metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

cis-(Di-2-pyridyl­amine-κ2N2,N2′)bis­­(thio­cyanato-κS)platinum(II)

aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 12 March 2012; accepted 13 March 2012; online 17 March 2012)

In the title complex, [Pt(NCS)2(C10H9N3)], the PtII ion is four-coordinated in a distorted square-planar environment by the two pyridine N atoms of the chelating di-2-pyridyl­amine (dpa) ligand and two mutually cis S atoms from two linear thio­cyanate anions. The dpa ligand is not planar, the dihedral angle between the pyridine rings being 30.8 (4)°. In the crystal, the complex mol­ecules are stacked in columns along the a axis and are connected by inter­molecular N—H⋯N hydrogen bonds, forming supra­molecular chains along the b axis.

Related literature

For the crystal structure of the related chlorido PtII complex [PtCl2(dpa)], see: Li & Liu (2004[Li, D. & Liu, D. (2004). Cryst. Res. Technol. 39, 359-362.]); Tu et al. (2004[Tu, C., Wu, X., Liu, Q., Wang, X., Xu, Q. & Guo, Z. (2004). Inorg. Chim. Acta, 357, 95-102.]); Zhang et al. (2006[Zhang, F., Prokopchuk, E. M., Broczkowski, M. E., Jennings, M. C. & Puddephatt, R. J. (2006). Organometallics, 25, 1583-1591.]).

[Scheme 1]

Experimental

Crystal data
  • [Pt(NCS)2(C10H9N3)]

  • Mr = 482.45

  • Triclinic, [P \overline 1]

  • a = 7.2282 (6) Å

  • b = 9.8308 (8) Å

  • c = 10.2501 (8) Å

  • α = 94.292 (2)°

  • β = 93.081 (2)°

  • γ = 106.123 (2)°

  • V = 695.64 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 10.38 mm−1

  • T = 200 K

  • 0.19 × 0.15 × 0.09 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.812, Tmax = 1.000

  • 4195 measured reflections

  • 2636 independent reflections

  • 2391 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.088

  • S = 1.22

  • 2636 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 3.96 e Å−3

  • Δρmin = −1.40 e Å−3

Table 1
Selected geometric parameters (Å, °)

Pt1—N1 2.065 (7)
Pt1—N3 2.069 (7)
Pt1—S2 2.302 (2)
Pt1—S1 2.306 (2)
N1—Pt1—N3 88.1 (3)
S2—Pt1—S1 89.04 (9)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯N5i 0.92 1.93 2.851 (11) 176
Symmetry code: (i) x, y-1, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Crystal structures of the related chlorido PtII complex, [PtCl2(dpa)] (dpa = di-2-pyridylamine, C10H9N3), have been reported previously (Li & Liu, 2004; Tu et al., 2004; Zhang et al., 2006).

In the title complex, [Pt(NCS)2(dpa)], the PtII ion is four-coordinated in a distorted square-planar environment by the two pyridyl N atoms of the chelating dpa ligand and two S atoms from two thiocyanate anions (Fig. 1). The dpa ligand is not planar with the dihedral angle between the least-squares planes of the pyridyl rings being 30.8 (4)°. The thiocyanato ligands are located on the same sides of the PtS2N2 plane and are almost linear with the bond angles <S1—C11—N4 = 177.4 (9)° and <S2—C12—N5 = 177.3 (9)°. The pairs of Pt—N and Pt—S bond lengths are nearly equivalent (Table 1). The complex molecules are stacked in columns along the a axis and are connected by intermolecular N—H···N hydrogen bonds, forming chains along the b axis (Fig. 2 and Table 2). In the columns, intermolecular π-π interactions between the pyridine rings are present, the ring centroid-centroid distance being 4.155 (5) Å.

Related literature top

For the crystal structure of the related chlorido PtII complex [PtCl2(dpa)], see: Li & Liu (2004); Tu et al. (2004); Zhang et al. (2006).

Experimental top

To a solution of K2PtCl4 (0.2066 g, 0.498 mmol) in H2O (20 ml) and MeOH (10 ml) were added KSCN (0.5232 g, 5.384 mmol) and di-2-pyridylamine (0.0883 g, 0.516 mmol) and stirred for 7 h at room temperature. The formed precipitate was separated by filtration and washed with H2O and MeOH, and dried at 50 °C, to give a yellow powder (0.2182 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a CH3CN solution.

Refinement top

Carbon-bound H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C)]. Nitrogen-bound H atom was located from Fourier difference maps then allowed to ride on its parent atom in the final cycles of refinement with N—H = 0.92 Å and Uiso(H) = 1.5 Ueq(N). The highest peak (3.96 e Å-3) and the deepest hole (-1.40 e Å-3) in the difference Fourier map are located 0.98 Å and 0.99 Å from the Pt1 atom, respectively. Owing to poor agreement, the following reflections were omitted from the final refinement: (8 7 2), (0 11 4), (7 8 4), (2 99), (70 8), (7 5 7), (8 7 3), (8 8 0), (0 9 8), (7 4 7), (6 8 6), (8 6 3), (5 7 8), (4 7 9), (3 1 11), ( 6 6 2), (8 8 1), (8 7 1), (1 9 9), (0 10 5), (7 7 5), (2 4 11), (8\14), (48 8), (8 7 2), (2 5 11), (3 2 11), (1 10 4), and (2 11 4).

Structure description top

Crystal structures of the related chlorido PtII complex, [PtCl2(dpa)] (dpa = di-2-pyridylamine, C10H9N3), have been reported previously (Li & Liu, 2004; Tu et al., 2004; Zhang et al., 2006).

In the title complex, [Pt(NCS)2(dpa)], the PtII ion is four-coordinated in a distorted square-planar environment by the two pyridyl N atoms of the chelating dpa ligand and two S atoms from two thiocyanate anions (Fig. 1). The dpa ligand is not planar with the dihedral angle between the least-squares planes of the pyridyl rings being 30.8 (4)°. The thiocyanato ligands are located on the same sides of the PtS2N2 plane and are almost linear with the bond angles <S1—C11—N4 = 177.4 (9)° and <S2—C12—N5 = 177.3 (9)°. The pairs of Pt—N and Pt—S bond lengths are nearly equivalent (Table 1). The complex molecules are stacked in columns along the a axis and are connected by intermolecular N—H···N hydrogen bonds, forming chains along the b axis (Fig. 2 and Table 2). In the columns, intermolecular π-π interactions between the pyridine rings are present, the ring centroid-centroid distance being 4.155 (5) Å.

For the crystal structure of the related chlorido PtII complex [PtCl2(dpa)], see: Li & Liu (2004); Tu et al. (2004); Zhang et al. (2006).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, with displacement ellipsoids drawn at the 50% probability level for non-H atoms.
[Figure 2] Fig. 2. A view of the unit-cell contents of the title complex. Intermolecular N—H···N hydrogen-bond interactions are drawn with dashed lines.
cis-(Di-2-pyridylamine-κ2N2,N2')bis(thiocyanato- κS)platinum(II) top
Crystal data top
[Pt(NCS)2(C10H9N3)]Z = 2
Mr = 482.45F(000) = 452
Triclinic, P1Dx = 2.303 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2282 (6) ÅCell parameters from 3201 reflections
b = 9.8308 (8) Åθ = 2.8–25.9°
c = 10.2501 (8) ŵ = 10.38 mm1
α = 94.292 (2)°T = 200 K
β = 93.081 (2)°Block, yellow
γ = 106.123 (2)°0.19 × 0.15 × 0.09 mm
V = 695.64 (10) Å3
Data collection top
Bruker SMART 1000 CCD
diffractometer
2636 independent reflections
Radiation source: fine-focus sealed tube2391 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
φ and ω scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 88
Tmin = 0.812, Tmax = 1.000k = 1211
4195 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.22 w = 1/[σ2(Fo2) + (0.0179P)2 + 8.2228P]
where P = (Fo2 + 2Fc2)/3
2636 reflections(Δ/σ)max = 0.001
181 parametersΔρmax = 3.96 e Å3
0 restraintsΔρmin = 1.40 e Å3
Crystal data top
[Pt(NCS)2(C10H9N3)]γ = 106.123 (2)°
Mr = 482.45V = 695.64 (10) Å3
Triclinic, P1Z = 2
a = 7.2282 (6) ÅMo Kα radiation
b = 9.8308 (8) ŵ = 10.38 mm1
c = 10.2501 (8) ÅT = 200 K
α = 94.292 (2)°0.19 × 0.15 × 0.09 mm
β = 93.081 (2)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
2636 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2391 reflections with I > 2σ(I)
Tmin = 0.812, Tmax = 1.000Rint = 0.018
4195 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.22Δρmax = 3.96 e Å3
2636 reflectionsΔρmin = 1.40 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt11.01671 (5)0.50573 (3)0.26893 (3)0.02699 (12)
S11.3097 (3)0.6767 (2)0.2720 (2)0.0351 (5)
S20.9284 (4)0.6445 (2)0.4314 (2)0.0367 (5)
N11.0971 (10)0.3699 (7)0.1344 (7)0.0256 (15)
N20.9426 (11)0.1761 (8)0.2524 (7)0.0307 (16)
H2N0.94640.09010.28050.046*
N30.7667 (10)0.3445 (7)0.2845 (7)0.0254 (15)
N41.2719 (12)0.8295 (9)0.0535 (9)0.043 (2)
N50.9605 (17)0.9069 (9)0.3291 (10)0.060 (3)
C11.2059 (12)0.4162 (9)0.0350 (9)0.0293 (19)
H11.22470.51190.01570.035*
C21.2890 (14)0.3335 (10)0.0382 (9)0.036 (2)
H21.36330.36980.10810.044*
C31.2635 (14)0.1923 (11)0.0089 (10)0.041 (2)
H31.32340.13220.05700.050*
C41.1520 (13)0.1437 (9)0.0890 (9)0.034 (2)
H41.13510.04900.11070.041*
C51.0619 (12)0.2315 (9)0.1582 (9)0.0272 (18)
C60.7784 (14)0.2105 (10)0.2872 (9)0.034 (2)
C70.6286 (13)0.1040 (10)0.3285 (10)0.038 (2)
H70.64010.01040.33190.045*
C80.4652 (15)0.1353 (12)0.3638 (10)0.048 (3)
H80.36190.06360.39250.058*
C90.4500 (14)0.2743 (12)0.3578 (9)0.042 (2)
H90.33690.29800.38180.051*
C100.6011 (12)0.3736 (11)0.3166 (9)0.035 (2)
H100.59060.46700.31010.042*
C111.2825 (13)0.7673 (10)0.1414 (10)0.035 (2)
C120.9486 (13)0.7994 (10)0.3678 (9)0.033 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.0312 (2)0.02336 (19)0.0312 (2)0.01455 (14)0.00534 (13)0.00443 (13)
S10.0337 (12)0.0298 (12)0.0411 (13)0.0094 (10)0.0007 (10)0.0008 (10)
S20.0573 (15)0.0285 (12)0.0319 (12)0.0220 (11)0.0132 (11)0.0064 (9)
N10.025 (4)0.017 (3)0.036 (4)0.007 (3)0.005 (3)0.003 (3)
N20.039 (4)0.023 (4)0.034 (4)0.014 (3)0.006 (3)0.006 (3)
N30.025 (4)0.021 (3)0.029 (4)0.003 (3)0.004 (3)0.009 (3)
N40.031 (4)0.033 (5)0.064 (6)0.006 (4)0.005 (4)0.014 (4)
N50.100 (8)0.028 (5)0.066 (7)0.033 (5)0.030 (6)0.018 (4)
C10.027 (4)0.025 (4)0.038 (5)0.012 (4)0.005 (4)0.002 (4)
C20.041 (5)0.037 (5)0.028 (5)0.007 (4)0.007 (4)0.002 (4)
C30.030 (5)0.046 (6)0.053 (6)0.020 (5)0.007 (5)0.002 (5)
C40.039 (5)0.021 (4)0.039 (5)0.007 (4)0.012 (4)0.007 (4)
C50.025 (4)0.021 (4)0.037 (5)0.010 (3)0.003 (4)0.003 (3)
C60.039 (5)0.039 (5)0.028 (5)0.015 (4)0.001 (4)0.003 (4)
C70.033 (5)0.028 (5)0.044 (6)0.008 (4)0.004 (4)0.010 (4)
C80.035 (6)0.056 (7)0.042 (6)0.007 (5)0.007 (5)0.010 (5)
C90.032 (5)0.068 (7)0.025 (5)0.018 (5)0.006 (4)0.011 (5)
C100.022 (4)0.047 (6)0.040 (5)0.014 (4)0.004 (4)0.005 (4)
C110.031 (5)0.024 (5)0.050 (6)0.008 (4)0.011 (4)0.006 (4)
C120.036 (5)0.027 (5)0.038 (5)0.012 (4)0.009 (4)0.003 (4)
Geometric parameters (Å, º) top
Pt1—N12.065 (7)C1—H10.9500
Pt1—N32.069 (7)C2—C31.406 (14)
Pt1—S22.302 (2)C2—H20.9500
Pt1—S12.306 (2)C3—C41.352 (14)
S1—C111.694 (10)C3—H30.9500
S2—C121.674 (9)C4—C51.394 (12)
N1—C11.349 (11)C4—H40.9500
N1—C51.356 (10)C6—C71.390 (13)
N2—C51.371 (11)C7—C81.361 (15)
N2—C61.379 (12)C7—H70.9500
N2—H2N0.9200C8—C91.407 (16)
N3—C61.346 (11)C8—H80.9500
N3—C101.356 (11)C9—C101.358 (14)
N4—C111.137 (12)C9—H90.9500
N5—C121.139 (12)C10—H100.9500
C1—C21.347 (12)
N1—Pt1—N388.1 (3)C2—C3—H3120.6
N1—Pt1—S2175.3 (2)C3—C4—C5120.5 (9)
N3—Pt1—S289.9 (2)C3—C4—H4119.7
N1—Pt1—S192.6 (2)C5—C4—H4119.7
N3—Pt1—S1173.6 (2)N1—C5—N2121.2 (7)
S2—Pt1—S189.04 (9)N1—C5—C4120.0 (8)
C11—S1—Pt1103.7 (3)N2—C5—C4118.7 (8)
C12—S2—Pt1104.4 (3)N3—C6—N2120.6 (8)
C1—N1—C5118.6 (7)N3—C6—C7121.3 (9)
C1—N1—Pt1122.7 (5)N2—C6—C7118.1 (9)
C5—N1—Pt1118.0 (6)C8—C7—C6119.3 (10)
C5—N2—C6127.6 (7)C8—C7—H7120.3
C5—N2—H2N118.5C6—C7—H7120.3
C6—N2—H2N111.5C7—C8—C9119.7 (9)
C6—N3—C10118.9 (8)C7—C8—H8120.2
C6—N3—Pt1118.7 (6)C9—C8—H8120.2
C10—N3—Pt1121.3 (6)C10—C9—C8118.2 (9)
C2—C1—N1123.3 (8)C10—C9—H9120.9
C2—C1—H1118.4C8—C9—H9120.9
N1—C1—H1118.4N3—C10—C9122.6 (9)
C1—C2—C3118.5 (9)N3—C10—H10118.7
C1—C2—H2120.7C9—C10—H10118.7
C3—C2—H2120.7N4—C11—S1177.4 (9)
C4—C3—C2118.8 (9)N5—C12—S2177.3 (9)
C4—C3—H3120.6
N1—Pt1—S1—C1184.1 (4)C1—N1—C5—C46.0 (12)
S2—Pt1—S1—C11100.3 (3)Pt1—N1—C5—C4164.9 (6)
N3—Pt1—S2—C12129.1 (4)C6—N2—C5—N135.0 (13)
S1—Pt1—S2—C1257.3 (4)C6—N2—C5—C4146.8 (9)
N3—Pt1—N1—C1149.1 (7)C3—C4—C5—N14.9 (13)
S1—Pt1—N1—C137.3 (7)C3—C4—C5—N2176.8 (8)
N3—Pt1—N1—C540.4 (6)C10—N3—C6—N2178.5 (8)
S1—Pt1—N1—C5133.2 (6)Pt1—N3—C6—N213.8 (11)
N1—Pt1—N3—C640.9 (7)C10—N3—C6—C73.3 (13)
S2—Pt1—N3—C6134.9 (6)Pt1—N3—C6—C7164.4 (7)
N1—Pt1—N3—C10151.7 (7)C5—N2—C6—N334.6 (14)
S2—Pt1—N3—C1032.5 (7)C5—N2—C6—C7147.1 (9)
C5—N1—C1—C23.2 (13)N3—C6—C7—C81.5 (15)
Pt1—N1—C1—C2167.3 (7)N2—C6—C7—C8179.8 (9)
N1—C1—C2—C30.8 (14)C6—C7—C8—C90.2 (15)
C1—C2—C3—C41.9 (14)C7—C8—C9—C100.2 (15)
C2—C3—C4—C50.9 (14)C6—N3—C10—C93.4 (13)
C1—N1—C5—N2175.9 (8)Pt1—N3—C10—C9164.0 (7)
Pt1—N1—C5—N213.2 (10)C8—C9—C10—N31.6 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···N5i0.921.932.851 (11)176
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formula[Pt(NCS)2(C10H9N3)]
Mr482.45
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)7.2282 (6), 9.8308 (8), 10.2501 (8)
α, β, γ (°)94.292 (2), 93.081 (2), 106.123 (2)
V3)695.64 (10)
Z2
Radiation typeMo Kα
µ (mm1)10.38
Crystal size (mm)0.19 × 0.15 × 0.09
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.812, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
4195, 2636, 2391
Rint0.018
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.088, 1.22
No. of reflections2636
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)3.96, 1.40

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Pt1—N12.065 (7)Pt1—S22.302 (2)
Pt1—N32.069 (7)Pt1—S12.306 (2)
N1—Pt1—N388.1 (3)S2—Pt1—S189.04 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···N5i0.921.932.851 (11)176.4
Symmetry code: (i) x, y1, z.
 

Acknowledgements

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011–0030747).

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLi, D. & Liu, D. (2004). Cryst. Res. Technol. 39, 359–362.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTu, C., Wu, X., Liu, Q., Wang, X., Xu, Q. & Guo, Z. (2004). Inorg. Chim. Acta, 357, 95–102.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, F., Prokopchuk, E. M., Broczkowski, M. E., Jennings, M. C. & Puddephatt, R. J. (2006). Organometallics, 25, 1583–1591.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds