organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Methyl­spiro­[indoline-3,7′-[6H,7H,8H]pyrano[3,2-c:5,6-c′]di[1]benzo­pyran]-2,6′,8′-trione chloroform hemisolvate

aDepartment of Chemistry, College of Sciences, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia, and bDepartment of Physics, The Madura College, Madurai 625 011, India
*Correspondence e-mail: ambujasureshj@yahoo.com

(Received 16 March 2012; accepted 20 March 2012; online 28 March 2012)

In the title compound, C27H15NO6·0.5CHCl3, the central pyran ring and both the benzopyran systems are planar, with the dihedral angle between the outer rings being 3.24 (6)°. The indolin-2-one system is in a perpendicular configuration with respect to the pyran ring [dihedral angle = 87.58 (2)°]. Supra­molecular layers in the ac plane are formed in the crystal structure whereby inversion-related mol­ecules are connected by N—H⋯O hydrogen bonds. These are further linked by C—H⋯O inter­actions, forming a supra­molecular layer in the ac plane. Disordered CHCl3 solvent in the structure was modelled with the SQUEEZE routine in PLATON [Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). Acta Cryst. D65, 148–155].

Related literature

For hydrogen-bonding motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the biological relevance of benzopyrans, see: Martin & Critchlow (1999[Martin, E. J. & Critchlow, R. E. (1999). J. Combin. Chem. 1, 32-45.]); Teague & Davis (1999[Teague, S. J. & Davis, A. M. (1999). Angew. Chem. Int. Ed. 38, 3743-3748.]). For the importance of spiro­[indole-pyran] systems, see: Ninamiya (1980[Ninamiya, K. (1980). Jpn Patent No. 7025894.]); Kobayashi & Matsuda (1970[Kobayashi, G. & Matsuda, Y. (1970). Jpn Patent No. 7025894.]).

[Scheme 1]

Experimental

Crystal data
  • C27H15NO6·0.5CHCl3

  • Mr = 509.08

  • Monoclinic, P 21 /c

  • a = 9.9341 (2) Å

  • b = 19.1498 (4) Å

  • c = 12.8279 (2) Å

  • β = 95.078 (1)°

  • V = 2430.75 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 293 K

  • 0.21 × 0.17 × 0.12 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.973, Tmax = 0.978

  • 30555 measured reflections

  • 7646 independent reflections

  • 5443 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.174

  • S = 1.05

  • 7646 reflections

  • 312 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O5i 0.89 (3) 2.25 (3) 2.965 (2) 138 (2)
C45—H45⋯O5i 0.93 2.51 3.212 (2) 133
C63—H63⋯O3ii 0.93 2.51 3.347 (3) 150
C65—H65⋯O4iii 0.93 2.59 3.363 (2) 141
Symmetry codes: (i) -x+1, -y, -z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Benzopyran is a structural motif observed in many biologically active natural products and it plays an important role in binding with various biopolymers (Martin et al., 1999; Teague et al., 1999). Of the various spiro indoles, the spiro[indole-pyran] system has attracted attention due to its interesting pharmacological properties (Ninamiya et al., 1980; Kobayashi et al., 1970). The biological importance of these heterocycles in conjunction with our research interests prompted us to synthesize and report the X-ray structure of the title compound.

In the title compound, Fig 1, the central pyrano ring and both the benzopyran rings are planar. In the indolin-2-one system, the benzene and pyrrole rings are individually planar and make a dihedral angle of 1.42 (1)°. The indoline-2-one system is in a perpendicular configuration with respect to the pyrano ring, as can be seen from the dihedral angle of 87.58 (2)°. The sum of the angles at atom N1 of the indolin-2-one moiety is in accordance with sp2-hybridization [359.85 (2)°].

The N1—H1···O5 hydrogen bond connects two centrosymmetrically related molecules and generate the graph set motif R22(14) (Bernstein et al., 1995). These centrosymmetric dimers are interrelated by zigzag linear chains of C—H···O hydrogen bonds to form a layered structure (Fig. 2).

Related literature top

For hydrogen-bonding motifs, see: Bernstein et al. (1995). For the biological relevance of benzopyrans, see: Martin & Critchlow (1999); Teague & Davis (1999). For the importance of spiro[indole-pyran] systems, see: Ninamiya (1980); Kobayashi & Matsuda (1970).

Experimental top

A mixture of 5-methylindoline-2,3-dione (0.100 g, 0.62 mmol), 4-hydroxy-2H-chromen-2-one (0.201 g, 1.24 mmol) and paratoluene sulfonic acid (0.118 g, 0.62 mmol) were dissolved in 5 ml of ethanol:water (1:1 v/v) and refluxed for 2 h. After completion of the reaction, as evidenced from TLC, the precipitated solid was filtered and washed with water to afford the product which was recrystallized from CHCl3 to produce the title compound as colourless crystals. Yield 76%. M. pt: 540–541 K.

Refinement top

Initial structural solution showed a disordered co-crystallized solvent chloroform molecule for which a suitable model could not be found. Therefore, the data set was treated with SQUEEZE routine of PLATON (Spek, 2009) to model the electron density in the void regions. There are two cavities of 277 Å3 per unit cell. Each cavity contains approximately 125 electrons which were assigned to two solvent chloroform molecules. The N-bound H atom was located in a difference map and refined freely. The C-bound H atoms were placed at calculated positions and allowed to ride on their carrier atoms with C—H = 0.93–0.96 Å, and with Uiso = 1.2 to 1.5Ueq(C).

Structure description top

Benzopyran is a structural motif observed in many biologically active natural products and it plays an important role in binding with various biopolymers (Martin et al., 1999; Teague et al., 1999). Of the various spiro indoles, the spiro[indole-pyran] system has attracted attention due to its interesting pharmacological properties (Ninamiya et al., 1980; Kobayashi et al., 1970). The biological importance of these heterocycles in conjunction with our research interests prompted us to synthesize and report the X-ray structure of the title compound.

In the title compound, Fig 1, the central pyrano ring and both the benzopyran rings are planar. In the indolin-2-one system, the benzene and pyrrole rings are individually planar and make a dihedral angle of 1.42 (1)°. The indoline-2-one system is in a perpendicular configuration with respect to the pyrano ring, as can be seen from the dihedral angle of 87.58 (2)°. The sum of the angles at atom N1 of the indolin-2-one moiety is in accordance with sp2-hybridization [359.85 (2)°].

The N1—H1···O5 hydrogen bond connects two centrosymmetrically related molecules and generate the graph set motif R22(14) (Bernstein et al., 1995). These centrosymmetric dimers are interrelated by zigzag linear chains of C—H···O hydrogen bonds to form a layered structure (Fig. 2).

For hydrogen-bonding motifs, see: Bernstein et al. (1995). For the biological relevance of benzopyrans, see: Martin & Critchlow (1999); Teague & Davis (1999). For the importance of spiro[indole-pyran] systems, see: Ninamiya (1980); Kobayashi & Matsuda (1970).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. A packing diagram for (I).
5-Methylspiro[indoline-3,7'-[6H,7H,8H]pyrano[3,2- c:5,6-c']di[1]benzopyran]-2,6',8'-trione chloroform hemisolvate top
Crystal data top
C27H15NO6·0.5CHCl3F(000) = 1044
Mr = 509.08Dx = 1.391 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2000 reflections
a = 9.9341 (2) Åθ = 2–31°
b = 19.1498 (4) ŵ = 0.26 mm1
c = 12.8279 (2) ÅT = 293 K
β = 95.078 (1)°Block, colourless
V = 2430.75 (8) Å30.21 × 0.17 × 0.12 mm
Z = 4
Data collection top
Bruker Kappa APEXII
diffractometer
7646 independent reflections
Radiation source: fine-focus sealed tube5443 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 0 pixels mm-1θmax = 31.0°, θmin = 1.9°
ω and φ scansh = 1413
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 2527
Tmin = 0.973, Tmax = 0.978l = 1818
30555 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.174H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0634P)2 + 2.2541P]
where P = (Fo2 + 2Fc2)/3
7646 reflections(Δ/σ)max < 0.001
312 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C27H15NO6·0.5CHCl3V = 2430.75 (8) Å3
Mr = 509.08Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.9341 (2) ŵ = 0.26 mm1
b = 19.1498 (4) ÅT = 293 K
c = 12.8279 (2) Å0.21 × 0.17 × 0.12 mm
β = 95.078 (1)°
Data collection top
Bruker Kappa APEXII
diffractometer
7646 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5443 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.978Rint = 0.038
30555 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.174H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.56 e Å3
7646 reflectionsΔρmin = 0.26 e Å3
312 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H10.457 (3)0.0749 (15)0.036 (2)0.039 (7)*
O10.36729 (14)0.05045 (7)0.45866 (9)0.0208 (3)
O40.61175 (14)0.16085 (7)0.27455 (10)0.0218 (3)
O20.13685 (15)0.11955 (8)0.35920 (10)0.0260 (3)
O50.55602 (15)0.09408 (7)0.13736 (10)0.0237 (3)
C50.45433 (18)0.06556 (9)0.29103 (13)0.0173 (3)
C40.37191 (18)0.00753 (9)0.23811 (12)0.0169 (3)
O30.21718 (16)0.11890 (8)0.20426 (11)0.0274 (3)
C610.5243 (2)0.14056 (10)0.44128 (13)0.0206 (3)
O60.55858 (14)0.07739 (7)0.22758 (10)0.0227 (3)
N10.42069 (17)0.04625 (8)0.08013 (11)0.0194 (3)
C510.54180 (19)0.10595 (9)0.22880 (13)0.0191 (3)
C620.6029 (2)0.17960 (10)0.37751 (14)0.0224 (4)
C210.20946 (19)0.03669 (10)0.49302 (13)0.0201 (3)
C260.1330 (2)0.09402 (10)0.45856 (14)0.0232 (4)
C60.44858 (19)0.08330 (9)0.39331 (13)0.0187 (3)
C660.5210 (2)0.16042 (10)0.54660 (14)0.0242 (4)
H660.47020.13480.59070.029*
C310.2182 (2)0.09080 (10)0.28832 (14)0.0223 (4)
C20.29255 (19)0.00495 (9)0.41954 (13)0.0189 (3)
C30.29520 (19)0.02882 (10)0.31997 (13)0.0201 (3)
C220.2006 (2)0.01261 (11)0.59664 (14)0.0255 (4)
H220.25010.02610.62130.031*
C470.46395 (19)0.04504 (9)0.18295 (13)0.0194 (3)
C410.27664 (19)0.03172 (10)0.14649 (13)0.0199 (3)
C230.1178 (2)0.04734 (12)0.66075 (15)0.0297 (4)
H230.11160.03180.72890.036*
C650.5931 (2)0.21793 (11)0.58413 (16)0.0285 (4)
H650.59220.23070.65400.034*
C420.17032 (19)0.07831 (10)0.14353 (14)0.0214 (4)
H420.15060.10130.20420.026*
C630.6734 (2)0.23846 (10)0.41314 (16)0.0262 (4)
H630.72290.26470.36890.031*
C440.1267 (2)0.05638 (11)0.04015 (15)0.0260 (4)
H440.07520.06460.10310.031*
C250.0495 (2)0.12924 (12)0.52263 (16)0.0298 (4)
H250.00080.16770.49790.036*
C450.2353 (2)0.00990 (10)0.03905 (14)0.0230 (4)
H450.25690.01230.09990.028*
C460.30960 (19)0.00194 (10)0.05576 (13)0.0196 (3)
C430.0926 (2)0.09085 (10)0.04953 (15)0.0244 (4)
C240.0432 (2)0.10568 (13)0.62359 (17)0.0332 (5)
H240.01140.12880.66770.040*
C480.0246 (2)0.14117 (12)0.04545 (17)0.0301 (4)
H48A0.07720.13680.02070.045*
H48B0.00900.18800.05350.045*
H48C0.08020.13070.10100.045*
C640.6678 (2)0.25713 (11)0.51757 (17)0.0306 (4)
H640.71450.29640.54350.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0288 (7)0.0230 (6)0.0110 (5)0.0020 (5)0.0047 (5)0.0020 (5)
O40.0298 (7)0.0208 (6)0.0154 (6)0.0013 (5)0.0046 (5)0.0001 (5)
O20.0354 (8)0.0263 (7)0.0173 (6)0.0067 (6)0.0078 (5)0.0023 (5)
O50.0338 (8)0.0235 (7)0.0147 (6)0.0001 (6)0.0070 (5)0.0009 (5)
C50.0231 (8)0.0167 (7)0.0124 (7)0.0018 (6)0.0026 (6)0.0006 (6)
C40.0244 (8)0.0167 (7)0.0098 (6)0.0006 (6)0.0039 (6)0.0007 (5)
O30.0395 (8)0.0252 (7)0.0183 (6)0.0056 (6)0.0074 (6)0.0041 (5)
C610.0277 (9)0.0198 (8)0.0140 (7)0.0028 (7)0.0011 (7)0.0004 (6)
O60.0288 (7)0.0223 (6)0.0172 (6)0.0041 (5)0.0034 (5)0.0003 (5)
N10.0274 (8)0.0203 (7)0.0110 (6)0.0028 (6)0.0046 (5)0.0018 (5)
C510.0243 (9)0.0181 (8)0.0152 (7)0.0025 (7)0.0031 (6)0.0004 (6)
C620.0289 (10)0.0215 (8)0.0170 (8)0.0018 (7)0.0028 (7)0.0007 (6)
C210.0245 (9)0.0233 (8)0.0132 (7)0.0034 (7)0.0048 (6)0.0015 (6)
C260.0273 (9)0.0262 (9)0.0168 (8)0.0021 (7)0.0057 (7)0.0006 (7)
C60.0247 (9)0.0186 (8)0.0129 (7)0.0022 (7)0.0031 (6)0.0009 (6)
C660.0315 (10)0.0254 (9)0.0158 (8)0.0011 (8)0.0019 (7)0.0023 (7)
C310.0278 (9)0.0231 (9)0.0165 (8)0.0016 (7)0.0052 (7)0.0001 (6)
C20.0242 (9)0.0195 (8)0.0132 (7)0.0013 (7)0.0023 (6)0.0001 (6)
C30.0257 (9)0.0205 (8)0.0145 (7)0.0001 (7)0.0049 (6)0.0006 (6)
C220.0318 (10)0.0304 (10)0.0148 (8)0.0033 (8)0.0058 (7)0.0001 (7)
C470.0263 (9)0.0185 (8)0.0143 (7)0.0005 (7)0.0059 (6)0.0009 (6)
C410.0257 (9)0.0222 (8)0.0123 (7)0.0013 (7)0.0038 (6)0.0002 (6)
C230.0351 (11)0.0391 (11)0.0162 (8)0.0029 (9)0.0091 (7)0.0001 (8)
C650.0365 (11)0.0289 (10)0.0198 (8)0.0008 (9)0.0015 (8)0.0059 (7)
C420.0255 (9)0.0227 (8)0.0165 (8)0.0011 (7)0.0046 (7)0.0007 (6)
C630.0314 (10)0.0232 (9)0.0240 (9)0.0021 (8)0.0021 (8)0.0008 (7)
C440.0295 (10)0.0300 (10)0.0181 (8)0.0010 (8)0.0003 (7)0.0008 (7)
C250.0347 (11)0.0304 (10)0.0254 (9)0.0035 (9)0.0091 (8)0.0007 (8)
C450.0277 (9)0.0275 (9)0.0139 (7)0.0019 (8)0.0024 (7)0.0023 (6)
C460.0253 (9)0.0199 (8)0.0141 (7)0.0004 (7)0.0044 (6)0.0016 (6)
C430.0249 (9)0.0254 (9)0.0230 (9)0.0009 (7)0.0039 (7)0.0020 (7)
C240.0362 (12)0.0407 (12)0.0248 (10)0.0017 (10)0.0138 (8)0.0036 (9)
C480.0289 (10)0.0342 (11)0.0272 (10)0.0065 (9)0.0031 (8)0.0020 (8)
C640.0372 (12)0.0273 (10)0.0271 (10)0.0036 (9)0.0013 (9)0.0068 (8)
Geometric parameters (Å, º) top
O1—C21.365 (2)C31—C31.451 (3)
O1—C61.368 (2)C2—C31.359 (2)
O4—C511.364 (2)C22—C231.384 (3)
O4—C621.379 (2)C22—H220.9300
O2—C261.369 (2)C41—C421.381 (3)
O2—C311.383 (2)C41—C461.395 (2)
O5—C511.215 (2)C23—C241.401 (3)
C5—C61.361 (2)C23—H230.9300
C5—C511.454 (2)C65—C641.398 (3)
C5—C41.506 (2)C65—H650.9300
C4—C411.515 (2)C42—C431.394 (3)
C4—C31.520 (2)C42—H420.9300
C4—C471.570 (2)C63—C641.392 (3)
O3—C311.204 (2)C63—H630.9300
C61—C621.396 (3)C44—C431.394 (3)
C61—C661.407 (2)C44—C451.398 (3)
C61—C61.437 (3)C44—H440.9300
O6—C471.225 (2)C25—C241.378 (3)
N1—C471.351 (2)C25—H250.9300
N1—C461.405 (2)C45—C461.384 (3)
N1—H10.88 (3)C45—H450.9300
C62—C631.384 (3)C43—C481.509 (3)
C21—C261.385 (3)C24—H240.9300
C21—C221.417 (2)C48—H48A0.9600
C21—C21.441 (2)C48—H48B0.9600
C26—C251.393 (3)C48—H48C0.9600
C66—C651.378 (3)C64—H640.9300
C66—H660.9300
C2—O1—C6117.62 (13)C21—C22—H22120.3
C51—O4—C62122.64 (15)O6—C47—N1127.77 (17)
C26—O2—C31122.42 (16)O6—C47—C4124.55 (15)
C6—C5—C51118.32 (16)N1—C47—C4107.67 (15)
C6—C5—C4123.45 (16)C42—C41—C46120.75 (17)
C51—C5—C4118.21 (14)C42—C41—C4130.01 (16)
C5—C4—C41113.67 (14)C46—C41—C4109.24 (16)
C5—C4—C3108.20 (13)C22—C23—C24120.37 (18)
C41—C4—C3111.05 (15)C22—C23—H23119.8
C5—C4—C47111.18 (15)C24—C23—H23119.8
C41—C4—C47101.25 (13)C66—C65—C64120.24 (18)
C3—C4—C47111.43 (14)C66—C65—H65119.9
C62—C61—C66118.68 (17)C64—C65—H65119.9
C62—C61—C6117.14 (16)C41—C42—C43119.94 (17)
C66—C61—C6124.15 (17)C41—C42—H42120.0
C47—N1—C46112.50 (15)C43—C42—H42120.0
C47—N1—H1121.3 (18)C62—C63—C64117.69 (19)
C46—N1—H1126.0 (18)C62—C63—H63121.2
O5—C51—O4117.46 (16)C64—C63—H63121.2
O5—C51—C5123.83 (17)C43—C44—C45122.47 (18)
O4—C51—C5118.71 (15)C43—C44—H44118.8
O4—C62—C63117.07 (17)C45—C44—H44118.8
O4—C62—C61120.54 (17)C24—C25—C26118.4 (2)
C63—C62—C61122.39 (17)C24—C25—H25120.8
C26—C21—C22118.67 (17)C26—C25—H25120.8
C26—C21—C2117.08 (16)C46—C45—C44117.67 (17)
C22—C21—C2124.25 (18)C46—C45—H45121.2
O2—C26—C21121.37 (16)C44—C45—H45121.2
O2—C26—C25116.34 (18)C45—C46—C41120.74 (18)
C21—C26—C25122.28 (17)C45—C46—N1129.92 (16)
C5—C6—O1123.59 (16)C41—C46—N1109.34 (15)
C5—C6—C61122.55 (17)C44—C43—C42118.42 (18)
O1—C6—C61113.81 (15)C44—C43—C48121.13 (18)
C65—C66—C61119.73 (19)C42—C43—C48120.45 (18)
C65—C66—H66120.1C25—C24—C23120.9 (2)
C61—C66—H66120.1C25—C24—H24119.5
O3—C31—O2116.87 (17)C23—C24—H24119.5
O3—C31—C3125.33 (17)C43—C48—H48A109.5
O2—C31—C3117.78 (15)C43—C48—H48B109.5
C3—C2—O1123.50 (16)H48A—C48—H48B109.5
C3—C2—C21122.19 (17)C43—C48—H48C109.5
O1—C2—C21114.31 (15)H48A—C48—H48C109.5
C2—C3—C31118.98 (16)H48B—C48—H48C109.5
C2—C3—C4123.23 (17)C63—C64—C65121.23 (19)
C31—C3—C4117.76 (15)C63—C64—H64119.4
C23—C22—C21119.4 (2)C65—C64—H64119.4
C23—C22—H22120.3
C6—C5—C4—C41119.26 (19)O3—C31—C3—C45.5 (3)
C51—C5—C4—C4159.0 (2)O2—C31—C3—C4173.18 (16)
C6—C5—C4—C34.6 (2)C5—C4—C3—C27.4 (2)
C51—C5—C4—C3177.16 (15)C41—C4—C3—C2118.02 (19)
C6—C5—C4—C47127.26 (18)C47—C4—C3—C2129.91 (19)
C51—C5—C4—C4754.5 (2)C5—C4—C3—C31174.52 (16)
C62—O4—C51—O5179.51 (17)C41—C4—C3—C3160.1 (2)
C62—O4—C51—C50.0 (3)C47—C4—C3—C3152.0 (2)
C6—C5—C51—O5178.95 (18)C26—C21—C22—C230.8 (3)
C4—C5—C51—O52.7 (3)C2—C21—C22—C23179.77 (19)
C6—C5—C51—O41.6 (3)C46—N1—C47—O6179.44 (19)
C4—C5—C51—O4176.77 (15)C46—N1—C47—C40.5 (2)
C51—O4—C62—C63176.75 (17)C5—C4—C47—O658.0 (2)
C51—O4—C62—C612.6 (3)C41—C4—C47—O6179.11 (18)
C66—C61—C62—O4178.32 (17)C3—C4—C47—O662.8 (2)
C6—C61—C62—O43.4 (3)C5—C4—C47—N1120.92 (16)
C66—C61—C62—C632.4 (3)C41—C4—C47—N10.15 (19)
C6—C61—C62—C63175.88 (18)C3—C4—C47—N1118.29 (16)
C31—O2—C26—C211.1 (3)C5—C4—C41—C4261.1 (3)
C31—O2—C26—C25178.23 (18)C3—C4—C41—C4261.1 (3)
C22—C21—C26—O2179.75 (18)C47—C4—C41—C42179.55 (19)
C2—C21—C26—O20.3 (3)C5—C4—C41—C46119.56 (17)
C22—C21—C26—C250.9 (3)C3—C4—C41—C46118.15 (17)
C2—C21—C26—C25179.66 (19)C47—C4—C41—C460.26 (19)
C51—C5—C6—O1178.11 (16)C21—C22—C23—C240.1 (3)
C4—C5—C6—O10.1 (3)C61—C66—C65—C641.0 (3)
C51—C5—C6—C610.6 (3)C46—C41—C42—C431.6 (3)
C4—C5—C6—C61177.62 (17)C4—C41—C42—C43177.67 (18)
C2—O1—C6—C52.8 (3)O4—C62—C63—C64178.62 (19)
C2—O1—C6—C61179.47 (15)C61—C62—C63—C642.1 (3)
C62—C61—C6—C51.8 (3)O2—C26—C25—C24179.55 (19)
C66—C61—C6—C5179.99 (18)C21—C26—C25—C240.2 (3)
C62—C61—C6—O1175.87 (16)C43—C44—C45—C460.6 (3)
C66—C61—C6—O12.3 (3)C44—C45—C46—C410.2 (3)
C62—C61—C66—C650.8 (3)C44—C45—C46—N1178.69 (19)
C6—C61—C66—C65177.36 (19)C42—C41—C46—C450.9 (3)
C26—O2—C31—O3177.49 (18)C4—C41—C46—C45178.49 (17)
C26—O2—C31—C33.8 (3)C42—C41—C46—N1179.95 (17)
C6—O1—C2—C30.1 (3)C4—C41—C46—N10.6 (2)
C6—O1—C2—C21179.93 (16)C47—N1—C46—C45178.25 (19)
C26—C21—C2—C31.1 (3)C47—N1—C46—C410.7 (2)
C22—C21—C2—C3178.30 (18)C45—C44—C43—C420.1 (3)
C26—C21—C2—O1178.86 (16)C45—C44—C43—C48179.5 (2)
C22—C21—C2—O11.7 (3)C41—C42—C43—C441.1 (3)
O1—C2—C3—C31176.20 (17)C41—C42—C43—C48179.48 (19)
C21—C2—C3—C313.8 (3)C26—C25—C24—C230.6 (3)
O1—C2—C3—C45.7 (3)C22—C23—C24—C250.7 (4)
C21—C2—C3—C4174.32 (17)C62—C63—C64—C650.2 (3)
O3—C31—C3—C2176.4 (2)C66—C65—C64—C631.3 (3)
O2—C31—C3—C25.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O5i0.89 (3)2.25 (3)2.965 (2)138 (2)
C45—H45···O5i0.932.513.212 (2)133
C63—H63···O3ii0.932.513.347 (3)150
C65—H65···O4iii0.932.593.363 (2)141
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC27H15NO6·0.5CHCl3
Mr509.08
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.9341 (2), 19.1498 (4), 12.8279 (2)
β (°) 95.078 (1)
V3)2430.75 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.21 × 0.17 × 0.12
Data collection
DiffractometerBruker Kappa APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.973, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
30555, 7646, 5443
Rint0.038
(sin θ/λ)max1)0.724
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.174, 1.05
No. of reflections7646
No. of parameters312
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.56, 0.26

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O5i0.89 (3)2.25 (3)2.965 (2)138 (2)
C45—H45···O5i0.932.513.212 (2)133
C63—H63···O3ii0.932.513.347 (3)150
C65—H65···O4iii0.932.593.363 (2)141.4
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1/2, z+1/2.
 

Acknowledgements

This project was supported by the Research Center, College of Science, King Saud University.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKobayashi, G. & Matsuda, Y. (1970). Jpn Patent No. 7025894.  Google Scholar
First citationMartin, E. J. & Critchlow, R. E. (1999). J. Combin. Chem. 1, 32–45.  Web of Science CrossRef CAS Google Scholar
First citationNinamiya, K. (1980). Jpn Patent No. 7025894.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTeague, S. J. & Davis, A. M. (1999). Angew. Chem. Int. Ed. 38, 3743–3748.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds