organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(4-Di­ethyl­amino-2-hy­dr­oxy­benzyl­­idene)-4-methyl­benzohydrazide

aDepartment of Chemistry, Hebei Normal University of Science and Technology, Qinhuangdao 066600, People's Republic of China
*Correspondence e-mail: zhaofu_zhu@163.com

(Received 5 March 2012; accepted 11 March 2012; online 17 March 2012)

The title compound, C19H23N3O2, was prepared by condensing 4-diethyl­amino-2-hy­droxy­benzaldehyde and 4-methyl­benzo­hydrazide in methanol. The asymmetric unit contains two independent mol­ecules in which the two benzene rings make dihedral angles of 30.3 (3) and 18.9 (3)°. Intra­molecular O—H⋯N hydrogen bonds are observed in both mol­ecules. The crystal structure is stabilized by N—H⋯O hydrogen bonds, which form chains along the a axis.

Related literature

For the structures of similar hydrazone compounds, see: Fun et al. (2011[Fun, H.-K., Horkaew, J. & Chantrapromma, S. (2011). Acta Cryst. E67, o2644-o2645.]); Horkaew et al. (2011[Horkaew, J., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o2985.]); Zhi et al. (2011[Zhi, F., Wang, R., Zhang, Y., Wang, Q. & Yang, Y.-L. (2011). Acta Cryst. E67, o2825.]); Huang & Wu (2010[Huang, H.-T. & Wu, H.-Y. (2010). Acta Cryst. E66, o2729-o2730.]); Shen et al. (2012[Shen, X.-H., Zhu, L.-X., Shao, L.-J. & Zhu, Z.-F. (2012). Acta Cryst. E68, o297.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C19H23N3O2

  • Mr = 325.40

  • Triclinic, [P \overline 1]

  • a = 9.923 (2) Å

  • b = 11.963 (2) Å

  • c = 15.827 (2) Å

  • α = 95.269 (2)°

  • β = 98.932 (2)°

  • γ = 103.691 (2)°

  • V = 1787.0 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.13 × 0.10 × 0.08 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.990, Tmax = 0.994

  • 13230 measured reflections

  • 6512 independent reflections

  • 1651 reflections with I > 2σ(I)

  • Rint = 0.137

Refinement
  • R[F2 > 2σ(F2)] = 0.086

  • wR(F2) = 0.245

  • S = 0.85

  • 6512 reflections

  • 449 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O4i 0.90 (1) 1.95 (2) 2.831 (7) 167 (6)
O1—H1⋯N1 0.82 1.93 2.641 (7) 145
N5—H5⋯O2 0.90 (1) 2.12 (2) 2.985 (7) 160 (6)
O3—H3⋯N4 0.85 (1) 1.94 (1) 2.581 (7) 132 (2)
Symmetry code: (i) x+1, y, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the last few years, a number of hydrazone compounds have been reported (Fun et al., 2011; Horkaew et al., 2011; Zhi et al., 2011; Huang & Wu, 2010). As an extension of our work on such compounds (Shen et al., 2012), we report here the structure of a new benzohydrazide compound, (I).

The asymmetric unit of the compound contains two independent molecules (Fig.1) both of which form intramolecular O—H···N hydrogen bonds (Table 1). The dihedral angle between the C7-N1-N2-C8-O2 plane and the C1—C6 benzene ring is 15.4 (2)° while that between the C26-N4-N5-C27-O4 section of the molecule and the C20—C25 benzene ring is 5.8 (2)°. The planarity of these portions of the molecule may result from the formation of intramolecular O—H···N hydrogen bonds. All the bond distances are within normal ranges (Allen et al., 1987) and comparable with those in the similar compounds reported recently and mentioned previously. The crystal structure of the compound is stabilized by intermolecular N—H···O hydrogen bonds, to form chains along the a axis (Table 1, Fig. 2).

Related literature top

For the structures of similar hydrazone compounds, see: Fun et al. (2011); Horkaew et al. (2011); Zhi et al. (2011); Huang & Wu (2010); Shen et al. (2012). For standard bond lengths, see: Allen et al. (1987).

Experimental top

2-Hydroxy-4-diethylaminobenzaldehyde (193.0 mg, 1.0 mmol) and 4-methylbenzohydrazide (150.1 mg, 1.0 mmol) were mixed in methanol (60 ml). The mixture was refluxed for 30 min, then cooled to room temperature, yielding a colorless solution. Small, colorless crystals were formed when the solution was evaporated in air for several days.

Refinement top

Hydrogen atoms bound to N and O were located in a difference Fourier map and refined isotropically, with N—H and O—H distances restrained to 0.90 (1) and 0.85 (1) Å. The remaining H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93–0.97 Å, and with Uiso(H) set at 1.2Ueq(C) and 1.5Ueq(methyl C). High atomic displacement parameters for atom C16 indicated possible disorder. However a suitable model could not be developed and bond distances within the N3 C16 C17 unit were constrained using DFIX. Crystals were very small and weakly diffracting, which results in a very low ratio of observed/unique reflections.

Structure description top

In the last few years, a number of hydrazone compounds have been reported (Fun et al., 2011; Horkaew et al., 2011; Zhi et al., 2011; Huang & Wu, 2010). As an extension of our work on such compounds (Shen et al., 2012), we report here the structure of a new benzohydrazide compound, (I).

The asymmetric unit of the compound contains two independent molecules (Fig.1) both of which form intramolecular O—H···N hydrogen bonds (Table 1). The dihedral angle between the C7-N1-N2-C8-O2 plane and the C1—C6 benzene ring is 15.4 (2)° while that between the C26-N4-N5-C27-O4 section of the molecule and the C20—C25 benzene ring is 5.8 (2)°. The planarity of these portions of the molecule may result from the formation of intramolecular O—H···N hydrogen bonds. All the bond distances are within normal ranges (Allen et al., 1987) and comparable with those in the similar compounds reported recently and mentioned previously. The crystal structure of the compound is stabilized by intermolecular N—H···O hydrogen bonds, to form chains along the a axis (Table 1, Fig. 2).

For the structures of similar hydrazone compounds, see: Fun et al. (2011); Horkaew et al. (2011); Zhi et al. (2011); Huang & Wu (2010); Shen et al. (2012). For standard bond lengths, see: Allen et al. (1987).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal structure of (I). Hydrogen bonds are drawn as dashed lines.
N'-(4-Diethylamino-2-hydroxybenzylidene)-4-methylbenzohydrazide top
Crystal data top
C19H23N3O2Z = 4
Mr = 325.40F(000) = 696
Triclinic, P1Dx = 1.209 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.923 (2) ÅCell parameters from 358 reflections
b = 11.963 (2) Åθ = 2.3–23.7°
c = 15.827 (2) ŵ = 0.08 mm1
α = 95.269 (2)°T = 298 K
β = 98.932 (2)°Block, colorless
γ = 103.691 (2)°0.13 × 0.10 × 0.08 mm
V = 1787.0 (5) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
6512 independent reflections
Radiation source: fine-focus sealed tube1651 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.137
ω scansθmax = 25.5°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1212
Tmin = 0.990, Tmax = 0.994k = 1414
13230 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.086Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.245H atoms treated by a mixture of independent and constrained refinement
S = 0.85 w = 1/[σ2(Fo2) + (0.0734P)2]
where P = (Fo2 + 2Fc2)/3
6512 reflections(Δ/σ)max = 0.002
449 parametersΔρmax = 0.35 e Å3
7 restraintsΔρmin = 0.30 e Å3
Crystal data top
C19H23N3O2γ = 103.691 (2)°
Mr = 325.40V = 1787.0 (5) Å3
Triclinic, P1Z = 4
a = 9.923 (2) ÅMo Kα radiation
b = 11.963 (2) ŵ = 0.08 mm1
c = 15.827 (2) ÅT = 298 K
α = 95.269 (2)°0.13 × 0.10 × 0.08 mm
β = 98.932 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6512 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1651 reflections with I > 2σ(I)
Tmin = 0.990, Tmax = 0.994Rint = 0.137
13230 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0867 restraints
wR(F2) = 0.245H atoms treated by a mixture of independent and constrained refinement
S = 0.85Δρmax = 0.35 e Å3
6512 reflectionsΔρmin = 0.30 e Å3
449 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.9155 (5)0.6833 (5)0.8899 (4)0.0555 (16)
N20.9803 (6)0.7347 (5)0.9734 (4)0.0548 (16)
N30.7708 (8)0.4048 (6)0.5086 (4)0.091 (3)
N40.4397 (6)0.6246 (5)0.9527 (3)0.0497 (15)
N50.4905 (5)0.7327 (5)1.0014 (4)0.0465 (14)
N60.3516 (6)0.1601 (5)0.6941 (4)0.0610 (17)
O10.7408 (5)0.6651 (4)0.7424 (3)0.0652 (14)
H10.76760.68230.79470.098*
O20.7941 (5)0.8102 (4)0.9873 (3)0.0597 (14)
O30.2415 (5)0.4445 (4)0.8802 (3)0.0631 (14)
O40.2712 (5)0.7437 (4)1.0126 (3)0.0649 (15)
C10.9216 (7)0.5602 (6)0.7634 (4)0.0473 (18)
C20.8067 (8)0.5856 (6)0.7119 (4)0.0526 (19)
C30.7584 (7)0.5351 (6)0.6274 (5)0.059 (2)
H3A0.68600.55700.59370.071*
C40.8177 (8)0.4515 (6)0.5924 (5)0.063 (2)
C50.9315 (8)0.4241 (6)0.6437 (4)0.066 (2)
H5A0.97350.36920.62130.080*
C60.9797 (7)0.4776 (6)0.7254 (5)0.059 (2)
H61.05540.45840.75790.071*
C70.9772 (7)0.6152 (6)0.8517 (4)0.0527 (19)
H71.05880.60110.88130.063*
C80.9117 (8)0.8019 (6)1.0165 (4)0.0504 (19)
C90.9927 (7)0.8600 (6)1.1021 (4)0.0480 (18)
C100.9922 (7)0.9737 (6)1.1256 (5)0.056 (2)
H100.94041.01011.08810.068*
C111.0673 (8)1.0348 (6)1.2039 (5)0.065 (2)
H111.06561.11161.21800.078*
C121.1440 (8)0.9839 (8)1.2609 (5)0.073 (2)
C131.1380 (8)0.8669 (7)1.2397 (5)0.069 (2)
H131.18310.82841.27900.083*
C141.0655 (7)0.8080 (6)1.1605 (5)0.062 (2)
H141.06600.73091.14650.075*
C151.2289 (8)1.0512 (6)1.3466 (4)0.094 (3)
H15A1.31261.10381.33660.141*
H15B1.25480.99791.38390.141*
H15C1.17281.09431.37320.141*
C160.8588 (10)0.3486 (8)0.4632 (6)0.151 (5)
H16A0.84860.36370.40370.182*
H16B0.95710.37880.49030.182*
C170.8153 (10)0.2270 (8)0.4666 (6)0.135 (4)
H17A0.82500.21300.52570.202*
H17B0.87320.18840.43760.202*
H17C0.71850.19770.43870.202*
C180.6394 (8)0.4169 (7)0.4535 (5)0.078 (2)
H18A0.57190.42740.48980.094*
H18B0.59760.34620.41360.094*
C190.6687 (9)0.5177 (7)0.4035 (5)0.110 (3)
H19A0.71660.58700.44250.166*
H19B0.58140.52720.37320.166*
H19C0.72710.50350.36280.166*
C200.4824 (8)0.4717 (6)0.8644 (4)0.0478 (18)
C210.3419 (8)0.4062 (6)0.8446 (4)0.0521 (19)
C220.2982 (7)0.3076 (6)0.7870 (4)0.0521 (19)
H220.20250.27060.77210.063*
C230.3943 (8)0.2620 (6)0.7503 (4)0.056 (2)
C240.5391 (7)0.3225 (6)0.7723 (4)0.0548 (19)
H240.60700.29360.74960.066*
C250.5766 (7)0.4243 (5)0.8276 (4)0.0525 (19)
H250.67160.46380.84110.063*
C260.5295 (7)0.5816 (6)0.9197 (4)0.0465 (18)
H260.62460.62100.93130.056*
C270.3997 (8)0.7875 (6)1.0303 (4)0.0487 (18)
C280.4626 (7)0.9045 (6)1.0813 (4)0.0440 (17)
C290.6076 (8)0.9461 (6)1.1139 (4)0.060 (2)
H290.66820.89971.10420.072*
C300.6610 (8)1.0558 (6)1.1605 (4)0.063 (2)
H300.75751.08281.18130.075*
C310.5727 (9)1.1254 (6)1.1764 (4)0.057 (2)
C320.4292 (9)1.0833 (6)1.1442 (5)0.063 (2)
H320.36751.12871.15410.076*
C330.3786 (7)0.9747 (6)1.0976 (4)0.0529 (19)
H330.28220.94821.07640.063*
C340.6319 (8)1.2448 (6)1.2281 (4)0.087 (3)
H34A0.68891.29441.19570.130*
H34B0.68851.23881.28160.130*
H34C0.55571.27701.23970.130*
C350.2048 (8)0.0962 (6)0.6689 (5)0.076 (2)
H35A0.15860.10140.71830.091*
H35B0.20020.01500.65280.091*
C360.1260 (9)0.1388 (8)0.5955 (5)0.118 (3)
H36A0.12240.21700.61270.177*
H36B0.03170.08980.57960.177*
H36C0.17310.13700.54700.177*
C370.4532 (8)0.1073 (6)0.6589 (5)0.080 (2)
H37A0.41240.02430.64480.096*
H37B0.53670.11930.70300.096*
C380.4959 (9)0.1541 (8)0.5807 (5)0.122 (4)
H38A0.41360.14550.53730.183*
H38B0.55760.11220.55900.183*
H38C0.54430.23480.59520.183*
H21.068 (3)0.726 (5)0.988 (4)0.080*
H50.580 (2)0.773 (5)1.003 (4)0.080*
H30.2612 (18)0.512 (2)0.909 (4)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.044 (4)0.066 (4)0.054 (4)0.018 (3)0.005 (3)0.003 (3)
N20.036 (4)0.067 (4)0.056 (4)0.016 (3)0.002 (3)0.012 (3)
N30.092 (6)0.135 (7)0.063 (5)0.074 (5)0.010 (5)0.019 (5)
N40.054 (4)0.041 (4)0.050 (4)0.011 (3)0.002 (3)0.007 (3)
N50.040 (4)0.052 (4)0.049 (4)0.009 (3)0.012 (3)0.012 (3)
N60.053 (4)0.066 (4)0.063 (4)0.013 (4)0.019 (4)0.003 (3)
O10.065 (4)0.071 (3)0.061 (3)0.032 (3)0.005 (3)0.010 (3)
O20.036 (3)0.076 (3)0.064 (3)0.016 (3)0.005 (3)0.006 (3)
O30.051 (3)0.061 (3)0.072 (4)0.011 (3)0.010 (3)0.007 (3)
O40.035 (3)0.077 (4)0.077 (4)0.013 (3)0.005 (3)0.009 (3)
C10.045 (5)0.060 (5)0.038 (4)0.016 (4)0.008 (4)0.003 (4)
C20.058 (5)0.053 (5)0.046 (5)0.008 (4)0.017 (4)0.003 (4)
C30.054 (5)0.066 (5)0.058 (5)0.022 (4)0.003 (4)0.012 (4)
C40.070 (6)0.070 (6)0.040 (5)0.015 (5)0.001 (4)0.008 (4)
C50.070 (6)0.091 (6)0.041 (5)0.032 (5)0.003 (4)0.003 (4)
C60.044 (5)0.080 (5)0.059 (5)0.031 (4)0.005 (4)0.008 (4)
C70.040 (5)0.068 (5)0.054 (5)0.018 (4)0.011 (4)0.008 (4)
C80.051 (5)0.046 (5)0.053 (5)0.008 (4)0.009 (4)0.011 (4)
C90.028 (4)0.069 (5)0.042 (4)0.005 (4)0.008 (4)0.004 (4)
C100.049 (5)0.059 (5)0.065 (5)0.019 (4)0.017 (4)0.004 (4)
C110.067 (6)0.054 (5)0.063 (5)0.001 (4)0.021 (5)0.016 (5)
C120.055 (6)0.095 (7)0.051 (5)0.000 (5)0.002 (4)0.009 (5)
C130.061 (6)0.086 (6)0.059 (6)0.019 (5)0.005 (5)0.008 (5)
C140.048 (5)0.076 (6)0.063 (5)0.018 (4)0.012 (4)0.003 (5)
C150.091 (7)0.114 (7)0.056 (5)0.005 (6)0.001 (5)0.012 (5)
C160.188 (13)0.106 (9)0.091 (8)0.036 (9)0.081 (8)0.031 (7)
C170.149 (10)0.135 (9)0.109 (8)0.034 (8)0.008 (7)0.016 (7)
C180.069 (6)0.100 (7)0.063 (5)0.033 (5)0.000 (5)0.007 (5)
C190.111 (8)0.144 (9)0.095 (7)0.048 (7)0.035 (6)0.045 (7)
C200.046 (5)0.047 (5)0.050 (5)0.008 (4)0.015 (4)0.006 (4)
C210.060 (6)0.067 (5)0.046 (5)0.034 (5)0.024 (4)0.019 (4)
C220.046 (5)0.049 (5)0.054 (5)0.006 (4)0.003 (4)0.003 (4)
C230.062 (6)0.053 (5)0.052 (5)0.015 (5)0.013 (4)0.001 (4)
C240.046 (5)0.054 (5)0.065 (5)0.013 (4)0.019 (4)0.002 (4)
C250.058 (5)0.050 (5)0.043 (4)0.004 (4)0.006 (4)0.005 (4)
C260.042 (5)0.060 (5)0.041 (4)0.014 (4)0.008 (4)0.016 (4)
C270.057 (5)0.058 (5)0.037 (4)0.020 (5)0.012 (4)0.013 (4)
C280.035 (5)0.050 (5)0.042 (4)0.007 (4)0.001 (4)0.007 (4)
C290.054 (6)0.067 (5)0.060 (5)0.028 (4)0.003 (4)0.008 (4)
C300.054 (5)0.078 (6)0.050 (5)0.014 (5)0.004 (4)0.002 (4)
C310.083 (6)0.049 (5)0.037 (4)0.021 (5)0.012 (5)0.005 (4)
C320.063 (6)0.058 (5)0.076 (6)0.028 (5)0.022 (5)0.001 (4)
C330.029 (4)0.061 (5)0.063 (5)0.003 (4)0.004 (4)0.012 (4)
C340.110 (7)0.073 (6)0.064 (5)0.018 (5)0.007 (5)0.009 (5)
C350.059 (6)0.069 (6)0.080 (6)0.013 (5)0.009 (5)0.009 (5)
C360.086 (7)0.169 (10)0.078 (6)0.013 (7)0.016 (6)0.015 (7)
C370.076 (6)0.062 (5)0.088 (6)0.005 (5)0.005 (5)0.016 (5)
C380.115 (8)0.192 (10)0.067 (6)0.045 (7)0.038 (6)0.007 (7)
Geometric parameters (Å, º) top
N1—C71.290 (7)C16—H16B0.9700
N1—N21.392 (7)C17—H17A0.9600
N2—C81.371 (8)C17—H17B0.9600
N2—H20.898 (11)C17—H17C0.9600
N3—C41.355 (8)C18—C191.498 (9)
N3—C161.455 (8)C18—H18A0.9700
N3—C181.497 (8)C18—H18B0.9700
N4—C261.282 (7)C19—H19A0.9600
N4—N51.382 (7)C19—H19B0.9600
N5—C271.342 (8)C19—H19C0.9600
N5—H50.901 (11)C20—C251.375 (8)
N6—C231.378 (7)C20—C211.400 (8)
N6—C351.449 (8)C20—C261.444 (8)
N6—C371.461 (8)C21—C221.359 (8)
O1—C21.369 (7)C22—C231.380 (8)
O1—H10.8200C22—H220.9300
O2—C81.217 (7)C23—C241.420 (8)
O3—C211.365 (7)C24—C251.371 (8)
O3—H30.847 (10)C24—H240.9300
O4—C271.235 (7)C25—H250.9300
C1—C61.392 (8)C26—H260.9300
C1—C21.406 (8)C27—C281.492 (8)
C1—C71.453 (8)C28—C331.351 (8)
C2—C31.379 (8)C28—C291.402 (8)
C3—C41.389 (8)C29—C301.385 (8)
C3—H3A0.9300C29—H290.9300
C4—C51.407 (8)C30—C311.379 (8)
C5—C61.350 (8)C30—H300.9300
C5—H5A0.9300C31—C321.389 (9)
C6—H60.9300C31—C341.515 (8)
C7—H70.9300C32—C331.372 (8)
C8—C91.479 (8)C32—H320.9300
C9—C141.369 (8)C33—H330.9300
C9—C101.378 (8)C34—H34A0.9600
C10—C111.385 (8)C34—H34B0.9600
C10—H100.9300C34—H34C0.9600
C11—C121.368 (9)C35—C361.497 (9)
C11—H110.9300C35—H35A0.9700
C12—C131.394 (9)C35—H35B0.9700
C12—C151.523 (9)C36—H36A0.9600
C13—C141.379 (8)C36—H36B0.9600
C13—H130.9300C36—H36C0.9600
C14—H140.9300C37—C381.485 (9)
C15—H15A0.9600C37—H37A0.9700
C15—H15B0.9600C37—H37B0.9700
C15—H15C0.9600C38—H38A0.9600
C16—C171.424 (7)C38—H38B0.9600
C16—H16A0.9700C38—H38C0.9600
C7—N1—N2116.5 (5)C19—C18—H18B109.3
C8—N2—N1117.1 (5)H18A—C18—H18B107.9
C8—N2—H2129 (4)C18—C19—H19A109.5
N1—N2—H2113 (4)C18—C19—H19B109.5
C4—N3—C16119.6 (7)H19A—C19—H19B109.5
C4—N3—C18125.1 (6)C18—C19—H19C109.5
C16—N3—C18114.9 (7)H19A—C19—H19C109.5
C26—N4—N5116.8 (6)H19B—C19—H19C109.5
C27—N5—N4119.6 (6)C25—C20—C21115.6 (7)
C27—N5—H5119 (4)C25—C20—C26120.7 (7)
N4—N5—H5120 (4)C21—C20—C26123.7 (7)
C23—N6—C35122.5 (6)C22—C21—O3117.5 (7)
C23—N6—C37121.6 (6)C22—C21—C20122.6 (7)
C35—N6—C37115.9 (6)O3—C21—C20119.7 (7)
C2—O1—H1109.5C21—C22—C23120.7 (7)
C21—O3—H3120.6 (17)C21—C22—H22119.7
C6—C1—C2116.3 (6)C23—C22—H22119.7
C6—C1—C7121.0 (7)N6—C23—C22121.1 (7)
C2—C1—C7122.7 (6)N6—C23—C24120.5 (7)
O1—C2—C3116.7 (7)C22—C23—C24118.4 (7)
O1—C2—C1121.5 (6)C25—C24—C23118.5 (7)
C3—C2—C1121.7 (7)C25—C24—H24120.7
C2—C3—C4120.1 (7)C23—C24—H24120.7
C2—C3—H3A120.0C24—C25—C20124.0 (7)
C4—C3—H3A120.0C24—C25—H25118.0
N3—C4—C3119.2 (7)C20—C25—H25118.0
N3—C4—C5122.1 (7)N4—C26—C20119.7 (7)
C3—C4—C5118.6 (7)N4—C26—H26120.2
C6—C5—C4120.0 (7)C20—C26—H26120.2
C6—C5—H5A120.0O4—C27—N5121.0 (7)
C4—C5—H5A120.0O4—C27—C28122.6 (7)
C5—C6—C1123.1 (7)N5—C27—C28116.3 (7)
C5—C6—H6118.4C33—C28—C29117.6 (6)
C1—C6—H6118.4C33—C28—C27119.8 (7)
N1—C7—C1121.2 (6)C29—C28—C27122.6 (7)
N1—C7—H7119.4C30—C29—C28120.5 (7)
C1—C7—H7119.4C30—C29—H29119.8
O2—C8—N2122.7 (7)C28—C29—H29119.8
O2—C8—C9123.8 (7)C31—C30—C29120.6 (7)
N2—C8—C9113.5 (6)C31—C30—H30119.7
C14—C9—C10117.6 (7)C29—C30—H30119.7
C14—C9—C8124.7 (7)C30—C31—C32118.5 (7)
C10—C9—C8117.7 (7)C30—C31—C34120.3 (8)
C9—C10—C11121.3 (7)C32—C31—C34121.2 (7)
C9—C10—H10119.3C33—C32—C31119.9 (7)
C11—C10—H10119.3C33—C32—H32120.1
C12—C11—C10121.0 (7)C31—C32—H32120.1
C12—C11—H11119.5C28—C33—C32122.9 (7)
C10—C11—H11119.5C28—C33—H33118.6
C11—C12—C13117.9 (7)C32—C33—H33118.6
C11—C12—C15121.3 (8)C31—C34—H34A109.5
C13—C12—C15120.8 (8)C31—C34—H34B109.5
C14—C13—C12120.3 (7)H34A—C34—H34B109.5
C14—C13—H13119.8C31—C34—H34C109.5
C12—C13—H13119.8H34A—C34—H34C109.5
C9—C14—C13121.7 (7)H34B—C34—H34C109.5
C9—C14—H14119.1N6—C35—C36113.7 (6)
C13—C14—H14119.1N6—C35—H35A108.8
C12—C15—H15A109.5C36—C35—H35A108.8
C12—C15—H15B109.5N6—C35—H35B108.8
H15A—C15—H15B109.5C36—C35—H35B108.8
C12—C15—H15C109.5H35A—C35—H35B107.7
H15A—C15—H15C109.5C35—C36—H36A109.5
H15B—C15—H15C109.5C35—C36—H36B109.5
C17—C16—N3108.2 (8)H36A—C36—H36B109.5
C17—C16—H16A110.1C35—C36—H36C109.5
N3—C16—H16A110.1H36A—C36—H36C109.5
C17—C16—H16B110.1H36B—C36—H36C109.5
N3—C16—H16B110.1N6—C37—C38113.9 (7)
H16A—C16—H16B108.4N6—C37—H37A108.8
C16—C17—H17A109.5C38—C37—H37A108.8
C16—C17—H17B109.5N6—C37—H37B108.8
H17A—C17—H17B109.5C38—C37—H37B108.8
C16—C17—H17C109.5H37A—C37—H37B107.7
H17A—C17—H17C109.5C37—C38—H38A109.5
H17B—C17—H17C109.5C37—C38—H38B109.5
N3—C18—C19111.8 (7)H38A—C38—H38B109.5
N3—C18—H18A109.3C37—C38—H38C109.5
C19—C18—H18A109.3H38A—C38—H38C109.5
N3—C18—H18B109.3H38B—C38—H38C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O4i0.90 (1)1.95 (2)2.831 (7)167 (6)
O1—H1···N10.821.932.641 (7)145
N5—H5···O20.90 (1)2.12 (2)2.985 (7)160 (6)
O3—H3···N40.85 (1)1.94 (1)2.581 (7)132 (2)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC19H23N3O2
Mr325.40
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.923 (2), 11.963 (2), 15.827 (2)
α, β, γ (°)95.269 (2), 98.932 (2), 103.691 (2)
V3)1787.0 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.13 × 0.10 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.990, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
13230, 6512, 1651
Rint0.137
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.086, 0.245, 0.85
No. of reflections6512
No. of parameters449
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.30

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O4i0.898 (11)1.949 (19)2.831 (7)167 (6)
O1—H1···N10.821.932.641 (7)144.5
N5—H5···O20.901 (11)2.12 (2)2.985 (7)160 (6)
O3—H3···N40.847 (10)1.939 (10)2.581 (7)131.7 (18)
Symmetry code: (i) x+1, y, z.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Horkaew, J. & Chantrapromma, S. (2011). Acta Cryst. E67, o2644–o2645.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHorkaew, J., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o2985.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHuang, H.-T. & Wu, H.-Y. (2010). Acta Cryst. E66, o2729–o2730.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen, X.-H., Zhu, L.-X., Shao, L.-J. & Zhu, Z.-F. (2012). Acta Cryst. E68, o297.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhi, F., Wang, R., Zhang, Y., Wang, Q. & Yang, Y.-L. (2011). Acta Cryst. E67, o2825.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds