organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-Benzaldehyde O-{[3-(pyridin-3-yl)isoxazol-5-yl]meth­yl}oxime

aDepartamento de Química, Facultad de Ciencias, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, bLaboratorio de Sintesis Orgánica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogota, DC, Colombia, and cWestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland
*Correspondence e-mail: rodimo26@yahoo.es

(Received 20 February 2012; accepted 11 March 2012; online 17 March 2012)

The asymmetric unit of the title compound, C16H13N3O2, contains two independent mol­ecules in which the pyridine and benzene rings form dihedral angles of 81.7 (2) and 79.8 (2)°, indicating the twist in the mol­ecules. In the crystal, weak C—H⋯N inter­actions link mol­ecules into chains along [100].

Related literature

For organic synthesis of isoxazole systems, see: Giomi et al. (2008[Giomi, D., Cordero, F. M., Pisaneschi, F. & Brandi, A. (2008). Comprehensive Heterocyclic Chemistry III, Vol. 4, pp. 365-486. Oxford: Elsevier.]); Chukanov & Reznikov (2011[Chukanov, N. V. & Reznikov, V. A. (2011). Russ. Chem. Bull. 60, 379-399.]). For the biological activity of isoxazole systems, see: Meyers et al. (2011[Meyers, M. J., Long, S. A., Pelc, M. J., Wang, J. L., Bowen, S. J., Schweitzer, B. A., Wilcox, M. V., McDonald, J., Smith, S. E., Foltin, S., Rumsey, J., Yang, Y., Walker, M. C., Kamtekar, S., Beidler, D. & Thorarensen, A. (2011). Bioorg. Med. Chem. Lett. 21, 6545-6553.]); Basappa et al. (2003[Basappa, M. P., Sadashiva, K., Mantelingu, S., Nanjunda, S. & Rangappa, K. S. (2003). Bioorg. Med. Chem. Lett. 11, 4539-4544.]); Lee et al. (2009[Lee, Y., Park, S. M. & Kim, B. H. (2009). Bioorg. Med. Chem. Lett. 19, 1126-1128.]); Talley et al. (2000[Talley, J., Brown, D. L., Carter, J. S., Graneto, M. J., Koboldt, C. M., Masferrer, J. L., Perkins, W. E., Rogers, R. S., Shaffer, A. F., Zhang, Y., Zweifel, B. S. & Seibert, K. (2000). J. Med. Chem. 43, 775-777.]); Farrerons et al. (2003[Farrerons, C., Lagunas, C. & Fernandez, A. (2003). Spanish Patent ES 2 180 456 A1.]); Edgard et al. (2004[Edgard, E., Andres-Gil, J., Dirk, D., Franciscus, D., Matezans-Ballesteros, M. & Alvarez, R. (2004). US Patent 2004-0019059 A1.]); For hydrogen-bond graph-set motifs, see: Etter (1990[Etter, M. (1990). Acc. Chem. Res. 23, 120-126.]). For hydrogen bonding, see: Nardelli (1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13N3O2

  • Mr = 279.29

  • Orthorhombic, P n a 21

  • a = 19.364 (12) Å

  • b = 4.459 (3) Å

  • c = 31.775 (19) Å

  • V = 2744 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.40 × 0.01 × 0.01 mm

Data collection
  • Rigaku Saturn724+ diffractometer

  • 17573 measured reflections

  • 4762 independent reflections

  • 3544 reflections with I > 2σ(I)

  • Rint = 0.086

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.136

  • S = 0.99

  • 4762 reflections

  • 379 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C26—H26⋯N3i 0.95 2.43 3.374 (5) 174
C10—H10⋯N6ii 0.95 2.49 3.443 (5) 179
Symmetry codes: (i) x, y+1, z; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z].

Data collection: CrystalClear-SM Expert (Rigaku, 2011[Rigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The isoxazoles are five-membered heterocyclic systems with one oxygen atom and one nitrogen atom at adjacent positions. These compounds are used as intermediates in organic synthesis due to their easy transformation into important groups such as enamino ketones, enoximes, 1,3-dicarbonyl compounds, γ-amino alcohols, and β-hydroxy nitriles (Giomi et al., 2008; Chukanov & Reznikov, 2011).

They also have been widely used in the synthesis of nucleosides, alkaloids and other natural compounds. Many derivatives exhibit interesting applications in various fields such as agriculture, industry, and medicine. The wide spectrum of biological activities characteristic of these systems, comprises analgesic (Meyers et al., 2011), antifungal (Basappa et al., 2003), antiviral (Lee et al., 2009), anti-inflammatory (Talley et al., 2000), and antiobesity (Giomi et al., 2008) activities.

In our research group, we are interested in the synthesis of nitrogen containing compounds with potential biological activity such as isoxazoles and oximes. The (E)-benzaldehyde O-(3-(pyridin-3-yl)isoxazol-5-yl)methyl oxime, (I), is an isoxazole analogue exhibiting important antibiotic (Farrerons et al., 2003) and immunomodulator properties (Edgard et al., 2004). On the other hand, the oxime function is an important pharmacophore group present in a wide variety of biologically active compounds, such as 3-oxiconazole and cefuroxime. Compound I was synthesized via 1,3-dipolar cycloaddition of an alkyne and a nitrile oxide obtained by treatment of (E)-nicotinaldehyde oxime with NaOCl. The reaction proceeded with high regioselectivity affording only the 5-substituted isomer in 45% yield. The molecular structure of I is shown in Fig. 1. The asymmetric unit of (I) contains two independent molecules (1) and (2). In both molecules, the isoxazole and pyridine rings are almost coplanar (r.m.s. deviation of all non-hydrogen atoms = 0.0044 Å). The dihedral angles between the mean planes defined by isoxazole and pyridine rings are 3.0 (3)° in molecule 1 and 5.8 (3)° in molecule 2. The pyridine and benzene rings form a dihedral angle of 81.7 (2)° in molecule 1 and 79.8 (2)° in molecule 2 indicating the twist in the molecules. The torsion angles of C8—O1—N1—C1 in (1) and C24—O3—N4—C17 in (2) are 176.2 (3) and -173.8 (3)° respectively and the least-squares fit of C2 C1 N1 O1 C8 C9 plane in (1) and C18 C17 N4 O3 C24 C25 plane in (2) show a r.m.s deviation of fitted atoms of 0.2117 and 0.2090 Å respectively, indicating the similar conformation of both molecules. The crystal packing is stabilized by weak C—H···N interactions (see Table 1, Nardelli, 1995). The molecules 1 and 2, are intertwined forming C(6) (Etter, 1990) chains of molecules along [100], see Fig. 2.

Related literature top

For organic synthesis of isoxazole systems, see: Giomi et al. (2008); Chukanov & Reznikov (2011). For the biological activity of isoxazole systems, see: Meyers et al. (2011); Basappa et al. (2003); Lee et al. (2009); Talley et al. (2000); Farrerons et al. (2003); Edgard et al. (2004); For hydrogen-bond graph-set motifs, see: Etter (1990). For hydrogen bonding, see: Nardelli (1995).

Experimental top

A stirred solution of (E)-benzaldehyde O-prop-2-ynyl oxime (318 mg, 2 mmol) and (E)- nicotinaldehyde oxime (122 mg, 1 mmol) in dichloromethane (4 ml) was placed on an ice bath during 5 minutes and then NaOCl in aqueous solution 5.25% (3 ml, 2.5 mmol) was added. The mixture was allowed to react for 30 minutes. After this period the phases were separated and the aqueous phase was extracted with AcOEt. The combined organic phases were dried with anhydrous Na2SO4, filtered and concentrated under low pressure. Purification of the crude mixture by flash column chromatography with 25% (v/v) AcOEt/hexane yielded a white solid (126 mg, 45% yield, mp 322 (1) K).

(E)-benzaldehyde O-(3-(pyridin-3-yl)isoxazol-5-yl)methyl oxime 1H NMR (300 MHz) δ, 9.04 (d, 1H), 8.70 (dd, 1H), 8.20 (ddd, 1H), 8.19 (s, 1H), 7.63–7.60 (m, 2H), 7.46–7.38 (m, 4H), 6.69 (t, 1H), 5.34 (d, 2H). 13C-NMR δ, 170.25, 159.10, 150.75, 150.45, 147.74, 134.31, 131.45, 130.37, 128.78, 127.30, 123.86, 101.24, 66.66. MS—EI M+ 279.1, 159.1 (100%).

Refinement top

The H-atoms were positioned geometrically [C—H= 0.95 Å for aromatic and C—H= 0.99 Å for methylene] and refined with Uiso(H) 1.2 and 1.5 times Ueq of the parent atom, respectively.

Structure description top

The isoxazoles are five-membered heterocyclic systems with one oxygen atom and one nitrogen atom at adjacent positions. These compounds are used as intermediates in organic synthesis due to their easy transformation into important groups such as enamino ketones, enoximes, 1,3-dicarbonyl compounds, γ-amino alcohols, and β-hydroxy nitriles (Giomi et al., 2008; Chukanov & Reznikov, 2011).

They also have been widely used in the synthesis of nucleosides, alkaloids and other natural compounds. Many derivatives exhibit interesting applications in various fields such as agriculture, industry, and medicine. The wide spectrum of biological activities characteristic of these systems, comprises analgesic (Meyers et al., 2011), antifungal (Basappa et al., 2003), antiviral (Lee et al., 2009), anti-inflammatory (Talley et al., 2000), and antiobesity (Giomi et al., 2008) activities.

In our research group, we are interested in the synthesis of nitrogen containing compounds with potential biological activity such as isoxazoles and oximes. The (E)-benzaldehyde O-(3-(pyridin-3-yl)isoxazol-5-yl)methyl oxime, (I), is an isoxazole analogue exhibiting important antibiotic (Farrerons et al., 2003) and immunomodulator properties (Edgard et al., 2004). On the other hand, the oxime function is an important pharmacophore group present in a wide variety of biologically active compounds, such as 3-oxiconazole and cefuroxime. Compound I was synthesized via 1,3-dipolar cycloaddition of an alkyne and a nitrile oxide obtained by treatment of (E)-nicotinaldehyde oxime with NaOCl. The reaction proceeded with high regioselectivity affording only the 5-substituted isomer in 45% yield. The molecular structure of I is shown in Fig. 1. The asymmetric unit of (I) contains two independent molecules (1) and (2). In both molecules, the isoxazole and pyridine rings are almost coplanar (r.m.s. deviation of all non-hydrogen atoms = 0.0044 Å). The dihedral angles between the mean planes defined by isoxazole and pyridine rings are 3.0 (3)° in molecule 1 and 5.8 (3)° in molecule 2. The pyridine and benzene rings form a dihedral angle of 81.7 (2)° in molecule 1 and 79.8 (2)° in molecule 2 indicating the twist in the molecules. The torsion angles of C8—O1—N1—C1 in (1) and C24—O3—N4—C17 in (2) are 176.2 (3) and -173.8 (3)° respectively and the least-squares fit of C2 C1 N1 O1 C8 C9 plane in (1) and C18 C17 N4 O3 C24 C25 plane in (2) show a r.m.s deviation of fitted atoms of 0.2117 and 0.2090 Å respectively, indicating the similar conformation of both molecules. The crystal packing is stabilized by weak C—H···N interactions (see Table 1, Nardelli, 1995). The molecules 1 and 2, are intertwined forming C(6) (Etter, 1990) chains of molecules along [100], see Fig. 2.

For organic synthesis of isoxazole systems, see: Giomi et al. (2008); Chukanov & Reznikov (2011). For the biological activity of isoxazole systems, see: Meyers et al. (2011); Basappa et al. (2003); Lee et al. (2009); Talley et al. (2000); Farrerons et al. (2003); Edgard et al. (2004); For hydrogen-bond graph-set motifs, see: Etter (1990). For hydrogen bonding, see: Nardelli (1995).

Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2011); cell refinement: CrystalClear-SM Expert (Rigaku, 2011); data reduction: CrystalClear-SM Expert (Rigaku, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. An ORTEP-3 (Farrugia, 1997) plot of (I) with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of chains along [100]. Symmetry code: (i) x - 1/2,-y + 3/2,z; (ii) x,y + 1,z.
(E)-Benzaldehyde O-{[3-(pyridin-3-yl)isoxazol-5-yl]methyl}oxime top
Crystal data top
C16H13N3O2Dx = 1.352 Mg m3
Mr = 279.29Melting point: 322(1) K
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71075 Å
Hall symbol: P 2c -2nCell parameters from 4687 reflections
a = 19.364 (12) Åθ = 2.5–25.1°
b = 4.459 (3) ŵ = 0.09 mm1
c = 31.775 (19) ÅT = 100 K
V = 2744 (3) Å3Needle, colourless
Z = 80.40 × 0.01 × 0.01 mm
F(000) = 1168
Data collection top
Rigaku Saturn724+
diffractometer
3544 reflections with I > 2σ(I)
Radiation source: Rotating AnodeRint = 0.086
Confocal monochromatorθmax = 25.0°, θmin = 3.8°
Detector resolution: 28.5714 pixels mm-1h = 2220
profile data from ω–scansk = 45
17573 measured reflectionsl = 3737
4762 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0521P)2]
where P = (Fo2 + 2Fc2)/3
4762 reflections(Δ/σ)max < 0.001
379 parametersΔρmax = 0.32 e Å3
1 restraintΔρmin = 0.25 e Å3
Crystal data top
C16H13N3O2V = 2744 (3) Å3
Mr = 279.29Z = 8
Orthorhombic, Pna21Mo Kα radiation
a = 19.364 (12) ŵ = 0.09 mm1
b = 4.459 (3) ÅT = 100 K
c = 31.775 (19) Å0.40 × 0.01 × 0.01 mm
Data collection top
Rigaku Saturn724+
diffractometer
3544 reflections with I > 2σ(I)
17573 measured reflectionsRint = 0.086
4762 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0591 restraint
wR(F2) = 0.136H-atom parameters constrained
S = 0.99Δρmax = 0.32 e Å3
4762 reflectionsΔρmin = 0.25 e Å3
379 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.42469 (12)1.0263 (6)0.10487 (8)0.0291 (6)
O20.54055 (14)0.8039 (6)0.04845 (8)0.0312 (7)
O30.66365 (12)1.0298 (6)0.27422 (8)0.0289 (6)
O40.78145 (14)0.8318 (6)0.21677 (8)0.0341 (7)
N10.36765 (16)0.8518 (7)0.08969 (10)0.0272 (8)
N20.56013 (16)0.6236 (8)0.01381 (9)0.0310 (8)
N30.57737 (19)0.2015 (7)0.10467 (11)0.0317 (8)
N40.60742 (16)0.8498 (7)0.25889 (10)0.0283 (8)
N50.80334 (18)0.6730 (8)0.18076 (10)0.0335 (9)
N60.82896 (17)0.3085 (9)0.05894 (11)0.0363 (9)
C10.3367 (2)0.7268 (9)0.12076 (13)0.0251 (9)
H10.35280.76380.14850.030*
C20.27783 (18)0.5302 (8)0.11453 (11)0.0236 (9)
C30.25108 (19)0.3751 (9)0.14916 (12)0.0268 (9)
H30.27160.40050.17610.032*
C40.1950 (2)0.1849 (9)0.14465 (14)0.0335 (10)
H40.17740.08030.16840.040*
C50.1645 (2)0.1470 (10)0.10568 (13)0.0350 (10)
H50.12620.01560.10270.042*
C60.1894 (2)0.2993 (10)0.07096 (13)0.0328 (11)
H60.16790.27540.04430.039*
C70.2467 (2)0.4896 (9)0.07537 (12)0.0304 (9)
H70.26440.59170.05150.037*
C80.4554 (2)1.1802 (9)0.06927 (12)0.0290 (10)
H8A0.42011.30900.05580.035*
H8B0.49321.31130.07940.035*
C90.48330 (17)0.9676 (8)0.03760 (11)0.0222 (8)
C100.4652 (2)0.9032 (9)0.00232 (11)0.0282 (9)
H100.42800.98510.01800.034*
C110.51395 (19)0.6865 (9)0.01587 (12)0.0226 (9)
C120.51848 (18)0.5373 (9)0.05737 (12)0.0261 (9)
C130.47154 (19)0.6129 (10)0.08933 (12)0.0303 (10)
H130.43550.75290.08420.036*
C140.47866 (19)0.4803 (10)0.12829 (13)0.0345 (10)
H140.44740.52660.15040.041*
C150.5324 (2)0.2773 (10)0.13475 (13)0.0347 (10)
H150.53730.18890.16180.042*
C160.5701 (2)0.3278 (9)0.06674 (12)0.0294 (9)
H160.60140.27250.04510.035*
C170.5772 (2)0.7288 (9)0.29060 (12)0.0248 (10)
H170.59290.77210.31830.030*
C180.51797 (18)0.5220 (8)0.28453 (11)0.0240 (9)
C190.4886 (2)0.4702 (9)0.24531 (12)0.0306 (10)
H190.50600.56980.22110.037*
C200.4334 (2)0.2713 (9)0.24168 (13)0.0311 (10)
H200.41380.23290.21480.037*
C210.40688 (19)0.1297 (9)0.27672 (12)0.0318 (10)
H210.36890.00380.27400.038*
C220.4360 (2)0.1830 (10)0.31618 (12)0.0295 (10)
H220.41810.08570.34040.035*
C230.4910 (2)0.3773 (9)0.31983 (13)0.0291 (9)
H230.51090.41310.34670.035*
C240.6926 (2)1.1897 (9)0.23951 (12)0.0296 (10)
H24A0.72901.32590.25010.036*
H24B0.65611.31470.22650.036*
C250.72282 (18)0.9900 (9)0.20662 (12)0.0253 (9)
C260.7059 (2)0.9344 (9)0.16578 (12)0.0279 (9)
H260.66751.01060.15050.034*
C270.7574 (2)0.7403 (9)0.15124 (13)0.0246 (9)
C280.76501 (19)0.6134 (9)0.10804 (12)0.0266 (9)
C290.7201 (2)0.7057 (10)0.07652 (12)0.0319 (10)
H290.68320.83940.08240.038*
C300.7309 (2)0.5954 (10)0.03557 (13)0.0376 (10)
H300.70120.65260.01320.045*
C310.7852 (2)0.4038 (11)0.02849 (13)0.0397 (11)
H310.79240.33380.00060.048*
C320.8173 (2)0.4122 (10)0.09790 (12)0.0326 (10)
H320.84650.34410.11990.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0330 (15)0.0331 (17)0.0211 (14)0.0047 (12)0.0017 (11)0.0032 (12)
O20.0334 (16)0.0400 (18)0.0201 (16)0.0057 (13)0.0006 (13)0.0018 (12)
O30.0346 (15)0.0343 (18)0.0179 (14)0.0090 (12)0.0007 (11)0.0008 (12)
O40.0330 (17)0.045 (2)0.0239 (16)0.0007 (14)0.0060 (12)0.0055 (13)
N10.0316 (19)0.028 (2)0.0220 (18)0.0003 (15)0.0010 (14)0.0018 (14)
N20.033 (2)0.041 (2)0.0196 (18)0.0037 (16)0.0030 (15)0.0085 (15)
N30.036 (2)0.038 (2)0.0212 (19)0.0052 (16)0.0026 (15)0.0035 (16)
N40.0289 (18)0.030 (2)0.0260 (19)0.0003 (15)0.0003 (15)0.0065 (16)
N50.034 (2)0.046 (2)0.0210 (18)0.0077 (15)0.0015 (14)0.0038 (16)
N60.0274 (19)0.053 (3)0.029 (2)0.0053 (16)0.0036 (16)0.0066 (17)
C10.032 (2)0.023 (2)0.020 (2)0.0047 (17)0.0016 (17)0.0012 (16)
C20.027 (2)0.020 (2)0.024 (2)0.0047 (16)0.0036 (16)0.0051 (16)
C30.031 (2)0.028 (2)0.021 (2)0.0078 (17)0.0020 (17)0.0032 (18)
C40.037 (3)0.028 (3)0.035 (3)0.0016 (19)0.010 (2)0.004 (2)
C50.028 (2)0.036 (3)0.041 (3)0.0002 (18)0.000 (2)0.008 (2)
C60.029 (2)0.039 (3)0.031 (3)0.006 (2)0.003 (2)0.0066 (19)
C70.037 (2)0.031 (3)0.023 (2)0.0008 (18)0.0017 (17)0.0052 (18)
C80.037 (2)0.031 (3)0.019 (2)0.0045 (19)0.0066 (17)0.0017 (17)
C90.023 (2)0.020 (2)0.024 (2)0.0016 (16)0.0039 (16)0.0039 (15)
C100.028 (2)0.039 (3)0.018 (2)0.0017 (18)0.0031 (16)0.0046 (17)
C110.024 (2)0.026 (2)0.018 (2)0.0064 (16)0.0026 (16)0.0011 (16)
C120.025 (2)0.032 (2)0.0208 (19)0.0007 (17)0.0051 (16)0.0038 (17)
C130.029 (2)0.038 (3)0.024 (2)0.0004 (18)0.0002 (17)0.0034 (18)
C140.033 (2)0.046 (3)0.024 (2)0.001 (2)0.0008 (18)0.0052 (18)
C150.041 (2)0.044 (3)0.019 (2)0.002 (2)0.0017 (18)0.0037 (18)
C160.026 (2)0.035 (3)0.027 (2)0.0025 (18)0.0054 (16)0.0008 (18)
C170.036 (2)0.025 (2)0.014 (2)0.0029 (17)0.0004 (17)0.0042 (16)
C180.033 (2)0.015 (2)0.024 (2)0.0027 (16)0.0024 (17)0.0062 (15)
C190.033 (2)0.033 (3)0.025 (2)0.0061 (19)0.0018 (18)0.0039 (18)
C200.035 (2)0.034 (3)0.025 (2)0.0041 (19)0.0078 (19)0.0029 (17)
C210.027 (2)0.036 (3)0.032 (2)0.0031 (18)0.003 (2)0.005 (2)
C220.027 (2)0.040 (3)0.022 (2)0.0090 (18)0.0093 (18)0.0007 (18)
C230.034 (2)0.029 (3)0.024 (2)0.0014 (18)0.0052 (18)0.0033 (18)
C240.035 (2)0.030 (2)0.024 (2)0.0016 (18)0.0057 (18)0.0065 (18)
C250.031 (2)0.021 (2)0.024 (2)0.0023 (16)0.0039 (16)0.0039 (16)
C260.028 (2)0.030 (2)0.026 (2)0.0018 (18)0.0011 (16)0.0017 (17)
C270.028 (2)0.025 (2)0.020 (2)0.0051 (17)0.0043 (17)0.0035 (15)
C280.027 (2)0.028 (2)0.025 (2)0.0042 (17)0.0024 (16)0.0010 (17)
C290.029 (2)0.044 (3)0.023 (2)0.0012 (19)0.0037 (17)0.0007 (19)
C300.037 (2)0.050 (3)0.025 (2)0.002 (2)0.0027 (19)0.004 (2)
C310.033 (2)0.062 (3)0.025 (2)0.002 (2)0.0015 (19)0.008 (2)
C320.032 (2)0.042 (3)0.023 (2)0.002 (2)0.0023 (17)0.0002 (19)
Geometric parameters (Å, º) top
O1—N11.435 (4)C12—C161.400 (5)
O1—C81.451 (5)C12—C131.404 (5)
O2—C91.371 (4)C13—C141.379 (5)
O2—N21.415 (4)C13—H130.9500
O3—C241.428 (5)C14—C151.395 (6)
O3—N41.438 (4)C14—H140.9500
O4—C251.375 (4)C15—H150.9500
O4—N51.411 (4)C16—H160.9500
N1—C11.282 (5)C17—C181.484 (5)
N2—C111.330 (5)C17—H170.9500
N3—C151.336 (5)C18—C191.390 (5)
N3—C161.338 (5)C18—C231.395 (5)
N4—C171.284 (5)C19—C201.394 (6)
N5—C271.327 (5)C19—H190.9500
N6—C321.341 (5)C20—C211.379 (6)
N6—C311.355 (5)C20—H200.9500
C1—C21.452 (5)C21—C221.396 (5)
C1—H10.9500C21—H210.9500
C2—C71.394 (5)C22—C231.378 (6)
C2—C31.399 (5)C22—H220.9500
C3—C41.386 (6)C23—H230.9500
C3—H30.9500C24—C251.493 (5)
C4—C51.382 (6)C24—H24A0.9900
C4—H40.9500C24—H24B0.9900
C5—C61.383 (6)C25—C261.361 (5)
C5—H50.9500C26—C271.400 (6)
C6—C71.404 (6)C26—H260.9500
C6—H60.9500C27—C281.492 (6)
C7—H70.9500C28—C291.388 (5)
C8—C91.484 (5)C28—C321.391 (6)
C8—H8A0.9900C29—C301.407 (5)
C8—H8B0.9900C29—H290.9500
C9—C101.347 (5)C30—C311.373 (5)
C10—C111.417 (5)C30—H300.9500
C10—H100.9500C31—H310.9500
C11—C121.479 (5)C32—H320.9500
N1—O1—C8108.1 (3)N3—C15—H15118.5
C9—O2—N2108.9 (3)C14—C15—H15118.5
C24—O3—N4108.3 (3)N3—C16—C12123.2 (4)
C25—O4—N5108.4 (3)N3—C16—H16118.4
C1—N1—O1109.6 (3)C12—C16—H16118.4
C11—N2—O2104.6 (3)N4—C17—C18120.8 (3)
C15—N3—C16118.0 (4)N4—C17—H17119.6
C17—N4—O3108.3 (3)C18—C17—H17119.6
C27—N5—O4105.0 (3)C19—C18—C23119.4 (3)
C32—N6—C31116.5 (4)C19—C18—C17122.4 (3)
N1—C1—C2121.6 (4)C23—C18—C17118.2 (3)
N1—C1—H1119.2C18—C19—C20119.6 (4)
C2—C1—H1119.2C18—C19—H19120.2
C7—C2—C3118.5 (3)C20—C19—H19120.2
C7—C2—C1122.7 (4)C21—C20—C19120.7 (4)
C3—C2—C1118.8 (3)C21—C20—H20119.7
C4—C3—C2120.7 (4)C19—C20—H20119.7
C4—C3—H3119.6C20—C21—C22119.8 (4)
C2—C3—H3119.6C20—C21—H21120.1
C5—C4—C3120.2 (4)C22—C21—H21120.1
C5—C4—H4119.9C23—C22—C21119.7 (4)
C3—C4—H4119.9C23—C22—H22120.2
C4—C5—C6120.4 (4)C21—C22—H22120.2
C4—C5—H5119.8C22—C23—C18120.8 (4)
C6—C5—H5119.8C22—C23—H23119.6
C5—C6—C7119.5 (4)C18—C23—H23119.6
C5—C6—H6120.2O3—C24—C25113.4 (3)
C7—C6—H6120.2O3—C24—H24A108.9
C2—C7—C6120.6 (4)C25—C24—H24A108.9
C2—C7—H7119.7O3—C24—H24B108.9
C6—C7—H7119.7C25—C24—H24B108.9
O1—C8—C9112.1 (3)H24A—C24—H24B107.7
O1—C8—H8A109.2C26—C25—O4109.2 (3)
C9—C8—H8A109.2C26—C25—C24132.9 (4)
O1—C8—H8B109.2O4—C25—C24117.8 (3)
C9—C8—H8B109.2C25—C26—C27104.8 (3)
H8A—C8—H8B107.9C25—C26—H26127.6
C10—C9—O2109.5 (3)C27—C26—H26127.6
C10—C9—C8132.9 (4)N5—C27—C26112.6 (4)
O2—C9—C8117.6 (3)N5—C27—C28119.9 (4)
C9—C10—C11105.0 (3)C26—C27—C28127.5 (4)
C9—C10—H10127.5C29—C28—C32118.7 (4)
C11—C10—H10127.5C29—C28—C27119.3 (4)
N2—C11—C10112.1 (3)C32—C28—C27122.0 (3)
N2—C11—C12119.8 (3)C28—C29—C30118.0 (4)
C10—C11—C12128.1 (3)C28—C29—H29121.0
C16—C12—C13117.9 (4)C30—C29—H29121.0
C16—C12—C11122.2 (3)C31—C30—C29118.9 (4)
C13—C12—C11119.9 (3)C31—C30—H30120.5
C14—C13—C12118.8 (4)C29—C30—H30120.5
C14—C13—H13120.6N6—C31—C30123.8 (4)
C12—C13—H13120.6N6—C31—H31118.1
C13—C14—C15119.0 (4)C30—C31—H31118.1
C13—C14—H14120.5N6—C32—C28124.0 (4)
C15—C14—H14120.5N6—C32—H32118.0
N3—C15—C14123.0 (4)C28—C32—H32118.0
C8—O1—N1—C1176.2 (3)C13—C12—C16—N31.3 (6)
C9—O2—N2—C110.2 (4)C11—C12—C16—N3176.5 (4)
C24—O3—N4—C17173.8 (3)O3—N4—C17—C18178.3 (3)
C25—O4—N5—C270.4 (4)N4—C17—C18—C195.9 (6)
O1—N1—C1—C2178.5 (3)N4—C17—C18—C23174.6 (4)
N1—C1—C2—C77.0 (6)C23—C18—C19—C201.0 (6)
N1—C1—C2—C3173.1 (3)C17—C18—C19—C20179.5 (4)
C7—C2—C3—C40.1 (5)C18—C19—C20—C211.2 (6)
C1—C2—C3—C4179.9 (4)C19—C20—C21—C220.8 (6)
C2—C3—C4—C50.3 (6)C20—C21—C22—C230.1 (6)
C3—C4—C5—C60.3 (6)C21—C22—C23—C180.1 (6)
C4—C5—C6—C71.0 (6)C19—C18—C23—C220.4 (6)
C3—C2—C7—C60.6 (5)C17—C18—C23—C22179.9 (4)
C1—C2—C7—C6179.4 (4)N4—O3—C24—C2562.8 (4)
C5—C6—C7—C21.1 (6)N5—O4—C25—C261.0 (4)
N1—O1—C8—C962.2 (4)N5—O4—C25—C24176.6 (3)
N2—O2—C9—C100.3 (4)O3—C24—C25—C26114.7 (5)
N2—O2—C9—C8178.1 (3)O3—C24—C25—O468.4 (4)
O1—C8—C9—C10113.6 (5)O4—C25—C26—C271.1 (4)
O1—C8—C9—O269.3 (4)C24—C25—C26—C27175.9 (4)
O2—C9—C10—C110.7 (4)O4—N5—C27—C260.3 (5)
C8—C9—C10—C11178.0 (4)O4—N5—C27—C28179.1 (3)
O2—N2—C11—C100.6 (4)C25—C26—C27—N50.9 (5)
O2—N2—C11—C12179.8 (3)C25—C26—C27—C28178.5 (4)
C9—C10—C11—N20.8 (5)N5—C27—C28—C29174.5 (4)
C9—C10—C11—C12179.9 (4)C26—C27—C28—C294.8 (6)
N2—C11—C12—C160.4 (6)N5—C27—C28—C323.3 (6)
C10—C11—C12—C16179.4 (4)C26—C27—C28—C32177.4 (4)
N2—C11—C12—C13177.3 (3)C32—C28—C29—C301.4 (6)
C10—C11—C12—C131.7 (6)C27—C28—C29—C30176.4 (4)
C16—C12—C13—C140.5 (6)C28—C29—C30—C310.3 (6)
C11—C12—C13—C14177.2 (3)C32—N6—C31—C300.1 (7)
C12—C13—C14—C150.4 (6)C29—C30—C31—N61.1 (7)
C16—N3—C15—C140.1 (6)C31—N6—C32—C281.8 (6)
C13—C14—C15—N30.8 (6)C29—C28—C32—N62.6 (6)
C15—N3—C16—C120.9 (6)C27—C28—C32—N6175.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C26—H26···N3i0.952.433.374 (5)174
C10—H10···N6ii0.952.493.443 (5)179
Symmetry codes: (i) x, y+1, z; (ii) x1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC16H13N3O2
Mr279.29
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)100
a, b, c (Å)19.364 (12), 4.459 (3), 31.775 (19)
V3)2744 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.01 × 0.01
Data collection
DiffractometerRigaku Saturn724+
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
17573, 4762, 3544
Rint0.086
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.136, 0.99
No. of reflections4762
No. of parameters379
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.25

Computer programs: CrystalClear-SM Expert (Rigaku, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C26—H26···N3i0.952.433.374 (5)173.7
C10—H10···N6ii0.952.493.443 (5)178.9
Symmetry codes: (i) x, y+1, z; (ii) x1/2, y+3/2, z.
 

Acknowledgements

RMF is grateful to the Spanish Research Council (CSIC) for the use of a free-of-charge licence to the Cambridge Structural Database (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). RMF also thanks the Universidad del Valle, Colombia, and AEL thanks Universidad Javeriana, Colombia, for partial financial support. Thanks are due to the National Crystallography Service at the University of Southampton for the data collection.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBasappa, M. P., Sadashiva, K., Mantelingu, S., Nanjunda, S. & Rangappa, K. S. (2003). Bioorg. Med. Chem. Lett. 11, 4539–4544.  CrossRef CAS Google Scholar
First citationChukanov, N. V. & Reznikov, V. A. (2011). Russ. Chem. Bull. 60, 379–399.  Web of Science CrossRef CAS Google Scholar
First citationEdgard, E., Andres-Gil, J., Dirk, D., Franciscus, D., Matezans-Ballesteros, M. & Alvarez, R. (2004). US Patent 2004-0019059 A1.  Google Scholar
First citationEtter, M. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrerons, C., Lagunas, C. & Fernandez, A. (2003). Spanish Patent ES 2 180 456 A1.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGiomi, D., Cordero, F. M., Pisaneschi, F. & Brandi, A. (2008). Comprehensive Heterocyclic Chemistry III, Vol. 4, pp. 365–486. Oxford: Elsevier.  Google Scholar
First citationLee, Y., Park, S. M. & Kim, B. H. (2009). Bioorg. Med. Chem. Lett. 19, 1126–1128.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMeyers, M. J., Long, S. A., Pelc, M. J., Wang, J. L., Bowen, S. J., Schweitzer, B. A., Wilcox, M. V., McDonald, J., Smith, S. E., Foltin, S., Rumsey, J., Yang, Y., Walker, M. C., Kamtekar, S., Beidler, D. & Thorarensen, A. (2011). Bioorg. Med. Chem. Lett. 21, 6545–6553.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationRigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTalley, J., Brown, D. L., Carter, J. S., Graneto, M. J., Koboldt, C. M., Masferrer, J. L., Perkins, W. E., Rogers, R. S., Shaffer, A. F., Zhang, Y., Zweifel, B. S. & Seibert, K. (2000). J. Med. Chem. 43, 775–777.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds