organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Methyl­sulfanyl-5,6-di­hydro-2H-1,3-di­thiolo[4,5-b][1,4]dioxin-2-ium tetra­fluoro­borate

aDepartment of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China, and bCollege of Chemical Engineering, Ningbo University of Technology, Ningbo 315016, People's Republic of China
*Correspondence e-mail: xzchen@zju.edu.cn

(Received 29 December 2011; accepted 7 February 2012; online 3 March 2012)

The title compound, C6H7O2S3+·BF4, consists of a planar 2-thioxo-1,3-dithiol-4,5-yl unit [maximum deviation from the ring plane = 0.020 (3) Å], with an ethyl­enedi­oxy group fused at the 4,5-positions; the ethyl­enedi­oxy C atoms are disordered over two positions with site-occupancy factors of 0.5. The 1,4-dioxine ring has a twist-chair conformation. Weak cation–anion S⋯F inter­actions [3.022 (4)–3.095 (4) Å] and an S⋯O [3.247 (4) Å] inter­action are present.

Related literature

For background on metal–organic coordination compounds, see: Chen et al. (2000[Chen, Z.-F., Xiong, R.-G., Zhang, J., Zuo, J.-L., You, X.-Z., Che, C.-M. & Fun, H.-K. (2000). J. Chem. Soc. Dalton Trans. pp. 4010-4012.]); Xiong et al. (1999[Xiong, R.-G., Zuo, J.-L., You, X.-Z., Fun, H.-K. & Raj, S. S. S. (1999). New J. Chem. 23, 1051-1052.]). For the preparation and crystal structure of a related compound, see: Han & Zhang (2010[Han, M. T. & Zhang, Y. (2010). Acta Cryst. E66, o1941.]); Kanchanadevi et al. (2010[Kanchanadevi, J., Dhayalan, V., Mohanakrishnan, A. K., Anbalagan, G., Chakkaravarthi, G. & Manivannan, V. (2010). Acta Cryst. E66, o3264-o3265.]).

[Scheme 1]

Experimental

Crystal data
  • C6H7O2S3+·BF4

  • Mr = 294.14

  • Monoclinic, P 21 /c

  • a = 10.7410 (13) Å

  • b = 10.1175 (10) Å

  • c = 10.1874 (11) Å

  • β = 94.488 (4)°

  • V = 1103.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.71 mm−1

  • T = 223 K

  • 0.40 × 0.35 × 0.35 mm

Data collection
  • Rigaku Saturn CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Private communication to Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.593, Tmax = 0.781

  • 6014 measured reflections

  • 2046 independent reflections

  • 1749 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.174

  • S = 1.07

  • 2046 reflections

  • 147 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.69 e Å−3

  • Δρmin = −0.55 e Å−3

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The construction of metal-organic coordination compounds has attracted much attention owing to potential functions, such as permittivity, fluorescence, magnetism and optical properties (Chen et al., 2000; Xiong et al., 1999). We report here the molecular and crystal structures of the title compound, 5,6-dihydro-2-(methylthio)-[1,3]dithiolo[4,5-b][1,4]dioxine tetrafluoroborate, I. In I, (Fig. 1), the inductive effects of the oxygen atoms makes the between C4 and C5 bond length longer (1.493Å). The C–S bond lengths range 1.681 (4)Å-1.723 (5)Å is small than that typical of C–S bond lengths, 1.82Å, suggesting a degree of conjugation in the dithiol-2-thione system. Both conformers of the disordered dioxane ring adopt half-chair conformations. In I, there are weak S···F interaction (3.095 (4)Å-3.022 (4)Å] and S···O (3.247 (4)Å). These interaction (cation-anion) in the crystal structure, forming a one-dimensional network, see (Fig. 2).

Related literature top

For background on metal–organic coordination compounds, see: Chen et al. (2000); Xiong et al. (1999). For the preparation and crystal structure of a related compound, see: Han & Zhang (2010); Kanchanadevi et al. (2010).

Experimental top

The 5,6-dihydro-[1,3]dithiolo[4,5-b][1,4]dioxine-2-thione dissolve in acetonitrile with [(CH3)3O]+×[BF4]- and get the yellow compound. Slow evaporation of the compound in a solution of THF gave single crystals suitable for X-ray analysis.

Refinement top

All the H atoms were placed in geometrically calculated positions, with C–H = 0.98Å (methylene) and 0.97Å (methyl) and Uiso(H) = 1.2 Ueq(C) (methylene) and 1.5 Ueq(C) (methyl), and refined using a riding model.

Structure description top

The construction of metal-organic coordination compounds has attracted much attention owing to potential functions, such as permittivity, fluorescence, magnetism and optical properties (Chen et al., 2000; Xiong et al., 1999). We report here the molecular and crystal structures of the title compound, 5,6-dihydro-2-(methylthio)-[1,3]dithiolo[4,5-b][1,4]dioxine tetrafluoroborate, I. In I, (Fig. 1), the inductive effects of the oxygen atoms makes the between C4 and C5 bond length longer (1.493Å). The C–S bond lengths range 1.681 (4)Å-1.723 (5)Å is small than that typical of C–S bond lengths, 1.82Å, suggesting a degree of conjugation in the dithiol-2-thione system. Both conformers of the disordered dioxane ring adopt half-chair conformations. In I, there are weak S···F interaction (3.095 (4)Å-3.022 (4)Å] and S···O (3.247 (4)Å). These interaction (cation-anion) in the crystal structure, forming a one-dimensional network, see (Fig. 2).

For background on metal–organic coordination compounds, see: Chen et al. (2000); Xiong et al. (1999). For the preparation and crystal structure of a related compound, see: Han & Zhang (2010); Kanchanadevi et al. (2010).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalStructure (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius. Only initial disordered C atoms are presented.
[Figure 2] Fig. 2. The crystal packing diagram view along c axis. Dashed lines indicate the weak interaction. Symmetry codes: (i) -x, -1/2+y, 1/2-z; (ii) x, -1+y, z; (iii) 1-x, 1-y, 1-z.
2-Methylsulfanyl-5,6-dihydro-2H-1,3-dithiolo[4,5-b][1,4]dioxin- 2-ium tetrafluoroborate top
Crystal data top
C6H7O2S3+·BF4F(000) = 592
Mr = 294.14Dx = 1.770 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ybcCell parameters from 2895 reflections
a = 10.7410 (13) Åθ = 3.3–27.5°
b = 10.1175 (10) ŵ = 0.71 mm1
c = 10.1874 (11) ÅT = 223 K
β = 94.488 (4)°Block, yellow
V = 1103.7 (2) Å30.40 × 0.35 × 0.35 mm
Z = 4
Data collection top
Rigaku Saturn CCD
diffractometer
2046 independent reflections
Radiation source: fine-focus sealed tube1749 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 14.63 pixels mm-1θmax = 25.5°, θmin = 3.3°
ω–scanh = 1213
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 1012
Tmin = 0.593, Tmax = 0.781l = 1112
6014 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.174H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0986P)2 + 1.5661P]
where P = (Fo2 + 2Fc2)/3
2046 reflections(Δ/σ)max < 0.001
147 parametersΔρmax = 0.69 e Å3
6 restraintsΔρmin = 0.55 e Å3
Crystal data top
C6H7O2S3+·BF4V = 1103.7 (2) Å3
Mr = 294.14Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.7410 (13) ŵ = 0.71 mm1
b = 10.1175 (10) ÅT = 223 K
c = 10.1874 (11) Å0.40 × 0.35 × 0.35 mm
β = 94.488 (4)°
Data collection top
Rigaku Saturn CCD
diffractometer
2046 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
1749 reflections with I > 2σ(I)
Tmin = 0.593, Tmax = 0.781Rint = 0.026
6014 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0636 restraints
wR(F2) = 0.174H-atom parameters constrained
S = 1.07Δρmax = 0.69 e Å3
2046 reflectionsΔρmin = 0.55 e Å3
147 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.15907 (11)0.25827 (11)0.56191 (12)0.0482 (4)
S20.26927 (10)0.49599 (10)0.46964 (11)0.0428 (3)
S30.02403 (10)0.39889 (11)0.34288 (10)0.0439 (3)
F10.1210 (3)0.8199 (4)0.4652 (3)0.0815 (11)
F20.3311 (4)0.7944 (4)0.4588 (5)0.1015 (14)
F30.2587 (4)0.9828 (4)0.5236 (5)0.0953 (13)
F40.2242 (5)0.9251 (8)0.3140 (4)0.161 (3)
O10.3475 (3)0.2304 (3)0.7435 (3)0.0566 (9)
O20.4604 (3)0.4681 (3)0.6479 (3)0.0528 (8)
C10.1508 (4)0.3871 (4)0.4559 (4)0.0368 (9)
C20.3004 (4)0.3043 (4)0.6403 (4)0.0427 (10)
C30.3528 (4)0.4142 (4)0.5960 (4)0.0388 (9)
C40.4786 (15)0.2727 (17)0.7661 (15)0.083 (3)0.50
H4A0.52510.24540.69160.099*0.50
H4B0.51690.23030.84570.099*0.50
C4'0.4634 (16)0.2771 (19)0.8065 (15)0.083 (3)0.50
H4'10.52780.21140.79170.099*0.50
H4'20.45480.28010.90150.099*0.50
C50.486 (2)0.4194 (17)0.7811 (18)0.083 (3)0.50
H5A0.42290.45140.83840.099*0.50
H5B0.56860.44690.81790.099*0.50
C5'0.509 (2)0.4054 (18)0.7666 (19)0.083 (3)0.50
H5'10.49640.46700.83870.099*0.50
H5'20.59910.39690.76160.099*0.50
C60.0632 (5)0.5445 (5)0.2538 (5)0.0603 (13)
H6A0.06310.62070.31170.091*
H6B0.00210.55750.17970.091*
H6C0.14540.53400.22210.091*
B10.2316 (5)0.8787 (6)0.4366 (6)0.0508 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0445 (7)0.0429 (6)0.0560 (7)0.0110 (4)0.0040 (5)0.0114 (5)
S20.0417 (6)0.0382 (6)0.0480 (6)0.0064 (4)0.0010 (5)0.0072 (4)
S30.0439 (6)0.0461 (6)0.0408 (6)0.0008 (5)0.0032 (5)0.0037 (4)
F10.059 (2)0.108 (3)0.078 (2)0.0333 (19)0.0133 (17)0.009 (2)
F20.073 (3)0.079 (2)0.152 (4)0.0122 (19)0.008 (3)0.008 (2)
F30.090 (3)0.071 (2)0.125 (3)0.0072 (19)0.005 (2)0.028 (2)
F40.094 (3)0.311 (8)0.073 (3)0.079 (4)0.022 (2)0.071 (4)
O10.051 (2)0.058 (2)0.059 (2)0.0042 (15)0.0088 (16)0.0206 (16)
O20.0385 (17)0.061 (2)0.0575 (19)0.0113 (15)0.0048 (15)0.0072 (15)
C10.039 (2)0.033 (2)0.038 (2)0.0008 (16)0.0050 (17)0.0016 (15)
C20.042 (2)0.042 (2)0.044 (2)0.0021 (18)0.0020 (18)0.0048 (18)
C30.033 (2)0.041 (2)0.042 (2)0.0013 (16)0.0003 (17)0.0028 (17)
C40.074 (5)0.097 (4)0.071 (5)0.025 (3)0.029 (4)0.035 (3)
C4'0.074 (5)0.097 (4)0.071 (5)0.025 (3)0.029 (4)0.035 (3)
C50.074 (5)0.097 (4)0.071 (5)0.025 (3)0.029 (4)0.035 (3)
C5'0.074 (5)0.097 (4)0.071 (5)0.025 (3)0.029 (4)0.035 (3)
C60.069 (3)0.057 (3)0.054 (3)0.007 (3)0.007 (2)0.013 (2)
B10.044 (3)0.054 (3)0.055 (3)0.005 (2)0.003 (2)0.002 (2)
Geometric parameters (Å, º) top
S1—C11.691 (4)O2—C51.450 (15)
S1—C21.723 (5)C2—C31.341 (6)
S2—C11.681 (4)C4—C51.493 (18)
S2—C31.723 (4)C4—H4A0.9800
S3—C11.717 (4)C4—H4B0.9800
S3—C61.797 (5)C4'—C5'1.456 (16)
F1—B11.379 (6)C4'—H4'10.9800
F2—B11.373 (7)C4'—H4'20.9800
F3—B11.392 (7)C5—H5A0.9800
F4—B11.332 (7)C5—H5B0.9800
O1—C21.356 (5)C5'—H5'10.9800
O1—C4'1.435 (13)C5'—H5'20.9800
O1—C41.473 (14)C6—H6A0.9700
O2—C31.347 (5)C6—H6B0.9700
O2—C5'1.427 (15)C6—H6C0.9700
C1—S1—C295.1 (2)O1—C4'—H4'2107.9
C1—S2—C395.4 (2)C5'—C4'—H4'2107.9
C1—S3—C6101.0 (2)H4'1—C4'—H4'2107.2
C2—O1—C4'115.0 (6)O2—C5—C4103.7 (14)
C2—O1—C4104.8 (6)O2—C5—H5A111.0
C4'—O1—C418.0 (12)C4—C5—H5A111.0
C3—O2—C5'113.3 (9)O2—C5—H5B111.0
C3—O2—C5108.7 (9)C4—C5—H5B111.0
C5'—O2—C513 (2)H5A—C5—H5B109.0
S2—C1—S1116.8 (3)O2—C5'—C4'121.7 (15)
S2—C1—S3124.5 (2)O2—C5'—H5'1106.9
S1—C1—S3118.8 (2)C4'—C5'—H5'1106.9
C3—C2—O1125.3 (4)O2—C5'—H5'2106.9
C3—C2—S1116.5 (3)C4'—C5'—H5'2106.9
O1—C2—S1118.2 (3)H5'1—C5'—H5'2106.7
C2—C3—O2125.0 (4)S3—C6—H6A109.5
C2—C3—S2116.2 (3)S3—C6—H6B109.5
O2—C3—S2118.6 (3)H6A—C6—H6B109.5
O1—C4—C5110.2 (18)S3—C6—H6C109.5
O1—C4—H4A109.6H6A—C6—H6C109.5
C5—C4—H4A109.6H6B—C6—H6C109.5
O1—C4—H4B109.6F4—B1—F2111.2 (5)
C5—C4—H4B109.6F4—B1—F1111.2 (5)
H4A—C4—H4B108.1F2—B1—F1111.7 (5)
O1—C4'—C5'117.8 (13)F4—B1—F3108.9 (5)
O1—C4'—H4'1107.9F2—B1—F3104.1 (5)
C5'—C4'—H4'1107.9F1—B1—F3109.4 (4)
C3—S2—C1—S11.2 (3)C5'—O2—C3—C26.9 (13)
C3—S2—C1—S3178.9 (3)C5—O2—C3—C220.1 (11)
C2—S1—C1—S20.6 (3)C5'—O2—C3—S2168.9 (12)
C2—S1—C1—S3179.5 (3)C5—O2—C3—S2155.7 (10)
C6—S3—C1—S22.2 (3)C1—S2—C3—C21.7 (4)
C6—S3—C1—S1177.9 (3)C1—S2—C3—O2177.8 (3)
C4'—O1—C2—C30.6 (12)C2—O1—C4—C553.2 (14)
C4—O1—C2—C316.3 (10)C4'—O1—C4—C574 (5)
C4'—O1—C2—S1178.1 (11)C2—O1—C4'—C5'8 (3)
C4—O1—C2—S1166.1 (8)C4—O1—C4'—C5'67 (4)
C1—S1—C2—C30.6 (4)C3—O2—C5—C453.0 (19)
C1—S1—C2—O1177.2 (4)C5'—O2—C5—C460 (6)
O1—C2—C3—O20.1 (7)O1—C4—C5—O275 (2)
S1—C2—C3—O2177.4 (3)C3—O2—C5'—C4'15 (3)
O1—C2—C3—S2176.0 (4)C5—O2—C5'—C4'87 (7)
S1—C2—C3—S21.5 (5)O1—C4'—C5'—O216 (4)

Experimental details

Crystal data
Chemical formulaC6H7O2S3+·BF4
Mr294.14
Crystal system, space groupMonoclinic, P21/c
Temperature (K)223
a, b, c (Å)10.7410 (13), 10.1175 (10), 10.1874 (11)
β (°) 94.488 (4)
V3)1103.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.71
Crystal size (mm)0.40 × 0.35 × 0.35
Data collection
DiffractometerRigaku Saturn CCD
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.593, 0.781
No. of measured, independent and
observed [I > 2σ(I)] reflections
6014, 2046, 1749
Rint0.026
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.174, 1.07
No. of reflections2046
No. of parameters147
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.69, 0.55

Computer programs: CrystalClear (Rigaku, 2005), CrystalStructure (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Inter­national Cooperation Fund of Ningbo city (grant No. 2009D10014).

References

First citationChen, Z.-F., Xiong, R.-G., Zhang, J., Zuo, J.-L., You, X.-Z., Che, C.-M. & Fun, H.-K. (2000). J. Chem. Soc. Dalton Trans. pp. 4010–4012.  Web of Science CrossRef Google Scholar
First citationHan, M. T. & Zhang, Y. (2010). Acta Cryst. E66, o1941.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJacobson, R. (1998). REQAB. Private communication to Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKanchanadevi, J., Dhayalan, V., Mohanakrishnan, A. K., Anbalagan, G., Chakkaravarthi, G. & Manivannan, V. (2010). Acta Cryst. E66, o3264–o3265.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2005). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiong, R.-G., Zuo, J.-L., You, X.-Z., Fun, H.-K. & Raj, S. S. S. (1999). New J. Chem. 23, 1051-1052.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds