organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6,6′-Dimeth­­oxy-2,2′-[(E,E′)-(2,4,6-tri­methyl-1,3-phenyl­ene)bis­­(nitrilo­methanylyl­­idene)]diphenol chloro­form monosolvate

aDepartment of Chemistry, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia, bDepartment of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43650 Bangi, Selangor, Malaysia, and cDepartment of Chemical Sciences, Faculty of Science and Technology, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
*Correspondence e-mail: mohdsukeri@umt.edu.my

(Received 8 March 2012; accepted 16 March 2012; online 24 March 2012)

In the title compound, C25H26N2O4·CHCl3, the aromatic rings of the imino­methyl-6-meth­oxy­phenol fragments make dihedral angles of 58.33 (6) and 87.74 (6)° with the central benzene ring. The mol­ecular conformation is stabilized by intra­molecular O—H⋯N hydrogen bonds. In the crystal, an inter­molecular C—H⋯O hydrogen bond involving the chloro­form solvent mol­ecule is observed. The crystal packing is further stabilized by ππ stacking inter­actions [centroid–centroid distances = 3.739 (3)–3.776 (3) Å] between the benzene rings of centrosymmetrically related mol­ecules.

Related literature

For a related structure, see: Yamin et al. (2009[Yamin, B. M., Bakar, S. N. A., Kassim, K. & Bahron, H. (2009). Acta Cryst. E65, o2573.]). For the synthetic procedure, see: Hernández-Molina et al. (1997[Hernández-Molina, R., Mederos, A., Gili, P., Domínguez, S., Lloret, F., Cano, J., Julve, M., Ruiz-Pérez, C. & Solans, X. (1997). J. Chem. Soc. Dalton Trans. pp. 4327-4334.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C25H26N2O4·CHCl3

  • Mr = 537.85

  • Triclinic, [P \overline 1]

  • a = 10.162 (2) Å

  • b = 10.486 (2) Å

  • c = 12.640 (3) Å

  • α = 99.315 (4)°

  • β = 93.140 (4)°

  • γ = 90.196 (4)°

  • V = 1327.0 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 298 K

  • 0.50 × 0.47 × 0.44 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.833, Tmax = 0.851

  • 14608 measured reflections

  • 4947 independent reflections

  • 3799 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.150

  • S = 1.04

  • 4947 reflections

  • 329 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.89 (3) 1.76 (4) 2.566 (3) 150 (3)
O3—H3⋯N2 0.87 (4) 1.83 (4) 2.618 (2) 150 (4)
C26—H26⋯O1i 0.98 2.16 3.071 (4) 154
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound is analogous to the previously reported compound 6,6'-Dimethoxy-2,2'-[(E,E')-(4-chloro-m-phenylene)bis(nitrilomethylidyne)]diphenol (Yamin et al., 2009) except for the presence of three methyl groups at positions 2, 4 and 6 and a solvate chloroform molecule (Fig. 1). The molecule exhibits a butterfly-like shape. The bond lengths are in the normal ranges (Allen et al., 1987) and comparable with those reported for similar molecules. One 2-iminomethyl-6-methoxyphenol wing (N1/C11—C17/O1/O2) is planar with a maximum deviation of 0.091 (4) Å for atom C17. The other wing (N2/C18—C25/O3/O4) is slightly twisted, with atom C25 deviating by 0.304 (4) Å. The central benzene ring (C1—C9) makes dihedral angle of 58.33 (6) and 87.74 (6) Å with N1/C11—C17/O1/O2 and O3/O4/C19—C24 wings, respectively. The dihedral angle between the two wings is 58.31 (10)°. There are two intramolecular O—H···N hydrogen bonds (Table 1) stabilizing the molecular conformation. In the crystal structure, weak intemolecular C—H···O hydrogen bonds are observed (Table 1) involving the chloroform solvated molecule (Fig. 2). The crystal packing is further stabilized by ππ stacking interactions occurring between centrosymmetrically-related molecules (Cg1···Cg1i = 3.776 (3) Å; Cg2···Cg2ii = 3.739 (3) Å; Cg1 and Cg2 are the centroids of the C19–C24 and C1–C6 rings, respectively (symmetry codes: (i) 1-x, -y, -z; (ii) 1-x, 1-y, 1-z).

Related literature top

For a related structure, see: Yamin et al. (2009). For the synthetic procedure, see: Hernández-Molina et al. (1997). For standard bond lengths, see: Allen et al. (1987).

Experimental top

The Schiff base was synthesized by refluxing in ethanol 2,4,6-trimetyhl-1,3-phenylenediamine (0.4507 g, 3.0 mmol) and (o-vanillin (0.9998 g,6.0mmol) for 5 h as previously described by Hernández-Molina et al. (1997). The solvent was then evaporated off under reduced pressure. The viscous solution obtained was left in room conditions for a week affording a solid product which was recrystallized from chloroform. The yellow single crystals obtained were suitable for X-ray crystallographic investigation. Yield 92%. Melting point: 417–421 K. Analytical calculation for C25H26N2O4 [3CH3-mpd(o -van)2]: C, 71.75; H, 6.26; N, 6.69. Found: C, 71.90; H, 6.42; N, 6.84. IR (cm-1): ν(C=N) 1611.7 (m), ν(C–O–C) 1253.9 (s), ν(C–OH) 1212.7 (w), ν(C–Cl) 1099.8 (w). 1H NMR (CDCl3, 300 MHz, p.p.m.): δ = 13.5027 (2H, s, OH), 8.364 (2H, s, HC=N), 7.061–6.898 (7H, m, H-Aryl), 3.975 (6H, s, OCH3), 2.208 (6H, s, CH3), 2.071 (3H, s, CH3).

Refinement top

H atoms on C were positioned geometrically with C—H = 0.93–0.96 Å, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C) where x = 1.5 for methyl H and x = 1.2 for aromatic H atoms. The hydroxy H atoms were located from a Fourier difference map and refined isotropically.

Structure description top

The title compound is analogous to the previously reported compound 6,6'-Dimethoxy-2,2'-[(E,E')-(4-chloro-m-phenylene)bis(nitrilomethylidyne)]diphenol (Yamin et al., 2009) except for the presence of three methyl groups at positions 2, 4 and 6 and a solvate chloroform molecule (Fig. 1). The molecule exhibits a butterfly-like shape. The bond lengths are in the normal ranges (Allen et al., 1987) and comparable with those reported for similar molecules. One 2-iminomethyl-6-methoxyphenol wing (N1/C11—C17/O1/O2) is planar with a maximum deviation of 0.091 (4) Å for atom C17. The other wing (N2/C18—C25/O3/O4) is slightly twisted, with atom C25 deviating by 0.304 (4) Å. The central benzene ring (C1—C9) makes dihedral angle of 58.33 (6) and 87.74 (6) Å with N1/C11—C17/O1/O2 and O3/O4/C19—C24 wings, respectively. The dihedral angle between the two wings is 58.31 (10)°. There are two intramolecular O—H···N hydrogen bonds (Table 1) stabilizing the molecular conformation. In the crystal structure, weak intemolecular C—H···O hydrogen bonds are observed (Table 1) involving the chloroform solvated molecule (Fig. 2). The crystal packing is further stabilized by ππ stacking interactions occurring between centrosymmetrically-related molecules (Cg1···Cg1i = 3.776 (3) Å; Cg2···Cg2ii = 3.739 (3) Å; Cg1 and Cg2 are the centroids of the C19–C24 and C1–C6 rings, respectively (symmetry codes: (i) 1-x, -y, -z; (ii) 1-x, 1-y, 1-z).

For a related structure, see: Yamin et al. (2009). For the synthetic procedure, see: Hernández-Molina et al. (1997). For standard bond lengths, see: Allen et al. (1987).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsods drawn at the 50% probability level. Intramolecular hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. A packing diagram of the title compound approximately viewed down the b axis. Intermolecular hydrogen bonds are shown as dashed lines.
6,6'-Dimethoxy-2,2'-[(E,E')-(2,4,6-trimethyl-1,3- phenylene)bis(nitrilomethanylylidene)]diphenol chloroform monosolvate top
Crystal data top
C25H26N2O4·CHCl3Z = 2
Mr = 537.85F(000) = 560
Triclinic, P1Dx = 1.346 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.162 (2) ÅCell parameters from 5967 reflections
b = 10.486 (2) Åθ = 2.0–25.5°
c = 12.640 (3) ŵ = 0.38 mm1
α = 99.315 (4)°T = 298 K
β = 93.140 (4)°Block, colourless
γ = 90.196 (4)°0.50 × 0.47 × 0.44 mm
V = 1327.0 (5) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4947 independent reflections
Radiation source: fine-focus sealed tube3799 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
Detector resolution: 83.66 pixels mm-1θmax = 25.5°, θmin = 2.0°
ω scanh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
k = 1212
Tmin = 0.833, Tmax = 0.851l = 1515
14608 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0709P)2 + 0.542P]
where P = (Fo2 + 2Fc2)/3
4947 reflections(Δ/σ)max < 0.001
329 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
C25H26N2O4·CHCl3γ = 90.196 (4)°
Mr = 537.85V = 1327.0 (5) Å3
Triclinic, P1Z = 2
a = 10.162 (2) ÅMo Kα radiation
b = 10.486 (2) ŵ = 0.38 mm1
c = 12.640 (3) ÅT = 298 K
α = 99.315 (4)°0.50 × 0.47 × 0.44 mm
β = 93.140 (4)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4947 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3799 reflections with I > 2σ(I)
Tmin = 0.833, Tmax = 0.851Rint = 0.017
14608 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.150H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.42 e Å3
4947 reflectionsΔρmin = 0.43 e Å3
329 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.03110 (10)0.62554 (11)0.86722 (8)0.1141 (4)
Cl20.27407 (11)0.52065 (10)0.93526 (9)0.1134 (3)
Cl30.12916 (12)0.69304 (10)1.08602 (7)0.1112 (4)
O10.66016 (19)0.17533 (16)0.16568 (15)0.0666 (5)
O20.78095 (19)0.01822 (19)0.02179 (15)0.0774 (5)
O30.24675 (16)0.87363 (16)0.38440 (18)0.0742 (6)
O40.12149 (18)1.08231 (16)0.3545 (2)0.0897 (7)
N10.47101 (18)0.21937 (16)0.29251 (15)0.0518 (4)
N20.24295 (18)0.62506 (16)0.38954 (16)0.0527 (4)
C10.4031 (2)0.28405 (19)0.47697 (18)0.0500 (5)
C20.3505 (2)0.3788 (2)0.55115 (18)0.0536 (5)
H20.35150.36650.62240.064*
C30.2966 (2)0.4910 (2)0.52441 (18)0.0512 (5)
C40.2981 (2)0.50847 (18)0.41760 (18)0.0473 (5)
C50.3573 (2)0.42049 (19)0.34071 (17)0.0492 (5)
C60.4070 (2)0.30635 (19)0.37139 (18)0.0474 (5)
C70.4551 (3)0.1628 (2)0.5135 (2)0.0662 (6)
H7A0.38970.09520.49670.099*
H7B0.47500.17940.58960.099*
H7C0.53360.13670.47740.099*
C80.2394 (3)0.5905 (2)0.6084 (2)0.0705 (7)
H8A0.14490.58730.59930.106*
H8B0.27070.67490.60100.106*
H8C0.26600.57260.67850.106*
C90.3669 (3)0.4462 (2)0.2278 (2)0.0721 (7)
H9A0.28970.41230.18510.108*
H9B0.44370.40500.19770.108*
H9C0.37350.53760.22830.108*
C100.4370 (2)0.1001 (2)0.26946 (18)0.0520 (5)
H100.36650.06980.30270.062*
C110.5068 (2)0.0109 (2)0.19195 (18)0.0515 (5)
C120.6140 (2)0.0524 (2)0.14253 (18)0.0529 (5)
C130.6780 (2)0.0339 (2)0.06563 (19)0.0599 (6)
C140.6338 (3)0.1596 (2)0.0417 (2)0.0716 (7)
H140.67580.21750.00890.086*
C150.5280 (3)0.2015 (2)0.0915 (2)0.0767 (8)
H150.49980.28720.07450.092*
C160.4642 (3)0.1179 (2)0.1656 (2)0.0655 (6)
H160.39270.14670.19850.079*
C170.8454 (3)0.0624 (4)0.0602 (3)0.1006 (11)
H17A0.88500.13340.03150.151*
H17B0.91250.01340.08700.151*
H17C0.78240.09490.11770.151*
C180.1223 (2)0.6255 (2)0.36095 (18)0.0513 (5)
H180.07490.54830.35330.062*
C190.0532 (2)0.7410 (2)0.33923 (17)0.0498 (5)
C200.0803 (2)0.7342 (3)0.3063 (2)0.0689 (7)
H200.12440.65490.29570.083*
C210.1466 (3)0.8424 (3)0.2894 (3)0.0801 (8)
H210.23530.83640.26660.096*
C220.0827 (3)0.9608 (3)0.3060 (2)0.0720 (7)
H220.12901.03460.29560.086*
C230.0486 (2)0.9705 (2)0.3378 (2)0.0595 (6)
C240.1182 (2)0.8603 (2)0.35432 (18)0.0499 (5)
C250.0571 (3)1.1989 (3)0.3692 (3)0.0928 (10)
H25A0.00831.20920.30400.139*
H25B0.12051.26810.38800.139*
H25C0.00231.20050.42590.139*
C260.1719 (3)0.6559 (3)0.9533 (2)0.0741 (7)
H260.21960.72990.93490.089*
H30.275 (3)0.797 (4)0.392 (3)0.109 (11)*
H10.605 (3)0.218 (3)0.210 (3)0.101 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1134 (7)0.1233 (8)0.0967 (6)0.0259 (6)0.0080 (5)0.0049 (5)
Cl20.1231 (8)0.1002 (7)0.1177 (7)0.0351 (6)0.0131 (6)0.0177 (5)
Cl30.1584 (9)0.1091 (7)0.0672 (5)0.0003 (6)0.0309 (5)0.0097 (4)
O10.0770 (12)0.0468 (9)0.0746 (11)0.0004 (8)0.0250 (9)0.0016 (8)
O20.0793 (12)0.0798 (12)0.0697 (11)0.0162 (10)0.0216 (9)0.0039 (9)
O30.0490 (9)0.0427 (9)0.1321 (17)0.0056 (7)0.0044 (9)0.0210 (10)
O40.0635 (11)0.0417 (9)0.167 (2)0.0105 (8)0.0093 (12)0.0248 (11)
N10.0546 (10)0.0388 (9)0.0620 (11)0.0110 (8)0.0091 (8)0.0065 (8)
N20.0534 (11)0.0344 (9)0.0710 (12)0.0073 (7)0.0058 (9)0.0095 (8)
C10.0467 (11)0.0418 (11)0.0622 (13)0.0061 (9)0.0012 (10)0.0108 (9)
C20.0590 (13)0.0491 (12)0.0537 (12)0.0043 (10)0.0039 (10)0.0112 (10)
C30.0528 (12)0.0405 (11)0.0595 (13)0.0037 (9)0.0080 (10)0.0035 (9)
C40.0465 (11)0.0322 (10)0.0632 (13)0.0035 (8)0.0039 (9)0.0075 (9)
C50.0522 (12)0.0391 (10)0.0570 (12)0.0042 (9)0.0063 (9)0.0086 (9)
C60.0442 (11)0.0361 (10)0.0611 (13)0.0061 (8)0.0058 (9)0.0048 (9)
C70.0717 (16)0.0554 (14)0.0740 (16)0.0197 (12)0.0027 (12)0.0193 (12)
C80.0881 (18)0.0522 (14)0.0700 (16)0.0146 (12)0.0194 (14)0.0012 (12)
C90.099 (2)0.0565 (14)0.0644 (15)0.0228 (13)0.0172 (14)0.0164 (12)
C100.0503 (12)0.0442 (12)0.0611 (13)0.0078 (9)0.0026 (10)0.0078 (10)
C110.0571 (13)0.0389 (11)0.0565 (12)0.0099 (9)0.0030 (10)0.0041 (9)
C120.0609 (13)0.0429 (11)0.0531 (12)0.0129 (10)0.0018 (10)0.0043 (9)
C130.0659 (15)0.0569 (14)0.0540 (13)0.0201 (11)0.0001 (11)0.0014 (10)
C140.0876 (19)0.0573 (15)0.0625 (15)0.0236 (13)0.0011 (14)0.0115 (12)
C150.095 (2)0.0425 (13)0.0849 (19)0.0075 (13)0.0076 (16)0.0082 (12)
C160.0721 (16)0.0461 (13)0.0753 (16)0.0021 (11)0.0032 (13)0.0034 (11)
C170.082 (2)0.125 (3)0.082 (2)0.0240 (19)0.0192 (16)0.0254 (19)
C180.0572 (13)0.0373 (10)0.0595 (13)0.0008 (9)0.0072 (10)0.0066 (9)
C190.0520 (12)0.0442 (11)0.0544 (12)0.0071 (9)0.0059 (9)0.0102 (9)
C200.0565 (14)0.0592 (14)0.0923 (19)0.0024 (11)0.0047 (13)0.0196 (13)
C210.0532 (14)0.0771 (18)0.113 (2)0.0059 (13)0.0115 (14)0.0308 (16)
C220.0593 (15)0.0619 (15)0.101 (2)0.0180 (12)0.0056 (14)0.0310 (14)
C230.0548 (13)0.0452 (12)0.0817 (16)0.0100 (10)0.0116 (11)0.0177 (11)
C240.0452 (11)0.0457 (11)0.0603 (13)0.0090 (9)0.0083 (9)0.0109 (9)
C250.086 (2)0.0506 (15)0.141 (3)0.0160 (14)0.0102 (19)0.0142 (17)
C260.0911 (19)0.0671 (16)0.0665 (16)0.0008 (14)0.0179 (14)0.0136 (13)
Geometric parameters (Å, º) top
Cl1—C261.745 (3)C9—H9B0.9600
Cl2—C261.753 (3)C9—H9C0.9600
Cl3—C261.738 (3)C10—C111.457 (3)
O1—C121.351 (3)C10—H100.9300
O1—H10.89 (4)C11—C121.388 (3)
O2—C131.363 (3)C11—C161.399 (3)
O2—C171.419 (3)C12—C131.406 (3)
O3—C241.340 (3)C13—C141.372 (4)
O3—H30.88 (4)C14—C151.380 (4)
O4—C231.366 (3)C14—H140.9300
O4—C251.379 (3)C15—C161.368 (4)
N1—C101.280 (3)C15—H150.9300
N1—C61.425 (3)C16—H160.9300
N2—C181.259 (3)C17—H17A0.9600
N2—C41.435 (3)C17—H17B0.9600
C1—C21.381 (3)C17—H17C0.9600
C1—C61.394 (3)C18—C191.458 (3)
C1—C71.509 (3)C18—H180.9300
C2—C31.383 (3)C19—C241.394 (3)
C2—H20.9300C19—C201.395 (3)
C3—C41.392 (3)C20—C211.362 (4)
C3—C81.505 (3)C20—H200.9300
C4—C51.391 (3)C21—C221.380 (4)
C5—C61.404 (3)C21—H210.9300
C5—C91.503 (3)C22—C231.370 (3)
C7—H7A0.9600C22—H220.9300
C7—H7B0.9600C23—C241.396 (3)
C7—H7C0.9600C25—H25A0.9600
C8—H8A0.9600C25—H25B0.9600
C8—H8B0.9600C25—H25C0.9600
C8—H8C0.9600C26—H260.9800
C9—H9A0.9600
C12—O1—H1106 (2)O2—C13—C14126.2 (2)
C13—O2—C17117.6 (2)O2—C13—C12114.9 (2)
C24—O3—H3107 (2)C14—C13—C12118.9 (2)
C23—O4—C25118.9 (2)C13—C14—C15121.0 (2)
C10—N1—C6121.59 (19)C13—C14—H14119.5
C18—N2—C4118.54 (18)C15—C14—H14119.5
C2—C1—C6117.92 (19)C16—C15—C14120.5 (2)
C2—C1—C7119.0 (2)C16—C15—H15119.7
C6—C1—C7123.0 (2)C14—C15—H15119.7
C1—C2—C3123.1 (2)C15—C16—C11119.9 (3)
C1—C2—H2118.5C15—C16—H16120.0
C3—C2—H2118.5C11—C16—H16120.0
C2—C3—C4117.53 (19)O2—C17—H17A109.5
C2—C3—C8120.8 (2)O2—C17—H17B109.5
C4—C3—C8121.6 (2)H17A—C17—H17B109.5
C5—C4—C3121.95 (18)O2—C17—H17C109.5
C5—C4—N2120.19 (19)H17A—C17—H17C109.5
C3—C4—N2117.76 (18)H17B—C17—H17C109.5
C4—C5—C6118.1 (2)N2—C18—C19123.36 (19)
C4—C5—C9121.06 (19)N2—C18—H18118.3
C6—C5—C9120.87 (19)C19—C18—H18118.3
C1—C6—C5121.22 (19)C24—C19—C20119.0 (2)
C1—C6—N1121.34 (18)C24—C19—C18120.59 (19)
C5—C6—N1117.24 (19)C20—C19—C18120.4 (2)
C1—C7—H7A109.5C21—C20—C19120.7 (2)
C1—C7—H7B109.5C21—C20—H20119.7
H7A—C7—H7B109.5C19—C20—H20119.7
C1—C7—H7C109.5C20—C21—C22120.3 (2)
H7A—C7—H7C109.5C20—C21—H21119.9
H7B—C7—H7C109.5C22—C21—H21119.9
C3—C8—H8A109.5C23—C22—C21120.4 (2)
C3—C8—H8B109.5C23—C22—H22119.8
H8A—C8—H8B109.5C21—C22—H22119.8
C3—C8—H8C109.5O4—C23—C22125.1 (2)
H8A—C8—H8C109.5O4—C23—C24114.9 (2)
H8B—C8—H8C109.5C22—C23—C24120.0 (2)
C5—C9—H9A109.5O3—C24—C19122.20 (18)
C5—C9—H9B109.5O3—C24—C23118.2 (2)
H9A—C9—H9B109.5C19—C24—C23119.6 (2)
C5—C9—H9C109.5O4—C25—H25A109.5
H9A—C9—H9C109.5O4—C25—H25B109.5
H9B—C9—H9C109.5H25A—C25—H25B109.5
N1—C10—C11121.1 (2)O4—C25—H25C109.5
N1—C10—H10119.5H25A—C25—H25C109.5
C11—C10—H10119.5H25B—C25—H25C109.5
C12—C11—C16119.4 (2)Cl3—C26—Cl1110.58 (17)
C12—C11—C10120.85 (19)Cl3—C26—Cl2110.98 (16)
C16—C11—C10119.7 (2)Cl1—C26—Cl2109.26 (16)
O1—C12—C11121.96 (19)Cl3—C26—H26108.7
O1—C12—C13117.9 (2)Cl1—C26—H26108.7
C11—C12—C13120.2 (2)Cl2—C26—H26108.7
C6—C1—C2—C33.1 (3)C17—O2—C13—C143.3 (4)
C7—C1—C2—C3177.8 (2)C17—O2—C13—C12176.9 (2)
C1—C2—C3—C41.0 (3)O1—C12—C13—O20.5 (3)
C1—C2—C3—C8179.3 (2)C11—C12—C13—O2179.3 (2)
C2—C3—C4—C53.3 (3)O1—C12—C13—C14179.3 (2)
C8—C3—C4—C5176.4 (2)C11—C12—C13—C140.9 (3)
C2—C3—C4—N2179.66 (19)O2—C13—C14—C15180.0 (2)
C8—C3—C4—N20.0 (3)C12—C13—C14—C150.3 (4)
C18—N2—C4—C593.5 (3)C13—C14—C15—C160.4 (4)
C18—N2—C4—C390.1 (3)C14—C15—C16—C110.4 (4)
C3—C4—C5—C65.2 (3)C12—C11—C16—C150.2 (3)
N2—C4—C5—C6178.49 (19)C10—C11—C16—C15178.8 (2)
C3—C4—C5—C9175.3 (2)C4—N2—C18—C19174.8 (2)
N2—C4—C5—C91.0 (3)N2—C18—C19—C243.0 (3)
C2—C1—C6—C51.0 (3)N2—C18—C19—C20179.1 (2)
C7—C1—C6—C5179.9 (2)C24—C19—C20—C210.2 (4)
C2—C1—C6—N1173.84 (19)C18—C19—C20—C21177.7 (3)
C7—C1—C6—N15.2 (3)C19—C20—C21—C220.8 (5)
C4—C5—C6—C13.0 (3)C20—C21—C22—C231.2 (5)
C9—C5—C6—C1177.5 (2)C25—O4—C23—C2218.3 (4)
C4—C5—C6—N1178.06 (18)C25—O4—C23—C24162.4 (3)
C9—C5—C6—N12.4 (3)C21—C22—C23—O4178.7 (3)
C10—N1—C6—C158.0 (3)C21—C22—C23—C240.5 (4)
C10—N1—C6—C5126.9 (2)C20—C19—C24—O3179.0 (2)
C6—N1—C10—C11177.39 (19)C18—C19—C24—O33.0 (3)
N1—C10—C11—C121.3 (3)C20—C19—C24—C230.9 (3)
N1—C10—C11—C16177.7 (2)C18—C19—C24—C23177.1 (2)
C16—C11—C12—O1179.3 (2)O4—C23—C24—O30.1 (3)
C10—C11—C12—O11.7 (3)C22—C23—C24—O3179.4 (2)
C16—C11—C12—C130.8 (3)O4—C23—C24—C19179.9 (2)
C10—C11—C12—C13178.2 (2)C22—C23—C24—C190.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.89 (3)1.76 (4)2.566 (3)150 (3)
O3—H3···N20.87 (4)1.83 (4)2.618 (2)150 (4)
C26—H26···O1i0.982.163.071 (4)154
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC25H26N2O4·CHCl3
Mr537.85
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)10.162 (2), 10.486 (2), 12.640 (3)
α, β, γ (°)99.315 (4), 93.140 (4), 90.196 (4)
V3)1327.0 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.38
Crystal size (mm)0.50 × 0.47 × 0.44
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.833, 0.851
No. of measured, independent and
observed [I > 2σ(I)] reflections
14608, 4947, 3799
Rint0.017
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.150, 1.04
No. of reflections4947
No. of parameters329
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.43

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.89 (3)1.76 (4)2.566 (3)150 (3)
O3—H3···N20.87 (4)1.83 (4)2.618 (2)150 (4)
C26—H26···O1i0.982.163.071 (4)154
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors wish to thank Universiti Teknologi MARA, Universiti Malaysia Terengganu and Universiti Kebangsaan Malaysia for the research facilities and the Ministry of Higher Education Malaysia for the research grant FRGS UiTM 5/3/FST/(12/2008).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHernández-Molina, R., Mederos, A., Gili, P., Domínguez, S., Lloret, F., Cano, J., Julve, M., Ruiz-Pérez, C. & Solans, X. (1997). J. Chem. Soc. Dalton Trans. pp. 4327–4334.  CSD CrossRef Web of Science Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamin, B. M., Bakar, S. N. A., Kassim, K. & Bahron, H. (2009). Acta Cryst. E65, o2573.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds