23)
C6—C7—C8—C9162.47 (14)O2—C19—C18—C1024.1 (19)
C7—C8—C9—O1117.5 (2)O3—C19—C18—C10163.3 (5)
C7—C8—C9—N162.1 (2)O1—C9—N1—C10177.30 (18)
N1—C10—C11—N281.30 (16)C8—C9—N1—C103.1 (3)
C18—C10—C11—N2158.24 (14)C18—C10—N1—C9168.04 (17)
N1—C10—C11—C12159.02 (13)C11—C10—N1—C967.5 (2)
C18—C10—C11—C1238.57 (19)C6—C7—N2—C11174.23 (14)
N2—C11—C12—C17132.98 (17)C8—C7—N2—C1166.87 (19)
C10—C11—C12—C17106.41 (18)C12—C11—N2—C7168.61 (14)
N2—C11—C12—C1349.9 (2)C10—C11—N2—C769.48 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.88 (2)1.97 (2)2.846 (2)174 (1)
Symmetry code: (i) x+1, y, z1.

Experimental details

Crystal data
Chemical formulaC21H24N2O3
Mr352.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.3721 (19), 20.666 (4), 9.1954 (18)
β (°) 104.365 (5)
V3)1909.4 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.30 × 0.25
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker 2008)
Tmin, Tmax0.976, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
22045, 5000, 3284
Rint0.029
(sin θ/λ)max1)0.679
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.163, 1.03
No. of reflections5000
No. of parameters259
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.26

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.88 (2)1.97 (2)2.846 (2)174 (1)
Symmetry code: (i) x+1, y, z1.
 

Acknowledgements

GJ and KS thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the X-ray intensity data collection and Dr V. Murugan, Head of the Department of Physics, RKM Vivekananda College, Chennai, India, for providing facilities in the department to carry out this work.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEXII, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHirokawa, Y., Morie, T., Yamazaki, H., Yoshida, N. & Kato, S. (1998). Bioorg. Med. Chem. Lett. 8, 619–624.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRavichandran, K., Ramesh, P., Sethuvasan, S., Ponnuswamy, S. & Ponnuswamy, M. N. (2009). Acta Cryst. E65, o2884.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds