organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-4-[(4-Di­ethyl­amino-2-hy­dr­oxy­benzyl­­idene)amino]­benzoic acid

aDepartment of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, I. R. of IRAN, bDepartment of Chemistry, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran, cDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, and dDepartment of Physics, University of Sargodha, Punjab, Pakistan
*Correspondence e-mail: h.kargar@pnu.ac.ir, dmntahir_uos@yahoo.com

(Received 4 March 2012; accepted 6 March 2012; online 10 March 2012)

In the title compound, C18H20N2O3, a potential bidentate N,O-donor Schiff base ligand, the benzene rings are inclined at an angle of 12.25 (19)°. The mol­ecule has an E conformation about the C=N bond. One of the ethyl groups is disordered over two positions, with a refined site-occupancy ratio of 0.55 (1):0.45 (1). An intra­molecular O—H⋯N hydrogen bond makes an S(6) ring motif. In the crystal, pairs of O—H⋯O hydrogen bonds link mol­ecules, forming inversion dimers with R22(8) ring motifs.

Related literature

For background to Schiff base ligands and their metal complexes, see: Kargar et al. (2011[Kargar, H., Kia, R., Pahlavani, E. & Tahir, M. N. (2011). Acta Cryst. E67, o614.], 2012[Kargar, H., Kia, R., Abbasian, S. & Tahir, M. N. (2012). Acta Cryst. E68, m182.]); Kia et al. (2010[Kia, R., Kargar, H., Tahir, M. N. & Kianoosh, F. (2010). Acta Cryst. E66, o2296.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C18H20N2O3

  • Mr = 312.36

  • Monoclinic, P 21 /c

  • a = 12.4216 (8) Å

  • b = 8.1511 (6) Å

  • c = 16.0820 (11) Å

  • β = 93.001 (3)°

  • V = 1626.06 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.25 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.978, Tmax = 0.991

  • 11192 measured reflections

  • 2872 independent reflections

  • 918 reflections with I > 2σ(I)

  • Rint = 0.097

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.133

  • S = 0.94

  • 2872 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯N1 0.82 1.88 2.609 (3) 147
O2—H2⋯O1i 0.82 1.80 2.613 (2) 170
Symmetry code: (i) -x+2, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In continuation of our work on the crystal structure analysis of Schiff base ligands (Kargar et al., 2011, 2012; Kia et al., 2010), we determined the crystal structure of the title compound.

The asymmetric unit of the title compound, Fig. 1, comprises a potential bidentate N,O-donor Schiff base ligand. The bond lengths (Allen et al., 1987) and angles are within the normal ranges. The intramolecular O3—H3···N1 hydrogen bond (Table 1) makes an S(6) ring motif (Bernstein et al., 1995). The dihedral angle between the benzene rings is 12.25 (19)°, and the molecule has an E conformation about the C8N1 bond. One of the ethyl groups was disordered over two position with a refined site occupancy ratio of 0.55 (1)/0.45 (1).

In the crystal, pairs of O—H···O hydrogen bonds (Table 1) link molecules into inversion dimers with an R22(8) ring motif (Fig. 2).

Related literature top

For background to Schiff base ligands and their metal complexes, see: Kargar et al. (2011, 2012); Kia et al. (2010). For standard bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

The title compound was synthesized by adding 4-diethylaminosalicylaldehyde (2 mmol) to a solution of 4-carboxyaniline (2 mmol) in ethanol (30 ml). The mixture was refluxed with stirring for 30 min. The resultant solution was filtered. Pale-yellow single crystals of the title compound, suitable for X-ray structure analysis, were obtained by recrystallization from ethanol, by slow evaporation of the solvents at room temperature over several days.

Refinement top

The O-bound hydrogen atoms were located in a difference Fourier map and constrained to ride on the parent atoms with Uiso(H) = 1.5 Ueq(O). The rest of the hydrogen atoms were included in calculated positions and treated as riding atoms: C—H = 0.93, 0.96 and 0.97 Å for CH, CH3 and CH2 H atoms, respectively, with Uiso (H) = k × Ueq(C), where k = 1.5 for CH3 H atoms, and = 1.2 for other H atoms. A rotating group model was applied to the methyl group. One of the ethyl groups was disordered over two position with a refined site occupancy ratio of 0.55 (1)/0.45 (1). Since the crystal was very small and not optimal and did not diffract significantly, the ratio of observed to unique reflections is only 32%.

Structure description top

In continuation of our work on the crystal structure analysis of Schiff base ligands (Kargar et al., 2011, 2012; Kia et al., 2010), we determined the crystal structure of the title compound.

The asymmetric unit of the title compound, Fig. 1, comprises a potential bidentate N,O-donor Schiff base ligand. The bond lengths (Allen et al., 1987) and angles are within the normal ranges. The intramolecular O3—H3···N1 hydrogen bond (Table 1) makes an S(6) ring motif (Bernstein et al., 1995). The dihedral angle between the benzene rings is 12.25 (19)°, and the molecule has an E conformation about the C8N1 bond. One of the ethyl groups was disordered over two position with a refined site occupancy ratio of 0.55 (1)/0.45 (1).

In the crystal, pairs of O—H···O hydrogen bonds (Table 1) link molecules into inversion dimers with an R22(8) ring motif (Fig. 2).

For background to Schiff base ligands and their metal complexes, see: Kargar et al. (2011, 2012); Kia et al. (2010). For standard bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The ORTEP plot of the title compound, showing 40% probability displacement ellipsoids and the atomic numbering. The open bonds show the minor component of the disordered ethyl group. The dashed lines show the O-H···N hydrogen bond (see Table 1 for details).
[Figure 2] Fig. 2. The crystal packing diagram of the title compound viewed along the b-axis, showing the inversion dimers with an R22(8) ring motif. Only the hydrogen atoms involved the hydrogen bonding are shown - see Table 1 for details.
(E)-4-[(4-Diethylamino-2-hydroxybenzylidene)amino]benzoic acid top
Crystal data top
C18H20N2O3F(000) = 664
Mr = 312.36Dx = 1.276 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3270 reflections
a = 12.4216 (8) Åθ = 2.8–28.8°
b = 8.1511 (6) ŵ = 0.09 mm1
c = 16.0820 (11) ÅT = 296 K
β = 93.001 (3)°Block, pale-yellow
V = 1626.06 (19) Å30.25 × 0.12 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2872 independent reflections
Radiation source: fine-focus sealed tube918 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.097
φ and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1412
Tmin = 0.978, Tmax = 0.991k = 99
11192 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0393P)2]
where P = (Fo2 + 2Fc2)/3
2872 reflections(Δ/σ)max < 0.001
219 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C18H20N2O3V = 1626.06 (19) Å3
Mr = 312.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.4216 (8) ŵ = 0.09 mm1
b = 8.1511 (6) ÅT = 296 K
c = 16.0820 (11) Å0.25 × 0.12 × 0.10 mm
β = 93.001 (3)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2872 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
918 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.991Rint = 0.097
11192 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 0.94Δρmax = 0.14 e Å3
2872 reflectionsΔρmin = 0.13 e Å3
219 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.9492 (3)0.4842 (5)0.8861 (2)0.0584 (12)
C20.9076 (3)0.4702 (5)0.7993 (2)0.0508 (11)
C30.8265 (3)0.3620 (5)0.7757 (2)0.0684 (13)
H180.79900.29170.81500.082*
C40.7858 (3)0.3574 (5)0.6946 (2)0.0703 (13)
H170.72990.28520.68010.084*
C50.8256 (3)0.4564 (5)0.6347 (2)0.0541 (12)
C60.9084 (3)0.5642 (5)0.6578 (2)0.0657 (13)
H100.93710.63270.61840.079*
C70.9481 (3)0.5692 (5)0.7398 (2)0.0633 (12)
H111.00360.64160.75470.076*
C80.8135 (3)0.5152 (5)0.4913 (2)0.0627 (13)
H70.88060.56550.49820.075*
C90.7599 (3)0.5179 (5)0.4096 (2)0.0507 (11)
C100.8031 (3)0.5970 (5)0.3437 (2)0.0644 (12)
H50.87000.64760.35200.077*
C110.7519 (3)0.6043 (5)0.2663 (2)0.0627 (12)
H40.78420.65890.22340.075*
C120.6503 (4)0.5293 (5)0.2515 (2)0.0655 (13)
C130.6062 (3)0.4454 (5)0.3171 (2)0.0696 (14)
H150.54080.39090.30830.084*
C140.6582 (4)0.4422 (5)0.3949 (2)0.0614 (12)
C150.6378 (3)0.6430 (6)0.1074 (2)0.0862 (15)
H2A0.67070.74080.13190.103*
H2B0.57690.67700.07130.103*
C160.7176 (4)0.5578 (5)0.0570 (3)0.1024 (17)
H1A0.77960.52850.09200.154*
H1B0.73910.62930.01340.154*
H1C0.68560.46040.03290.154*
C170.4751 (11)0.5013 (14)0.1607 (7)0.089 (5)0.549 (11)
H17A0.43730.50970.21180.107*0.549 (11)
H17B0.44070.57080.11820.107*0.549 (11)
C180.4858 (16)0.3342 (18)0.1334 (11)0.111 (6)0.549 (11)
H18A0.41560.28910.12000.167*0.549 (11)
H18B0.52120.27060.17710.167*0.549 (11)
H18C0.52770.33130.08500.167*0.549 (11)
C17A0.5142 (16)0.405 (2)0.1518 (10)0.058 (5)0.451 (11)
H17C0.51830.37450.09370.070*0.451 (11)
H17D0.52860.30770.18550.070*0.451 (11)
C18A0.40179 (14)0.4703 (4)0.16718 (11)0.075 (4)0.451 (11)
H18D0.34900.38780.15230.112*0.451 (11)
H18E0.38800.56650.13390.112*0.451 (11)
H18F0.39770.49770.22500.112*0.451 (11)
N10.77425 (12)0.44793 (19)0.55449 (9)0.0639 (11)
N20.59881 (15)0.5375 (3)0.17449 (16)0.0925 (14)
O11.00875 (12)0.59948 (19)0.90912 (8)0.0827 (10)
O20.91877 (12)0.37246 (19)0.93606 (10)0.0889 (10)
H20.94760.38760.98250.133*
O30.6110 (2)0.3604 (4)0.45575 (15)0.0883 (10)
H30.64430.37720.50030.132*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.061 (3)0.068 (3)0.045 (3)0.010 (3)0.004 (2)0.005 (2)
C20.049 (3)0.055 (3)0.047 (3)0.003 (2)0.007 (2)0.001 (2)
C30.078 (3)0.078 (4)0.049 (3)0.012 (3)0.002 (2)0.009 (2)
C40.078 (3)0.078 (4)0.053 (3)0.026 (3)0.010 (3)0.005 (3)
C50.065 (3)0.053 (3)0.044 (2)0.003 (2)0.005 (2)0.004 (2)
C60.078 (4)0.072 (3)0.046 (3)0.016 (3)0.001 (2)0.005 (2)
C70.068 (3)0.066 (3)0.055 (3)0.016 (2)0.009 (2)0.000 (2)
C80.069 (3)0.058 (3)0.060 (3)0.004 (2)0.007 (3)0.013 (2)
C90.056 (3)0.051 (3)0.044 (3)0.000 (2)0.004 (2)0.003 (2)
C100.064 (3)0.076 (3)0.054 (3)0.005 (3)0.004 (2)0.003 (3)
C110.068 (3)0.076 (3)0.043 (3)0.010 (3)0.005 (2)0.008 (2)
C120.064 (3)0.081 (4)0.050 (3)0.011 (3)0.008 (3)0.006 (3)
C130.073 (3)0.085 (4)0.050 (3)0.024 (3)0.011 (3)0.007 (3)
C140.077 (4)0.058 (3)0.049 (3)0.011 (3)0.006 (3)0.009 (2)
C150.076 (4)0.121 (4)0.060 (3)0.000 (3)0.011 (3)0.016 (3)
C160.111 (5)0.116 (5)0.079 (3)0.000 (3)0.002 (3)0.005 (3)
C170.112 (15)0.077 (10)0.078 (7)0.023 (9)0.002 (7)0.012 (7)
C180.138 (15)0.088 (14)0.109 (13)0.014 (10)0.007 (9)0.011 (9)
C17A0.076 (11)0.055 (14)0.040 (7)0.008 (10)0.024 (7)0.009 (9)
C18A0.034 (7)0.100 (11)0.090 (8)0.013 (6)0.000 (6)0.013 (7)
N10.080 (3)0.066 (3)0.045 (2)0.0010 (19)0.007 (2)0.0019 (19)
N20.071 (3)0.155 (4)0.050 (2)0.037 (3)0.015 (2)0.022 (3)
O10.097 (2)0.089 (2)0.0590 (19)0.0284 (19)0.0243 (16)0.0038 (17)
O20.124 (3)0.090 (2)0.0495 (18)0.023 (2)0.0197 (17)0.0063 (17)
O30.105 (3)0.105 (2)0.0537 (18)0.042 (2)0.0093 (17)0.0086 (19)
Geometric parameters (Å, º) top
C1—O11.240 (4)C13—H150.9300
C1—O21.284 (4)C14—O31.344 (4)
C1—C21.468 (4)C15—N21.481 (4)
C2—C71.368 (4)C15—C161.485 (5)
C2—C31.377 (4)C15—H2A0.9700
C3—C41.374 (4)C15—H2B0.9700
C3—H180.9300C16—H1A0.9600
C4—C51.369 (4)C16—H1B0.9600
C4—H170.9300C16—H1C0.9600
C5—C61.389 (4)C17—C181.440 (19)
C5—N11.410 (4)C17—N21.569 (14)
C6—C71.383 (5)C17—H17A0.9700
C6—H100.9300C17—H17B0.9700
C7—H110.9300C18—H18A0.9600
C8—N11.274 (4)C18—H18B0.9600
C8—C91.441 (4)C18—H18C0.9600
C8—H70.9300C17A—C18A1.53 (2)
C9—C101.374 (4)C17A—N21.538 (15)
C9—C141.414 (5)C17A—H17C0.9700
C10—C111.370 (4)C17A—H17D0.9700
C10—H50.9300C18A—H18D0.9600
C11—C121.411 (5)C18A—H18E0.9600
C11—H40.9300C18A—H18F0.9600
C12—N21.365 (4)O2—H20.8200
C12—C131.394 (5)O3—H30.8200
C13—C141.379 (5)
O1—C1—O2122.8 (3)O3—C14—C9121.0 (4)
O1—C1—C2121.2 (3)C13—C14—C9121.1 (4)
O2—C1—C2116.0 (4)N2—C15—C16112.3 (4)
C7—C2—C3118.4 (3)N2—C15—H2A109.1
C7—C2—C1119.7 (4)C16—C15—H2A109.1
C3—C2—C1121.9 (4)N2—C15—H2B109.1
C4—C3—C2120.4 (4)C16—C15—H2B109.1
C4—C3—H18119.8H2A—C15—H2B107.9
C2—C3—H18119.8C15—C16—H1A109.5
C5—C4—C3121.6 (4)C15—C16—H1B109.5
C5—C4—H17119.2H1A—C16—H1B109.5
C3—C4—H17119.2C15—C16—H1C109.5
C4—C5—C6118.3 (3)H1A—C16—H1C109.5
C4—C5—N1116.9 (4)H1B—C16—H1C109.5
C6—C5—N1124.7 (4)C18—C17—N296.6 (12)
C7—C6—C5119.7 (4)C18—C17—H17A112.4
C7—C6—H10120.1N2—C17—H17A112.4
C5—C6—H10120.1C18—C17—H17B112.4
C2—C7—C6121.6 (4)N2—C17—H17B112.4
C2—C7—H11119.2H17A—C17—H17B110.0
C6—C7—H11119.2C18A—C17A—N2109.6 (11)
N1—C8—C9123.8 (4)C18A—C17A—H17C109.8
N1—C8—H7118.1N2—C17A—H17C109.8
C9—C8—H7118.1C18A—C17A—H17D109.8
C10—C9—C14117.2 (4)N2—C17A—H17D109.8
C10—C9—C8122.0 (4)H17C—C17A—H17D108.2
C14—C9—C8120.8 (4)C17A—C18A—H18D109.5
C11—C10—C9122.7 (4)C17A—C18A—H18E109.5
C11—C10—H5118.7H18D—C18A—H18E109.5
C9—C10—H5118.7C17A—C18A—H18F109.5
C10—C11—C12120.2 (4)H18D—C18A—H18F109.5
C10—C11—H4119.9H18E—C18A—H18F109.5
C12—C11—H4119.9C8—N1—C5122.4 (3)
N2—C12—C13121.8 (4)C12—N2—C15122.2 (3)
N2—C12—C11120.3 (4)C12—N2—C17A117.5 (7)
C13—C12—C11118.0 (4)C15—N2—C17A118.8 (7)
C14—C13—C12120.8 (4)C12—N2—C17121.8 (5)
C14—C13—H15119.6C15—N2—C17111.2 (5)
C12—C13—H15119.6C1—O2—H2109.5
O3—C14—C13117.9 (4)C14—O3—H3109.5
O1—C1—C2—C710.7 (6)C12—C13—C14—C92.7 (6)
O2—C1—C2—C7170.5 (3)C10—C9—C14—O3179.1 (4)
O1—C1—C2—C3167.8 (4)C8—C9—C14—O32.6 (6)
O2—C1—C2—C311.1 (6)C10—C9—C14—C131.2 (6)
C7—C2—C3—C41.5 (6)C8—C9—C14—C13179.5 (4)
C1—C2—C3—C4176.9 (4)C9—C8—N1—C5175.9 (3)
C2—C3—C4—C51.4 (6)C4—C5—N1—C8169.4 (3)
C3—C4—C5—C60.5 (6)C6—C5—N1—C814.6 (5)
C3—C4—C5—N1176.7 (3)C13—C12—N2—C15172.2 (4)
C4—C5—C6—C70.1 (6)C11—C12—N2—C159.0 (5)
N1—C5—C6—C7175.8 (3)C13—C12—N2—C17A21.8 (10)
C3—C2—C7—C60.9 (6)C11—C12—N2—C17A157.0 (9)
C1—C2—C7—C6177.6 (4)C13—C12—N2—C1718.6 (7)
C5—C6—C7—C20.1 (6)C11—C12—N2—C17162.5 (6)
N1—C8—C9—C10177.6 (4)C16—C15—N2—C1288.2 (4)
N1—C8—C9—C140.6 (6)C16—C15—N2—C17A77.6 (10)
C14—C9—C10—C110.0 (6)C16—C15—N2—C17115.7 (5)
C8—C9—C10—C11178.2 (4)C18A—C17A—N2—C1297.2 (10)
C9—C10—C11—C120.2 (6)C18A—C17A—N2—C1596.3 (11)
C10—C11—C12—N2179.6 (4)C18A—C17A—N2—C179.9 (8)
C10—C11—C12—C131.5 (6)C18—C17—N2—C1298.4 (11)
N2—C12—C13—C14178.3 (4)C18—C17—N2—C15105.4 (10)
C11—C12—C13—C142.8 (6)C18—C17—N2—C17A4.7 (18)
C12—C13—C14—O3179.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N10.821.882.609 (3)147
O2—H2···O1i0.821.802.613 (2)170
Symmetry code: (i) x+2, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC18H20N2O3
Mr312.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.4216 (8), 8.1511 (6), 16.0820 (11)
β (°) 93.001 (3)
V3)1626.06 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.978, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
11192, 2872, 918
Rint0.097
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.133, 0.94
No. of reflections2872
No. of parameters219
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.13

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N10.821.882.609 (3)147
O2—H2···O1i0.821.802.613 (2)170
Symmetry code: (i) x+2, y+1, z+2.
 

Acknowledgements

HK thanks PNU for financial support. MNT thanks GC University of Sargodha, Pakistan, for the research facility.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKargar, H., Kia, R., Abbasian, S. & Tahir, M. N. (2012). Acta Cryst. E68, m182.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKargar, H., Kia, R., Pahlavani, E. & Tahir, M. N. (2011). Acta Cryst. E67, o614.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKia, R., Kargar, H., Tahir, M. N. & Kianoosh, F. (2010). Acta Cryst. E66, o2296.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds