organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2-Amino­pyridin-3-yl)-4-methyl-N-(4-methyl­phenyl­sulfon­yl)benzene­sulfonamide

aDepartment of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
*Correspondence e-mail: abut@sun.ac.za

(Received 29 February 2012; accepted 12 March 2012; online 21 March 2012)

The title compound, C19H19N3O4S2, was prepared by the reaction of 2,3-diamino­pyridine with tosyl chloride in a mixture of dichloro­methane–pyridine as solvent. In the crystal, mol­ecules associate via pairs of N—H⋯N hydrogen bonds, forming a centrosymmetric eight-membered {⋯HNCN}2 synthon. The dihedral angles between the amino­pyridine ring and the tosyl benzene rings are 50.01 (6) and 32.01 (4)°.

Related literature

For the synthesis of related compounds, see: Schetty (1969[Schetty, G. (1969). Helv. Chim. Acta, 52, 1796-1802.]); Dubey & Kumar (2000[Dubey, P. K. & Kumar, R. V. (2000). J. Indian Chem. Soc. B, 39, 746-751.]). For background to the application of ring-closing metathesis (RCM) on substrates protected with sulfonamide groups, see: Yadav et al. (2011[Yadav, D. B., Morgans, G. L., Aderibigbe, B. A., Madeley, L. G., Fernandes, M. A., Michael, J. P., de Koning, C. B. & van Otterlo, W. A. L. (2011). Tetrahedron, 67, 2991-2997.]); Morgans et al. (2009[Morgans, G. L., Ngidi, E. L., Madeley, L. G., Khanye, S. D., Michael, J. P., de Koning, C. B. & van Otterlo, W. A. L. (2009). Tetrahedron, 65, 10650-10659.]); van Otterlo et al. (2004[Otterlo, W. A. L. van, Morgans, G. L., Khanye, S. D., Aderibigbe, B. A. A., Michael, J. P. & Fernandes, M. A. (2004). Tetrahedron Lett. 45, 9171-9175.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C19H19N3O4S2

  • Mr = 417.49

  • Triclinic, [P \overline 1]

  • a = 8.6343 (15) Å

  • b = 9.6486 (17) Å

  • c = 12.701 (2) Å

  • α = 111.324 (2)°

  • β = 90.109 (2)°

  • γ = 98.097 (2)°

  • V = 974.2 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 102 K

  • 0.25 × 0.25 × 0.25 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.928, Tmax = 0.928

  • 11658 measured reflections

  • 4644 independent reflections

  • 4381 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.086

  • S = 1.03

  • 4644 reflections

  • 256 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯N1i 0.88 2.13 2.9948 (17) 166
Symmetry code: (i) -x+1, -y+2, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: X-SEED.

Supporting information


Comment top

Aminopyridines and sulfonamides are structural units frequently found in the skeletons of bioactive compounds (Dubey et al., 2000). In this present communication the main aim was to synthesize pyridine-annulated heterocycles by using ring-closing metathesis (RCM) and in which the 2,3-disulfonamide-protected 2,3-diaminopyridine was required as substrate in continuation of previous work in our group combining sulfonamide protecting groups and RCM (Yadav et al., 2011; Morgans et al., 2009). However, in this particular case, when tosyl chloride was utilized in an attempt to 'mono' protect both amino groups on 2,3-diaminopyridine, only the 3,3-ditosyl compound, N-(2-amino-3-pyridinyl)-4-methyl-N-[(4-methylphenyl)sulfonyl]benzenesulfonamide (I), was isolated. In previous work by our group this behaviour was not observed with 2,3-diaminopyridine or 1,2-diaminobenzene as the substrate (van Otterlo et al., 2004). A literature search indicated that this type of selectivity is not common, see for instance Schetty (1969).

Crystallizing in the space group P1, (I) has a single molecule in the asymmetric unit (Fig. 1). In the crystal packing, the molecules associate via a centrosymmetric hydrogen bonded dimer with N—H···N hydrogen bonds interacting to form the hydrogen bonded ring motif R22(8) (Bernstein et al., 1995), Fig. 2. The mean planes passing through the tosyl benzene rings (C6–C11 and C13–C18) form dihedral angles with the aminopyridine ring (N1,C1–C5) of 50.01 (6) and 32.01 (4)°, respectively.

Related literature top

For the synthesis of related compounds, see: Schetty (1969); Dubey & Kumar (2000). For background to the application of ring-closing metathesis (RCM) on substrates protected with sulfonamide groups, see: Yadav et al. (2011); Morgans et al. (2009); van Otterlo et al. (2004). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

2,3-Diaminopyridine (0.100 g, 0.917 mmol) was dissolved in a mixture of CH2Cl2 and pyridine (10 ml, 15:1). 4-Methylbenzene-1-sulfonyl chloride (0.524 g, 2.75 mol) was added and the solution was heated, with stirring, to 313 K for 24 h. The solution was allowed to cool to room temperature and washed with dilute HCl (15 ml, 1 M) and brine (3 × 15 ml), and then dried over Na2SO4. After filtration and removal of the solvent under vacuum, the residue was recrystallized from EtOH to give the product as a colourless crystalline material (0.260 g, 68%).

Refinement top

H atoms were positioned geometrically [N—H = 0.88 Å; C—H = 0.95–0.98 Å; with Uiso(H) = 1.2–1.5Ueq(N,C)] and constrained to ride on their parent atoms.

Structure description top

Aminopyridines and sulfonamides are structural units frequently found in the skeletons of bioactive compounds (Dubey et al., 2000). In this present communication the main aim was to synthesize pyridine-annulated heterocycles by using ring-closing metathesis (RCM) and in which the 2,3-disulfonamide-protected 2,3-diaminopyridine was required as substrate in continuation of previous work in our group combining sulfonamide protecting groups and RCM (Yadav et al., 2011; Morgans et al., 2009). However, in this particular case, when tosyl chloride was utilized in an attempt to 'mono' protect both amino groups on 2,3-diaminopyridine, only the 3,3-ditosyl compound, N-(2-amino-3-pyridinyl)-4-methyl-N-[(4-methylphenyl)sulfonyl]benzenesulfonamide (I), was isolated. In previous work by our group this behaviour was not observed with 2,3-diaminopyridine or 1,2-diaminobenzene as the substrate (van Otterlo et al., 2004). A literature search indicated that this type of selectivity is not common, see for instance Schetty (1969).

Crystallizing in the space group P1, (I) has a single molecule in the asymmetric unit (Fig. 1). In the crystal packing, the molecules associate via a centrosymmetric hydrogen bonded dimer with N—H···N hydrogen bonds interacting to form the hydrogen bonded ring motif R22(8) (Bernstein et al., 1995), Fig. 2. The mean planes passing through the tosyl benzene rings (C6–C11 and C13–C18) form dihedral angles with the aminopyridine ring (N1,C1–C5) of 50.01 (6) and 32.01 (4)°, respectively.

For the synthesis of related compounds, see: Schetty (1969); Dubey & Kumar (2000). For background to the application of ring-closing metathesis (RCM) on substrates protected with sulfonamide groups, see: Yadav et al. (2011); Morgans et al. (2009); van Otterlo et al. (2004). For graph-set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: X-SEED (Barbour, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atomic numbering scheme. The displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. The hydrogen bonding in the title compound, showing the hydrogen bonded ring motif. Intermolecular N—H···N hydrogen bonds are shown as dashed red lines. Symmetry code: -x + 1, -y + 2, -z
N-(2-Aminopyridin-3-yl)-4-methyl-N-(4- methylphenylsulfonyl)benzenesulfonamide top
Crystal data top
C19H19N3O4S2Z = 2
Mr = 417.49F(000) = 436
Triclinic, P1Dx = 1.423 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6343 (15) ÅCell parameters from 8939 reflections
b = 9.6486 (17) Åθ = 2.3–28.6°
c = 12.701 (2) ŵ = 0.30 mm1
α = 111.324 (2)°T = 102 K
β = 90.109 (2)°Prisms, colourless
γ = 98.097 (2)°0.25 × 0.25 × 0.25 mm
V = 974.2 (3) Å3
Data collection top
Bruker APEXII CCD
diffractometer
4644 independent reflections
Radiation source: fine-focus sealed tube, Bruker SMART APEX4381 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
φ and ω scansθmax = 28.8°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.928, Tmax = 0.928k = 1212
11658 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0443P)2 + 0.5018P]
where P = (Fo2 + 2Fc2)/3
4644 reflections(Δ/σ)max = 0.001
256 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C19H19N3O4S2γ = 98.097 (2)°
Mr = 417.49V = 974.2 (3) Å3
Triclinic, P1Z = 2
a = 8.6343 (15) ÅMo Kα radiation
b = 9.6486 (17) ŵ = 0.30 mm1
c = 12.701 (2) ÅT = 102 K
α = 111.324 (2)°0.25 × 0.25 × 0.25 mm
β = 90.109 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
4644 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4381 reflections with I > 2σ(I)
Tmin = 0.928, Tmax = 0.928Rint = 0.015
11658 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.03Δρmax = 0.47 e Å3
4644 reflectionsΔρmin = 0.35 e Å3
256 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.69360 (4)0.75142 (4)0.30733 (3)0.02336 (9)
S20.37246 (3)0.60784 (3)0.20345 (2)0.01765 (8)
N30.52302 (12)0.75248 (12)0.24209 (9)0.0186 (2)
N10.47716 (14)1.06813 (12)0.15011 (9)0.0230 (2)
C50.49000 (14)0.89680 (13)0.24605 (10)0.0175 (2)
C150.27102 (16)0.57171 (14)0.50145 (11)0.0232 (3)
H150.30740.52490.54890.028*
C40.43923 (15)0.99755 (14)0.34312 (10)0.0212 (2)
N20.55336 (14)0.84049 (12)0.04958 (9)0.0226 (2)
H2A0.56270.86860.00900.027*
H2B0.57430.75150.04390.027*
O10.43589 (12)0.47071 (10)0.15842 (8)0.0268 (2)
O20.26982 (11)0.64689 (10)0.13384 (7)0.02197 (19)
C130.28268 (14)0.62087 (13)0.32986 (10)0.0181 (2)
O30.71981 (12)0.88223 (13)0.40887 (8)0.0331 (2)
C110.92648 (15)0.91006 (14)0.23608 (11)0.0221 (2)
H110.92220.99010.30650.027*
O40.68588 (12)0.60577 (13)0.31366 (10)0.0358 (3)
C70.83292 (15)0.65472 (14)0.10759 (11)0.0231 (3)
H70.76640.56140.09150.028*
C180.16083 (15)0.70512 (14)0.36120 (11)0.0221 (2)
H180.12290.74990.31290.027*
C60.82897 (14)0.77329 (14)0.21034 (10)0.0193 (2)
C10.50712 (14)0.93365 (13)0.14787 (10)0.0189 (2)
C80.93574 (15)0.67576 (15)0.02953 (11)0.0241 (3)
H80.93850.59620.04130.029*
C30.40867 (17)1.13551 (14)0.34406 (11)0.0257 (3)
H30.37401.20720.40970.031*
C20.43063 (18)1.16433 (14)0.24579 (11)0.0268 (3)
H20.41131.25910.24630.032*
C160.15029 (16)0.65788 (14)0.53587 (11)0.0238 (3)
C170.09552 (16)0.72267 (15)0.46422 (12)0.0249 (3)
H170.01200.77990.48620.030*
C140.33857 (15)0.55326 (14)0.39957 (11)0.0210 (2)
H140.42160.49560.37740.025*
C190.0856 (2)0.68232 (16)0.65014 (12)0.0327 (3)
H19B0.08130.59000.66630.049*
H19C0.02020.70830.65030.049*
H19A0.15350.76460.70830.049*
C91.03573 (15)0.81185 (15)0.05290 (11)0.0227 (2)
C101.03021 (15)0.92753 (15)0.15694 (11)0.0242 (3)
H101.09861.02000.17410.029*
C121.14802 (17)0.83002 (19)0.03295 (13)0.0327 (3)
H12A1.18960.93690.01270.049*
H12C1.09320.79130.10800.049*
H12B1.23450.77380.03430.049*
H40.42150.97250.41130.023 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02049 (15)0.03476 (18)0.02280 (16)0.00556 (12)0.00028 (11)0.01947 (14)
S20.02354 (15)0.01561 (14)0.01636 (14)0.00353 (10)0.00067 (11)0.00870 (11)
N30.0183 (5)0.0210 (5)0.0219 (5)0.0032 (4)0.0003 (4)0.0144 (4)
N10.0351 (6)0.0178 (5)0.0182 (5)0.0031 (4)0.0017 (4)0.0094 (4)
C50.0201 (5)0.0174 (5)0.0174 (5)0.0008 (4)0.0012 (4)0.0100 (4)
C150.0310 (7)0.0209 (6)0.0200 (6)0.0009 (5)0.0011 (5)0.0114 (5)
C40.0253 (6)0.0227 (6)0.0150 (5)0.0010 (5)0.0015 (4)0.0079 (5)
N20.0330 (6)0.0220 (5)0.0189 (5)0.0095 (4)0.0068 (4)0.0125 (4)
O10.0401 (5)0.0198 (4)0.0242 (5)0.0107 (4)0.0069 (4)0.0104 (4)
O20.0276 (5)0.0205 (4)0.0193 (4)0.0003 (3)0.0052 (3)0.0103 (3)
C130.0216 (5)0.0162 (5)0.0181 (5)0.0008 (4)0.0011 (4)0.0087 (4)
O30.0264 (5)0.0553 (7)0.0172 (4)0.0067 (4)0.0019 (4)0.0129 (4)
C110.0253 (6)0.0201 (6)0.0211 (6)0.0042 (5)0.0016 (5)0.0074 (5)
O40.0273 (5)0.0486 (6)0.0519 (7)0.0088 (4)0.0025 (5)0.0412 (6)
C70.0204 (6)0.0199 (6)0.0282 (6)0.0015 (4)0.0016 (5)0.0083 (5)
C180.0225 (6)0.0223 (6)0.0258 (6)0.0039 (5)0.0009 (5)0.0135 (5)
C60.0176 (5)0.0229 (6)0.0212 (6)0.0047 (4)0.0003 (4)0.0119 (5)
C10.0224 (6)0.0188 (5)0.0173 (5)0.0008 (4)0.0001 (4)0.0095 (4)
C80.0218 (6)0.0245 (6)0.0236 (6)0.0061 (5)0.0005 (5)0.0051 (5)
C30.0376 (7)0.0189 (6)0.0172 (6)0.0027 (5)0.0011 (5)0.0034 (5)
C20.0425 (8)0.0156 (5)0.0219 (6)0.0035 (5)0.0010 (5)0.0067 (5)
C160.0305 (6)0.0183 (6)0.0201 (6)0.0030 (5)0.0027 (5)0.0065 (5)
C170.0250 (6)0.0222 (6)0.0282 (7)0.0048 (5)0.0055 (5)0.0097 (5)
C140.0253 (6)0.0186 (5)0.0219 (6)0.0032 (4)0.0000 (5)0.0108 (5)
C190.0476 (9)0.0257 (7)0.0223 (6)0.0010 (6)0.0104 (6)0.0078 (5)
C90.0188 (6)0.0293 (6)0.0238 (6)0.0056 (5)0.0001 (5)0.0135 (5)
C100.0244 (6)0.0217 (6)0.0272 (6)0.0009 (5)0.0020 (5)0.0115 (5)
C120.0263 (7)0.0470 (9)0.0290 (7)0.0048 (6)0.0046 (5)0.0193 (6)
Geometric parameters (Å, º) top
S1—O41.4289 (11)C11—H110.9500
S1—O31.4290 (11)C7—C81.3824 (19)
S1—N31.6916 (11)C7—C61.3923 (18)
S1—C61.7472 (13)C7—H70.9500
S2—O11.4257 (10)C18—C171.3884 (18)
S2—O21.4292 (9)C18—H180.9500
S2—N31.6932 (11)C8—C91.3978 (19)
S2—C131.7549 (12)C8—H80.9500
N3—C51.4435 (15)C3—C21.3818 (18)
N1—C21.3365 (17)C3—H30.9500
N1—C11.3487 (16)C2—H20.9500
C5—C41.3812 (17)C16—C171.3921 (19)
C5—C11.4183 (16)C16—C191.5052 (18)
C15—C141.3824 (18)C17—H170.9500
C15—C161.3966 (19)C14—H140.9500
C15—H150.9500C19—H19B0.9800
C4—C31.3889 (18)C19—H19C0.9800
C4—H40.9869C19—H19A0.9800
N2—C11.3463 (16)C9—C101.3916 (19)
N2—H2A0.8800C9—C121.5017 (18)
N2—H2B0.8800C10—H100.9500
C13—C181.3905 (17)C12—H12A0.9800
C13—C141.3962 (16)C12—H12C0.9800
C11—C101.3875 (19)C12—H12B0.9800
C11—C61.3891 (17)
O4—S1—O3119.52 (7)C11—C6—S1119.22 (10)
O4—S1—N3106.78 (6)C7—C6—S1119.13 (10)
O3—S1—N3108.02 (6)N2—C1—N1116.60 (11)
O4—S1—C6110.55 (6)N2—C1—C5123.35 (11)
O3—S1—C6108.89 (6)N1—C1—C5120.04 (11)
N3—S1—C6101.52 (5)C7—C8—C9121.25 (12)
O1—S2—O2120.02 (6)C7—C8—H8119.4
O1—S2—N3108.18 (6)C9—C8—H8119.4
O2—S2—N3103.63 (5)C2—C3—C4117.37 (12)
O1—S2—C13110.28 (6)C2—C3—H3121.3
O2—S2—C13108.76 (6)C4—C3—H3121.3
N3—S2—C13104.73 (5)N1—C2—C3124.53 (12)
C5—N3—S1116.80 (8)N1—C2—H2117.7
C5—N3—S2117.39 (8)C3—C2—H2117.7
S1—N3—S2123.89 (6)C17—C16—C15118.80 (12)
C2—N1—C1118.78 (11)C17—C16—C19121.52 (13)
C4—C5—C1119.84 (11)C15—C16—C19119.66 (12)
C4—C5—N3120.91 (10)C18—C17—C16121.10 (12)
C1—C5—N3119.23 (11)C18—C17—H17119.4
C14—C15—C16121.18 (12)C16—C17—H17119.4
C14—C15—H15119.4C15—C14—C13118.87 (12)
C16—C15—H15119.4C15—C14—H14120.6
C5—C4—C3119.42 (11)C13—C14—H14120.6
C5—C4—H4121.4C16—C19—H19B109.5
C3—C4—H4119.2C16—C19—H19C109.5
C1—N2—H2A120.0H19B—C19—H19C109.5
C1—N2—H2B120.0C16—C19—H19A109.5
H2A—N2—H2B120.0H19B—C19—H19A109.5
C18—C13—C14121.12 (11)H19C—C19—H19A109.5
C18—C13—S2118.79 (9)C10—C9—C8118.77 (12)
C14—C13—S2120.02 (10)C10—C9—C12121.34 (12)
C10—C11—C6118.68 (12)C8—C9—C12119.89 (13)
C10—C11—H11120.7C11—C10—C9121.12 (12)
C6—C11—H11120.7C11—C10—H10119.4
C8—C7—C6118.56 (12)C9—C10—H10119.4
C8—C7—H7120.7C9—C12—H12A109.5
C6—C7—H7120.7C9—C12—H12C109.5
C17—C18—C13118.91 (12)H12A—C12—H12C109.5
C17—C18—H18120.5C9—C12—H12B109.5
C13—C18—H18120.5H12A—C12—H12B109.5
C11—C6—C7121.62 (12)H12C—C12—H12B109.5
O4—S1—N3—C5167.92 (9)O4—S1—C6—C11139.70 (10)
O3—S1—N3—C538.18 (10)O3—S1—C6—C116.50 (12)
C6—S1—N3—C576.26 (10)N3—S1—C6—C11107.29 (10)
O4—S1—N3—S24.12 (10)O4—S1—C6—C742.35 (12)
O3—S1—N3—S2125.62 (8)O3—S1—C6—C7175.54 (10)
C6—S1—N3—S2119.94 (8)N3—S1—C6—C770.67 (11)
O1—S2—N3—C5155.43 (9)C2—N1—C1—N2179.88 (12)
O2—S2—N3—C527.00 (10)C2—N1—C1—C50.38 (19)
C13—S2—N3—C586.95 (9)C4—C5—C1—N2178.83 (12)
O1—S2—N3—S140.86 (9)N3—C5—C1—N20.11 (18)
O2—S2—N3—S1169.29 (7)C4—C5—C1—N11.45 (18)
C13—S2—N3—S176.76 (8)N3—C5—C1—N1179.83 (11)
S1—N3—C5—C476.63 (13)C6—C7—C8—C90.90 (19)
S2—N3—C5—C488.25 (13)C5—C4—C3—C20.3 (2)
S1—N3—C5—C1104.66 (11)C1—N1—C2—C30.8 (2)
S2—N3—C5—C190.46 (12)C4—C3—C2—N10.9 (2)
C1—C5—C4—C31.36 (19)C14—C15—C16—C171.58 (19)
N3—C5—C4—C3179.93 (11)C14—C15—C16—C19176.71 (12)
O1—S2—C13—C18152.71 (10)C13—C18—C17—C160.2 (2)
O2—S2—C13—C1819.17 (12)C15—C16—C17—C181.2 (2)
N3—S2—C13—C1891.11 (11)C19—C16—C17—C18177.04 (12)
O1—S2—C13—C1430.27 (12)C16—C15—C14—C130.86 (19)
O2—S2—C13—C14163.81 (10)C18—C13—C14—C150.24 (19)
N3—S2—C13—C1485.91 (11)S2—C13—C14—C15176.71 (9)
C14—C13—C18—C170.59 (19)C7—C8—C9—C100.14 (19)
S2—C13—C18—C17176.40 (10)C7—C8—C9—C12178.92 (12)
C10—C11—C6—C70.19 (19)C6—C11—C10—C90.98 (19)
C10—C11—C6—S1178.09 (10)C8—C9—C10—C110.82 (19)
C8—C7—C6—C110.73 (19)C12—C9—C10—C11179.86 (12)
C8—C7—C6—S1177.17 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N1i0.882.132.9948 (17)166
Symmetry code: (i) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaC19H19N3O4S2
Mr417.49
Crystal system, space groupTriclinic, P1
Temperature (K)102
a, b, c (Å)8.6343 (15), 9.6486 (17), 12.701 (2)
α, β, γ (°)111.324 (2), 90.109 (2), 98.097 (2)
V3)974.2 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.25 × 0.25 × 0.25
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.928, 0.928
No. of measured, independent and
observed [I > 2σ(I)] reflections
11658, 4644, 4381
Rint0.015
(sin θ/λ)max1)0.678
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.086, 1.03
No. of reflections4644
No. of parameters256
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.35

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N1i0.882.132.9948 (17)166
Symmetry code: (i) x+1, y+2, z.
 

Acknowledgements

AT thanks the South African National Research Foundation (NRF), Pretoria, for providing an Innovation Fellowship, and Professor Willem A. L. van Otterlo for his valuable input and research oversight. Stellenbosch University's Science Faculty is also acknowledged for providing laboratory space and additional financial research support.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDubey, P. K. & Kumar, R. V. (2000). J. Indian Chem. Soc. B, 39, 746–751.  Google Scholar
First citationMorgans, G. L., Ngidi, E. L., Madeley, L. G., Khanye, S. D., Michael, J. P., de Koning, C. B. & van Otterlo, W. A. L. (2009). Tetrahedron, 65, 10650–10659.  Web of Science CrossRef CAS Google Scholar
First citationOtterlo, W. A. L. van, Morgans, G. L., Khanye, S. D., Aderibigbe, B. A. A., Michael, J. P. & Fernandes, M. A. (2004). Tetrahedron Lett. 45, 9171–9175.  Google Scholar
First citationSchetty, G. (1969). Helv. Chim. Acta, 52, 1796–1802.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYadav, D. B., Morgans, G. L., Aderibigbe, B. A., Madeley, L. G., Fernandes, M. A., Michael, J. P., de Koning, C. B. & van Otterlo, W. A. L. (2011). Tetrahedron, 67, 2991–2997.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds