organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Benzoyl-2-(1H-indol-3-yl)-4-(4-methyl­phen­yl)-4,5-di­hydro­furan-3-carbo­nitrile

aDepartment of Physics, The Madura College, Madurai 625 011, India, bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, and cDepartment of Food Science and Technology, University of Ruhuna, Mapalana, Kamburupitiya 81100, Sri Lanka
*Correspondence e-mail: plakshmannilantha@ymail.com

(Received 12 March 2012; accepted 14 March 2012; online 21 March 2012)

The furan ring in the title compound, C27H20N2O2, adopts a twisted conformation about the sp3sp3 bond. The mol­ecular structure is stabilized by an intra­molecular C—H⋯O inter­action which generates an S(6) ring motif. The crystal packing is stabilized by N—H⋯O and C—H⋯O inter­actions generating centrosymmetric R22(18) and C(6) chain motifs, respectively. A weak C—H⋯π inter­action is also observed.

Related literature

For the biological importance of furan derivatives, see: Auvin & Chabrier De Lassauniere (2005[Auvin, S. & Chabrier De Lassauniere, P. (2005). US Patent No. 222045.]). For hydrogen-bonding graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For additional conformation analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C27H20N2O2

  • Mr = 404.45

  • Monoclinic, P 21 /n

  • a = 9.8084 (4) Å

  • b = 15.9553 (7) Å

  • c = 13.8782 (7) Å

  • β = 107.185 (2)°

  • V = 2074.92 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.19 × 0.15 × 0.12 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.967, Tmax = 0.974

  • 21144 measured reflections

  • 4647 independent reflections

  • 3017 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.133

  • S = 1.02

  • 4647 reflections

  • 284 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C51–C56 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C33—H33⋯O1 0.93 2.52 3.032 (2) 115
N2—H2⋯O2i 0.91 (2) 2.04 (2) 2.880 (2) 154
C44—H44⋯O2ii 0.93 2.55 3.329 (3) 142
C34—H34⋯Cg1iii 0.93 2.69 3.556 (3) 156
Symmetry codes: (i) -x+2, -y, -z+1; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Furanyl derivatives have calplain-inhibiting activity and are used in the preparation of medicaments for the treatment of inflammatory and immunological diseases, cardiovascular and cerebro-vascular diseases, disorders of the central or peripheral nervous system, cachexia, osteoporosis, muscular dystrophy, proliferative diseases, cataracts, rejection reactions following organ transplants and auto-immune and viral diseases (Auvin et al., 2005). The high medicinal value of these compounds in conjunction with our research interests prompted us to synthesize and report the X-ray structure of the title compound.

In the title compound (Fig 1), the five-membered furanyl ring adopts a twisted conformation as evident from the puckering parameters (Cremer & Pople, 1975) Q = 0.192 (2) Å and φ = 129.0 (6)°. The five-(N2/C38/C31/C32/C37) and six-membered (C32—C37) rings in the indole group are planar, with a dihedral angle of 0.74 (1)° between them. The dihedral angle between the phenyl rings (C42—C47 and C51—C56) is 15.24 (1)°.

Fig. 2 shows the partial packing of molecules in the crystal structure. The C—H···O and N—H···O intermolecular interactions generate C11(6) chain and centrosymmetric R22(18) motifs, respectively (Bernstein et al., 1995). In addition, there is a weak C—H···π interaction, viz, C34—H34···Cg1ii, Table 1.

Related literature top

For the biological importance of furan derivatives, see: Auvin & Chabrier De Lassauniere (2005). For hydrogen-bonding graph-set notation, see: Bernstein et al. (1995). For additional conformation analysis, see: Cremer & Pople (1975).

Experimental top

To a stirred mixture of 2-(1H-indole-3-carbonyl)-3-p-tolylacrylonitrile (1.0 molar eq.) and phenacylpyridinium bromide (1.0 molar eq.) in water (10 ml) was added drop wise triethylamine (0.25 molar eq.) at room temperature. The resulting clear solution, that slowly became turbid, was stirred at room temperature for 1 h. Then, the separated free flowing solid was filtered and washed with methanol (3 ml) to afford the title compound as a pale-yellow solid. The product thus obtained was recrystallized from an EtOH-EtOAc mixture (1:1 ratio v/v ml) to the give pure compound as pale-yellow crystals. Yield: 92%. M.pt: 502 K.

Refinement top

The H atoms were placed at calculated positions and allowed to ride on their carrier atoms with C—H = 0.93–0.98 Å, and with Uiso = 1.2–1.5Ueq(C). The N-bound H atom was located in a difference Fourier map and refined freely.

Structure description top

Furanyl derivatives have calplain-inhibiting activity and are used in the preparation of medicaments for the treatment of inflammatory and immunological diseases, cardiovascular and cerebro-vascular diseases, disorders of the central or peripheral nervous system, cachexia, osteoporosis, muscular dystrophy, proliferative diseases, cataracts, rejection reactions following organ transplants and auto-immune and viral diseases (Auvin et al., 2005). The high medicinal value of these compounds in conjunction with our research interests prompted us to synthesize and report the X-ray structure of the title compound.

In the title compound (Fig 1), the five-membered furanyl ring adopts a twisted conformation as evident from the puckering parameters (Cremer & Pople, 1975) Q = 0.192 (2) Å and φ = 129.0 (6)°. The five-(N2/C38/C31/C32/C37) and six-membered (C32—C37) rings in the indole group are planar, with a dihedral angle of 0.74 (1)° between them. The dihedral angle between the phenyl rings (C42—C47 and C51—C56) is 15.24 (1)°.

Fig. 2 shows the partial packing of molecules in the crystal structure. The C—H···O and N—H···O intermolecular interactions generate C11(6) chain and centrosymmetric R22(18) motifs, respectively (Bernstein et al., 1995). In addition, there is a weak C—H···π interaction, viz, C34—H34···Cg1ii, Table 1.

For the biological importance of furan derivatives, see: Auvin & Chabrier De Lassauniere (2005). For hydrogen-bonding graph-set notation, see: Bernstein et al. (1995). For additional conformation analysis, see: Cremer & Pople (1975).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 40% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The partial packing diagram of (I). The C—H···O and N—H···O interactions are shown as blue lines.
5-Benzoyl-2-(1H-indol-3-yl)-4-(4-methylphenyl)-4,5-dihydrofuran- 3-carbonitrile top
Crystal data top
C27H20N2O2F(000) = 848
Mr = 404.45Dx = 1.295 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2000 reflections
a = 9.8084 (4) Åθ = 2–31°
b = 15.9553 (7) ŵ = 0.08 mm1
c = 13.8782 (7) ÅT = 293 K
β = 107.185 (2)°Block, pale-yellow
V = 2074.92 (16) Å30.19 × 0.15 × 0.12 mm
Z = 4
Data collection top
Bruker Kappa APEXII
diffractometer
4647 independent reflections
Radiation source: fine-focus sealed tube3017 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 0 pixels mm-1θmax = 27.3°, θmin = 2.0°
ω and φ scansh = 1212
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 2020
Tmin = 0.967, Tmax = 0.974l = 1717
21144 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0581P)2 + 0.5454P]
where P = (Fo2 + 2Fc2)/3
4647 reflections(Δ/σ)max < 0.001
284 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C27H20N2O2V = 2074.92 (16) Å3
Mr = 404.45Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.8084 (4) ŵ = 0.08 mm1
b = 15.9553 (7) ÅT = 293 K
c = 13.8782 (7) Å0.19 × 0.15 × 0.12 mm
β = 107.185 (2)°
Data collection top
Bruker Kappa APEXII
diffractometer
4647 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3017 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.974Rint = 0.038
21144 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.25 e Å3
4647 reflectionsΔρmin = 0.22 e Å3
284 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H21.231 (2)0.0946 (12)0.5116 (14)0.044 (5)*
C10.7913 (2)0.08013 (11)0.21842 (13)0.0408 (4)
C20.78765 (18)0.00744 (10)0.23169 (12)0.0331 (4)
C30.88408 (17)0.05202 (10)0.30178 (12)0.0301 (4)
C40.71584 (17)0.14707 (10)0.22283 (12)0.0318 (4)
H40.71780.19470.17870.038*
C50.68263 (18)0.06474 (10)0.15994 (12)0.0314 (4)
H50.58480.04650.15310.038*
C60.7683 (3)0.09390 (17)0.23642 (17)0.0734 (7)
H6A0.86810.08830.22960.110*
H6B0.73500.14740.26580.110*
H6C0.71630.05010.27910.110*
C311.01403 (17)0.02910 (10)0.37695 (12)0.0310 (4)
C321.12543 (17)0.08399 (11)0.43391 (12)0.0325 (4)
C331.14643 (19)0.17039 (11)0.44071 (14)0.0405 (4)
H331.07810.20660.40140.049*
C341.2696 (2)0.20113 (13)0.50646 (16)0.0535 (5)
H341.28410.25880.51160.064*
C351.3735 (2)0.14808 (14)0.56565 (17)0.0615 (6)
H351.45580.17090.60970.074*
C361.3567 (2)0.06253 (14)0.56019 (15)0.0527 (5)
H361.42630.02680.59910.063*
C371.23189 (18)0.03164 (11)0.49441 (13)0.0367 (4)
C381.05756 (18)0.05100 (11)0.40606 (13)0.0357 (4)
H381.00520.09920.38190.043*
C410.60327 (18)0.16108 (10)0.27659 (13)0.0337 (4)
C420.45710 (18)0.18082 (11)0.21168 (13)0.0372 (4)
C430.4312 (2)0.21107 (12)0.11489 (14)0.0463 (5)
H430.50730.22440.09060.056*
C440.2925 (2)0.22178 (14)0.05363 (17)0.0619 (6)
H440.27530.24190.01180.074*
C450.1806 (3)0.20254 (16)0.0902 (2)0.0759 (8)
H450.08730.20890.04900.091*
C460.2051 (3)0.17414 (18)0.1867 (2)0.0786 (8)
H460.12870.16220.21120.094*
C470.3427 (2)0.16313 (14)0.24769 (17)0.0574 (6)
H470.35890.14370.31330.069*
C510.70509 (18)0.07130 (10)0.05677 (12)0.0320 (4)
C520.59093 (19)0.08565 (11)0.02828 (13)0.0380 (4)
H520.49930.09000.02220.046*
C530.6116 (2)0.09362 (12)0.12209 (14)0.0447 (5)
H530.53340.10320.17820.054*
C540.7455 (2)0.08765 (12)0.13439 (15)0.0465 (5)
C550.8592 (2)0.07429 (13)0.04929 (16)0.0503 (5)
H550.95090.07070.05550.060*
C560.8396 (2)0.06610 (12)0.04483 (14)0.0426 (4)
H560.91810.05700.10090.051*
N10.7928 (2)0.15113 (11)0.20826 (15)0.0670 (6)
N21.18746 (16)0.04969 (10)0.47495 (11)0.0387 (4)
O10.85398 (12)0.13585 (7)0.29520 (9)0.0369 (3)
O20.62895 (14)0.14959 (8)0.36623 (9)0.0452 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0479 (11)0.0332 (10)0.0347 (10)0.0026 (8)0.0019 (8)0.0008 (8)
C20.0382 (9)0.0284 (8)0.0297 (9)0.0029 (7)0.0054 (7)0.0004 (7)
C30.0333 (9)0.0274 (8)0.0293 (9)0.0050 (7)0.0086 (7)0.0024 (7)
C40.0329 (9)0.0289 (9)0.0287 (9)0.0038 (6)0.0014 (7)0.0007 (7)
C50.0322 (9)0.0284 (8)0.0306 (9)0.0002 (6)0.0047 (7)0.0014 (7)
C60.0889 (19)0.0920 (19)0.0465 (14)0.0128 (14)0.0310 (13)0.0068 (12)
C310.0336 (9)0.0323 (9)0.0273 (9)0.0033 (7)0.0093 (7)0.0010 (7)
C320.0326 (9)0.0384 (9)0.0272 (9)0.0009 (7)0.0099 (7)0.0021 (7)
C330.0412 (10)0.0380 (10)0.0403 (11)0.0008 (8)0.0091 (8)0.0031 (8)
C340.0522 (13)0.0450 (12)0.0566 (13)0.0126 (9)0.0057 (10)0.0017 (10)
C350.0471 (13)0.0626 (15)0.0604 (15)0.0160 (10)0.0061 (11)0.0037 (11)
C360.0389 (11)0.0599 (13)0.0495 (12)0.0012 (9)0.0021 (9)0.0106 (10)
C370.0345 (10)0.0417 (10)0.0328 (9)0.0018 (7)0.0083 (8)0.0054 (7)
C380.0385 (10)0.0363 (9)0.0306 (9)0.0027 (7)0.0075 (8)0.0002 (7)
C410.0402 (10)0.0257 (8)0.0306 (9)0.0035 (7)0.0031 (7)0.0009 (7)
C420.0365 (10)0.0361 (9)0.0343 (10)0.0075 (7)0.0030 (8)0.0048 (7)
C430.0479 (11)0.0472 (11)0.0369 (11)0.0155 (9)0.0020 (9)0.0002 (8)
C440.0636 (15)0.0593 (14)0.0459 (13)0.0249 (11)0.0098 (11)0.0050 (10)
C450.0428 (13)0.0837 (18)0.081 (2)0.0188 (12)0.0127 (13)0.0223 (15)
C460.0410 (13)0.105 (2)0.085 (2)0.0046 (13)0.0114 (13)0.0088 (16)
C470.0429 (12)0.0740 (15)0.0535 (13)0.0057 (10)0.0115 (10)0.0012 (11)
C510.0358 (9)0.0263 (8)0.0310 (9)0.0028 (7)0.0052 (7)0.0013 (7)
C520.0342 (10)0.0407 (10)0.0360 (10)0.0023 (7)0.0054 (8)0.0015 (8)
C530.0501 (12)0.0482 (11)0.0300 (10)0.0001 (9)0.0029 (9)0.0024 (8)
C540.0597 (13)0.0430 (11)0.0390 (11)0.0073 (9)0.0180 (10)0.0016 (8)
C550.0473 (12)0.0582 (13)0.0499 (12)0.0167 (9)0.0210 (10)0.0063 (10)
C560.0373 (10)0.0482 (11)0.0391 (11)0.0107 (8)0.0062 (8)0.0030 (8)
N10.0830 (14)0.0337 (10)0.0688 (13)0.0048 (9)0.0014 (11)0.0071 (8)
N20.0395 (8)0.0369 (8)0.0357 (8)0.0085 (7)0.0051 (7)0.0084 (7)
O10.0331 (6)0.0279 (6)0.0415 (7)0.0036 (5)0.0016 (5)0.0029 (5)
O20.0515 (8)0.0508 (8)0.0290 (7)0.0095 (6)0.0051 (6)0.0042 (6)
Geometric parameters (Å, º) top
C1—N11.142 (2)C37—N21.370 (2)
C1—C21.411 (2)C38—N21.348 (2)
C2—C31.343 (2)C38—H380.9300
C2—C51.511 (2)C41—O21.208 (2)
C3—O11.3670 (18)C41—C421.484 (2)
C3—C311.436 (2)C42—C431.379 (3)
C4—O11.4397 (19)C42—C471.386 (3)
C4—C411.521 (2)C43—C441.385 (3)
C4—C51.557 (2)C43—H430.9300
C4—H40.9800C44—C451.374 (3)
C5—C511.515 (2)C44—H440.9300
C5—H50.9800C45—C461.366 (4)
C6—C541.501 (3)C45—H450.9300
C6—H6A0.9600C46—C471.376 (3)
C6—H6B0.9600C46—H460.9300
C6—H6C0.9600C47—H470.9300
C31—C381.370 (2)C51—C561.380 (2)
C31—C321.441 (2)C51—C521.385 (2)
C32—C331.393 (2)C52—C531.381 (3)
C32—C371.405 (2)C52—H520.9300
C33—C341.372 (3)C53—C541.377 (3)
C33—H330.9300C53—H530.9300
C34—C351.391 (3)C54—C551.381 (3)
C34—H340.9300C55—C561.381 (3)
C35—C361.374 (3)C55—H550.9300
C35—H350.9300C56—H560.9300
C36—C371.383 (3)N2—H20.91 (2)
C36—H360.9300
N1—C1—C2179.0 (2)N2—C38—C31109.98 (15)
C3—C2—C1125.41 (15)N2—C38—H38125.0
C3—C2—C5110.74 (14)C31—C38—H38125.0
C1—C2—C5123.49 (15)O2—C41—C42121.82 (17)
C2—C3—O1112.21 (14)O2—C41—C4121.48 (15)
C2—C3—C31132.51 (15)C42—C41—C4116.40 (14)
O1—C3—C31115.18 (14)C43—C42—C47119.15 (18)
O1—C4—C41110.25 (13)C43—C42—C41122.17 (17)
O1—C4—C5106.50 (12)C47—C42—C41118.55 (17)
C41—C4—C5109.70 (13)C42—C43—C44120.4 (2)
O1—C4—H4110.1C42—C43—H43119.8
C41—C4—H4110.1C44—C43—H43119.8
C5—C4—H4110.1C45—C44—C43119.5 (2)
C2—C5—C51113.80 (13)C45—C44—H44120.2
C2—C5—C498.75 (12)C43—C44—H44120.2
C51—C5—C4113.99 (13)C46—C45—C44120.5 (2)
C2—C5—H5109.9C46—C45—H45119.7
C51—C5—H5109.9C44—C45—H45119.7
C4—C5—H5109.9C45—C46—C47120.2 (2)
C54—C6—H6A109.5C45—C46—H46119.9
C54—C6—H6B109.5C47—C46—H46119.9
H6A—C6—H6B109.5C46—C47—C42120.2 (2)
C54—C6—H6C109.5C46—C47—H47119.9
H6A—C6—H6C109.5C42—C47—H47119.9
H6B—C6—H6C109.5C56—C51—C52117.94 (16)
C38—C31—C3125.75 (15)C56—C51—C5121.36 (15)
C38—C31—C32106.58 (15)C52—C51—C5120.67 (15)
C3—C31—C32127.64 (15)C53—C52—C51120.77 (17)
C33—C32—C37118.61 (16)C53—C52—H52119.6
C33—C32—C31135.37 (16)C51—C52—H52119.6
C37—C32—C31106.01 (15)C54—C53—C52121.43 (18)
C34—C33—C32118.84 (17)C54—C53—H53119.3
C34—C33—H33120.6C52—C53—H53119.3
C32—C33—H33120.6C53—C54—C55117.63 (18)
C33—C34—C35121.53 (19)C53—C54—C6121.72 (19)
C33—C34—H34119.2C55—C54—C6120.64 (19)
C35—C34—H34119.2C54—C55—C56121.37 (19)
C36—C35—C34121.10 (19)C54—C55—H55119.3
C36—C35—H35119.4C56—C55—H55119.3
C34—C35—H35119.4C51—C56—C55120.85 (17)
C35—C36—C37117.31 (18)C51—C56—H56119.6
C35—C36—H36121.3C55—C56—H56119.6
C37—C36—H36121.3C38—N2—C37109.46 (14)
N2—C37—C36129.44 (17)C38—N2—H2125.2 (12)
N2—C37—C32107.95 (15)C37—N2—H2124.4 (12)
C36—C37—C32122.60 (17)C3—O1—C4107.96 (12)
N1—C1—C2—C3106 (14)C5—C4—C41—O2105.78 (18)
N1—C1—C2—C582 (14)O1—C4—C41—C42175.00 (13)
C1—C2—C3—O1178.88 (16)C5—C4—C41—C4268.02 (17)
C5—C2—C3—O15.6 (2)O2—C41—C42—C43166.10 (17)
C1—C2—C3—C312.8 (3)C4—C41—C42—C4320.1 (2)
C5—C2—C3—C31170.48 (17)O2—C41—C42—C4718.1 (3)
C3—C2—C5—C51106.09 (16)C4—C41—C42—C47155.73 (17)
C1—C2—C5—C5167.3 (2)C47—C42—C43—C441.5 (3)
C3—C2—C5—C415.07 (18)C41—C42—C43—C44174.33 (17)
C1—C2—C5—C4171.50 (16)C42—C43—C44—C450.4 (3)
O1—C4—C5—C218.97 (16)C43—C44—C45—C460.9 (4)
C41—C4—C5—C2100.33 (14)C44—C45—C46—C471.1 (4)
O1—C4—C5—C51102.04 (15)C45—C46—C47—C420.0 (4)
C41—C4—C5—C51138.65 (14)C43—C42—C47—C461.3 (3)
C2—C3—C31—C3812.6 (3)C41—C42—C47—C46174.7 (2)
O1—C3—C31—C38171.41 (15)C2—C5—C51—C5632.8 (2)
C2—C3—C31—C32165.29 (18)C4—C5—C51—C5679.46 (19)
O1—C3—C31—C3210.7 (2)C2—C5—C51—C52149.49 (15)
C38—C31—C32—C33179.13 (19)C4—C5—C51—C5298.29 (18)
C3—C31—C32—C332.7 (3)C56—C51—C52—C530.6 (3)
C38—C31—C32—C370.53 (18)C5—C51—C52—C53178.47 (16)
C3—C31—C32—C37177.68 (16)C51—C52—C53—C540.0 (3)
C37—C32—C33—C340.3 (3)C52—C53—C54—C550.7 (3)
C31—C32—C33—C34179.29 (19)C52—C53—C54—C6178.30 (19)
C32—C33—C34—C350.3 (3)C53—C54—C55—C560.8 (3)
C33—C34—C35—C360.2 (4)C6—C54—C55—C56178.2 (2)
C34—C35—C36—C370.7 (3)C52—C51—C56—C550.5 (3)
C35—C36—C37—N2179.33 (19)C5—C51—C56—C55178.35 (16)
C35—C36—C37—C320.6 (3)C54—C55—C56—C510.2 (3)
C33—C32—C37—N2179.83 (15)C31—C38—N2—C371.1 (2)
C31—C32—C37—N20.10 (19)C36—C37—N2—C38179.26 (19)
C33—C32—C37—C360.1 (3)C32—C37—N2—C380.7 (2)
C31—C32—C37—C36179.88 (17)C2—C3—O1—C47.86 (18)
C3—C31—C38—N2177.26 (15)C31—C3—O1—C4175.33 (14)
C32—C31—C38—N20.99 (19)C41—C4—O1—C3101.52 (14)
O1—C4—C41—O211.2 (2)C5—C4—O1—C317.43 (17)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C51–C56 ring.
D—H···AD—HH···AD···AD—H···A
C33—H33···O10.932.523.032 (2)115
N2—H2···O2i0.91 (2)2.04 (2)2.880 (2)154
C44—H44···O2ii0.932.553.329 (3)142
C34—H34···Cg1iii0.932.693.556 (3)156
Symmetry codes: (i) x+2, y, z+1; (ii) x1/2, y+1/2, z1/2; (iii) x1/2, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC27H20N2O2
Mr404.45
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.8084 (4), 15.9553 (7), 13.8782 (7)
β (°) 107.185 (2)
V3)2074.92 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.19 × 0.15 × 0.12
Data collection
DiffractometerBruker Kappa APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.967, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
21144, 4647, 3017
Rint0.038
(sin θ/λ)max1)0.646
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.133, 1.02
No. of reflections4647
No. of parameters284
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.22

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C51–C56 ring.
D—H···AD—HH···AD···AD—H···A
C33—H33···O10.932.523.032 (2)115
N2—H2···O2i0.91 (2)2.04 (2)2.880 (2)154
C44—H44···O2ii0.932.553.329 (3)142
C34—H34···Cg1iii0.932.693.556 (3)156
Symmetry codes: (i) x+2, y, z+1; (ii) x1/2, y+1/2, z1/2; (iii) x1/2, y1/2, z1/2.
 

Acknowledgements

JS thanks the UGC for the FIST support. JS and RV thank the management of Madura College for their encouragement and support. PG thanks the CSIR for a Junior and Senior Research Fellowship. SP thanks the Department of Science and Technology, New Delhi, for funding the Indo-Spanish collaborative major research project (grant No. DST/INT/SPAIN/09).

References

First citationAuvin, S. & Chabrier De Lassauniere, P. (2005). US Patent No. 222045.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds