organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5,6-Di­methyl-4-phenyl-2H-pyran-2-one

aSchool of Chemistry and Environmental Science, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China
*Correspondence e-mail: xuesen.fan@htu.cn

(Received 9 March 2012; accepted 14 March 2012; online 21 March 2012)

In the title compound, C13H12O2, the dihedral angle between the pyran­one and phenyl rings is 57.55 (9)°. In the crystal, the mol­ecules are linked by ππ stacking inter­actions between the parallel pyran­one rings of neighboring mol­ecules with distances of 3.5778 (11) Å and 3.3871 (11) Å between the planes. C—H⋯O interactions also occur.

Related literature

For the bioactivity of 2H-pyran-2-ones, see: Puerta et al. (2005[Puerta, D. T., Mongan, J., Tran, B. L., McCammon, J. A. & Cohen, S. M. (2005). J. Am. Chem. Soc. 127, 14148-14149.]); Thaisrivongs et al. (1998[Thaisrivongs, S., Janakiraman, M. N., Chong, K.-T., Tomich, P. K., Dolak, L. A., Turner, S. R., Strohbach, J. W., Lynn, J. C., Horng, M.-M., Hinshaw, R. R. & Watenpaugh, K. D. (1998). J. Med. Chem. 39, 2400-2410.]); Appendino et al. (2007[Appendino, G., Ottino, M., Marquez, N., Bianchi, F., Giana, A., Ballero, M., Sterner, O., Fiebich, B. L. & Munoz, E. (2007). J. Nat. Prod. 70, 608-612.]). For research on functionalized allenes, see: Fan et al. (2011[Fan, X., Wang, Y., Qu, Y., Xu, H., He, Y., Zhang, X. & Wang, J. (2011). J. Org. Chem. 76, 982-985.]); Zhang et al. (2011[Zhang, X., Jia, X., Fang, L., Liu, N., Wang, J. & Fan, X. (2011). Org. Lett. 13, 5024-5027.]); Xu et al. (2012[Xu, H., Zhang, X., He, Y., Guo, S. & Fan, X. (2012). Chem. Commun. 48, 3121-3123.]).

[Scheme 1]

Experimental

Crystal data
  • C13H12O2

  • Mr = 200.23

  • Monoclinic, P 21 /c

  • a = 7.654 (3) Å

  • b = 6.967 (3) Å

  • c = 20.629 (8) Å

  • β = 97.183 (4)°

  • V = 1091.4 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.39 × 0.37 × 0.28 mm

Data collection
  • Bruker SMART CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.969, Tmax = 0.978

  • 7794 measured reflections

  • 2032 independent reflections

  • 1530 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.137

  • S = 1.04

  • 2032 reflections

  • 138 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O2i 0.93 2.53 3.384 (2) 152
C13—H13A⋯O2ii 0.96 2.47 3.372 (3) 156
Symmetry codes: (i) -x, -y, -z+1; (ii) x, y+1, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

2H-Pyran-2-one derivatives are highly desirable synthetic targets since they are known to have antimicrobial, antineoplastic, and anti-HIV effects (Puerta et al., 2005; Thaisrivongs et al., 1998; Appendino et al., 2007). During our search for new synthetic methodologies by taking the advantages of the versatile reactivity of functionalized allenes (Fan et al., 2011; Zhang et al., 2011), we developed a novel protocol for the preparation of 2H-pyran-2-ones through an acid-catalyzed domino reaction of 3-hydroxyhexa-4,5-dienoates (Xu et al., 2012). Herein, we would like to report the structure of one of the products we obtained.

In the title compound (Fig. 1), all the bond lengths and bond angles are within normal ranges. All the atoms connected with the pyranone ring are in the pyranone plane with a maximal deviation of 0.052 (2) Å for substituent C12. The dihedral angle between the pyranone ring and the phenyl ring is 57.55 (9)°.

In the crystal structure, the molecules are connected via intermolecular C—H···O hydrogen bonds (Table 1, Fig. 2). The neighboring O1B-pyranone ring, O1D-pyranone ring, O1A-pyranone ring and O1C-pyranone ring [symmetry code: (B) 1 + x, y, z; (C) -x, 1 - y, 1 - z; (D) 1 - x, 1 - y, 1 - z] are parallel with the distance between the O1D ring and O1A ring being 3.5778 (11) Å and the distance between the O1A ring and O1C ring being 3.3871 (11) Å. The short face-to-face separation clearly indicates the existence of π-π stacking between the pyranone rings.

Related literature top

For the bioactivity of 2H-pyran-2-ones, see: Puerta et al. (2005); Thaisrivongs et al. (1998); Appendino et al. (2007). For research on functionalized allenes, see: Fan et al. (2011); Zhang et al. (2011); Xu et al. (2012).

Experimental top

To a flask containing methyl 3-hydroxy-4-methyl-3-phenylhexa-4,5-dienoate (1 mmol) were added CH2Cl2 (5 ml) and conc. H2SO4 (0.1 mmol). The solution was stirred at room temperature until completion as monitored by TLC. The reaction was quenched with aqueous NaHCO3, and then extracted with ethyl acetate (5 ml × 3). The combined organic phases were dried, filtered and concentrated under vacuum. The residue was purified by column chromatography on silica gel eluenting with petroleum ether-ethyl acetate (10:1 v/v) to give the title compound as colorless solids with a yield of 90%. Single crystals, suitable for X-ray diffraction analysis, were obtained by slow evaporation of solvent from a petroleum ether-dichloromethane (3:1 v/v) solution.

Refinement top

The H atoms were included at calculated positions and were refined as riding atoms: C—H = 0.93 and 0.96 Å for aromatic and methyl H atoms, respectively, with Uiso(H) =x×Ueq (C), where x = 1.5 for methyl H, and x = 1.2 for aromatic H atoms.

Structure description top

2H-Pyran-2-one derivatives are highly desirable synthetic targets since they are known to have antimicrobial, antineoplastic, and anti-HIV effects (Puerta et al., 2005; Thaisrivongs et al., 1998; Appendino et al., 2007). During our search for new synthetic methodologies by taking the advantages of the versatile reactivity of functionalized allenes (Fan et al., 2011; Zhang et al., 2011), we developed a novel protocol for the preparation of 2H-pyran-2-ones through an acid-catalyzed domino reaction of 3-hydroxyhexa-4,5-dienoates (Xu et al., 2012). Herein, we would like to report the structure of one of the products we obtained.

In the title compound (Fig. 1), all the bond lengths and bond angles are within normal ranges. All the atoms connected with the pyranone ring are in the pyranone plane with a maximal deviation of 0.052 (2) Å for substituent C12. The dihedral angle between the pyranone ring and the phenyl ring is 57.55 (9)°.

In the crystal structure, the molecules are connected via intermolecular C—H···O hydrogen bonds (Table 1, Fig. 2). The neighboring O1B-pyranone ring, O1D-pyranone ring, O1A-pyranone ring and O1C-pyranone ring [symmetry code: (B) 1 + x, y, z; (C) -x, 1 - y, 1 - z; (D) 1 - x, 1 - y, 1 - z] are parallel with the distance between the O1D ring and O1A ring being 3.5778 (11) Å and the distance between the O1A ring and O1C ring being 3.3871 (11) Å. The short face-to-face separation clearly indicates the existence of π-π stacking between the pyranone rings.

For the bioactivity of 2H-pyran-2-ones, see: Puerta et al. (2005); Thaisrivongs et al. (1998); Appendino et al. (2007). For research on functionalized allenes, see: Fan et al. (2011); Zhang et al. (2011); Xu et al. (2012).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound, viewed along the b axis. Intermolecular C—H···O hydrogen bonds are shown as dashed lines, only H atoms involved in hydrogen bonds are shown. π-π stacking interactions between the parallel pyranone rings of neighboring molecules are observed.
5,6-Dimethyl-4-phenyl-2H-pyran-2-one top
Crystal data top
C13H12O2F(000) = 424
Mr = 200.23Dx = 1.219 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2249 reflections
a = 7.654 (3) Åθ = 2.7–25.9°
b = 6.967 (3) ŵ = 0.08 mm1
c = 20.629 (8) ÅT = 296 K
β = 97.183 (4)°Block, colourless
V = 1091.4 (7) Å30.39 × 0.37 × 0.28 mm
Z = 4
Data collection top
Bruker SMART CCD area detector
diffractometer
2032 independent reflections
Radiation source: fine-focus sealed tube1530 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
phi and ω scansθmax = 25.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 99
Tmin = 0.969, Tmax = 0.978k = 88
7794 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0659P)2 + 0.2202P]
where P = (Fo2 + 2Fc2)/3
2032 reflections(Δ/σ)max = 0.001
138 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C13H12O2V = 1091.4 (7) Å3
Mr = 200.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.654 (3) ŵ = 0.08 mm1
b = 6.967 (3) ÅT = 296 K
c = 20.629 (8) Å0.39 × 0.37 × 0.28 mm
β = 97.183 (4)°
Data collection top
Bruker SMART CCD area detector
diffractometer
2032 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1530 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.978Rint = 0.021
7794 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.04Δρmax = 0.18 e Å3
2032 reflectionsΔρmin = 0.15 e Å3
138 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2300 (2)0.4016 (3)0.64903 (8)0.0547 (4)
C20.1478 (3)0.5353 (3)0.68457 (9)0.0749 (6)
H20.08830.63850.66340.090*
C30.1541 (3)0.5154 (4)0.75160 (10)0.0907 (8)
H30.09790.60490.77530.109*
C40.2425 (3)0.3647 (4)0.78333 (10)0.0894 (7)
H40.24640.35230.82840.107*
C50.3249 (3)0.2329 (4)0.74867 (10)0.0831 (7)
H50.38610.13150.77030.100*
C60.3180 (3)0.2493 (3)0.68175 (9)0.0651 (5)
H60.37270.15750.65850.078*
C70.1397 (2)0.2616 (2)0.47092 (8)0.0506 (4)
C80.1532 (2)0.2625 (2)0.54020 (8)0.0508 (4)
H80.11450.15580.56150.061*
C90.22072 (19)0.4138 (2)0.57639 (7)0.0483 (4)
C100.2838 (2)0.5790 (2)0.54428 (8)0.0520 (4)
C110.2706 (2)0.5760 (2)0.47847 (9)0.0553 (4)
C120.3667 (3)0.7471 (3)0.58167 (11)0.0771 (6)
H12A0.44410.81210.55580.116*
H12B0.43260.70290.62150.116*
H12C0.27640.83390.59170.116*
C130.3217 (3)0.7292 (3)0.43413 (11)0.0775 (6)
H13A0.22810.82120.42640.116*
H13B0.34340.67310.39340.116*
H13C0.42650.79200.45400.116*
O10.20108 (14)0.42248 (16)0.44270 (5)0.0546 (3)
O20.08210 (18)0.13534 (19)0.43387 (6)0.0699 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0496 (9)0.0703 (11)0.0427 (9)0.0008 (8)0.0004 (7)0.0027 (8)
C20.0710 (12)0.0994 (15)0.0514 (10)0.0218 (11)0.0034 (9)0.0120 (10)
C30.0787 (14)0.141 (2)0.0513 (11)0.0202 (14)0.0051 (10)0.0242 (13)
C40.0815 (14)0.143 (2)0.0420 (10)0.0013 (15)0.0022 (10)0.0023 (13)
C50.0916 (15)0.1017 (17)0.0535 (12)0.0055 (13)0.0009 (11)0.0162 (11)
C60.0736 (12)0.0735 (12)0.0476 (10)0.0039 (9)0.0052 (8)0.0042 (9)
C70.0523 (9)0.0550 (10)0.0451 (9)0.0090 (7)0.0079 (7)0.0006 (8)
C80.0529 (9)0.0560 (10)0.0439 (9)0.0036 (7)0.0078 (7)0.0037 (7)
C90.0434 (8)0.0565 (9)0.0443 (9)0.0069 (7)0.0020 (6)0.0004 (7)
C100.0449 (9)0.0502 (9)0.0600 (10)0.0062 (7)0.0025 (7)0.0014 (8)
C110.0469 (9)0.0566 (10)0.0640 (11)0.0104 (8)0.0129 (8)0.0110 (8)
C120.0726 (13)0.0640 (12)0.0910 (15)0.0060 (10)0.0045 (11)0.0075 (10)
C130.0767 (13)0.0691 (12)0.0903 (15)0.0091 (10)0.0243 (11)0.0282 (11)
O10.0615 (7)0.0583 (7)0.0452 (6)0.0088 (6)0.0109 (5)0.0054 (5)
O20.0899 (10)0.0664 (8)0.0532 (7)0.0013 (7)0.0083 (7)0.0133 (6)
Geometric parameters (Å, º) top
C1—C21.384 (3)C7—C81.420 (2)
C1—C61.387 (2)C8—C91.356 (2)
C1—C91.494 (2)C8—H80.9300
C2—C31.384 (3)C9—C101.440 (2)
C2—H20.9300C10—C111.349 (2)
C3—C41.370 (3)C10—C121.499 (2)
C3—H30.9300C11—O11.369 (2)
C4—C51.366 (3)C11—C131.489 (2)
C4—H40.9300C12—H12A0.9600
C5—C61.380 (3)C12—H12B0.9600
C5—H50.9300C12—H12C0.9600
C6—H60.9300C13—H13A0.9600
C7—O21.212 (2)C13—H13B0.9600
C7—O11.373 (2)C13—H13C0.9600
C2—C1—C6118.86 (16)C7—C8—H8118.9
C2—C1—C9121.69 (16)C8—C9—C10119.63 (15)
C6—C1—C9119.41 (15)C8—C9—C1118.35 (15)
C1—C2—C3120.0 (2)C10—C9—C1122.01 (15)
C1—C2—H2120.0C11—C10—C9117.62 (15)
C3—C2—H2120.0C11—C10—C12120.21 (17)
C4—C3—C2120.5 (2)C9—C10—C12122.14 (16)
C4—C3—H3119.7C10—C11—O1121.97 (15)
C2—C3—H3119.7C10—C11—C13127.95 (18)
C5—C4—C3119.86 (19)O1—C11—C13110.07 (16)
C5—C4—H4120.1C10—C12—H12A109.5
C3—C4—H4120.1C10—C12—H12B109.5
C4—C5—C6120.4 (2)H12A—C12—H12B109.5
C4—C5—H5119.8C10—C12—H12C109.5
C6—C5—H5119.8H12A—C12—H12C109.5
C5—C6—C1120.39 (19)H12B—C12—H12C109.5
C5—C6—H6119.8C11—C13—H13A109.5
C1—C6—H6119.8C11—C13—H13B109.5
O2—C7—O1116.24 (15)H13A—C13—H13B109.5
O2—C7—C8127.79 (16)C11—C13—H13C109.5
O1—C7—C8115.97 (14)H13A—C13—H13C109.5
C9—C8—C7122.13 (15)H13B—C13—H13C109.5
C9—C8—H8118.9C11—O1—C7122.68 (13)
C6—C1—C2—C30.1 (3)C2—C1—C9—C1059.0 (2)
C9—C1—C2—C3177.71 (19)C6—C1—C9—C10123.23 (18)
C1—C2—C3—C40.5 (4)C8—C9—C10—C110.7 (2)
C2—C3—C4—C50.1 (4)C1—C9—C10—C11179.62 (14)
C3—C4—C5—C60.7 (4)C8—C9—C10—C12177.38 (15)
C4—C5—C6—C11.2 (3)C1—C9—C10—C121.5 (2)
C2—C1—C6—C50.8 (3)C9—C10—C11—O10.3 (2)
C9—C1—C6—C5178.59 (17)C12—C10—C11—O1177.82 (15)
O2—C7—C8—C9179.99 (16)C9—C10—C11—C13178.38 (16)
O1—C7—C8—C90.7 (2)C12—C10—C11—C133.5 (3)
C7—C8—C9—C101.0 (2)C10—C11—O1—C70.1 (2)
C7—C8—C9—C1179.88 (14)C13—C11—O1—C7178.77 (14)
C2—C1—C9—C8122.10 (19)O2—C7—O1—C11179.66 (14)
C6—C1—C9—C855.7 (2)C8—C7—O1—C110.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O2i0.932.533.384 (2)152
C13—H13A···O2ii0.962.473.372 (3)156
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC13H12O2
Mr200.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)7.654 (3), 6.967 (3), 20.629 (8)
β (°) 97.183 (4)
V3)1091.4 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.39 × 0.37 × 0.28
Data collection
DiffractometerBruker SMART CCD area detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.969, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
7794, 2032, 1530
Rint0.021
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.137, 1.04
No. of reflections2032
No. of parameters138
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.15

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O2i0.932.533.384 (2)152
C13—H13A···O2ii0.962.473.372 (3)156
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21172057).

References

First citationAppendino, G., Ottino, M., Marquez, N., Bianchi, F., Giana, A., Ballero, M., Sterner, O., Fiebich, B. L. & Munoz, E. (2007). J. Nat. Prod. 70, 608–612.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2007). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFan, X., Wang, Y., Qu, Y., Xu, H., He, Y., Zhang, X. & Wang, J. (2011). J. Org. Chem. 76, 982–985.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPuerta, D. T., Mongan, J., Tran, B. L., McCammon, J. A. & Cohen, S. M. (2005). J. Am. Chem. Soc. 127, 14148–14149.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThaisrivongs, S., Janakiraman, M. N., Chong, K.-T., Tomich, P. K., Dolak, L. A., Turner, S. R., Strohbach, J. W., Lynn, J. C., Horng, M.-M., Hinshaw, R. R. & Watenpaugh, K. D. (1998). J. Med. Chem. 39, 2400–2410.  CrossRef Web of Science Google Scholar
First citationXu, H., Zhang, X., He, Y., Guo, S. & Fan, X. (2012). Chem. Commun. 48, 3121–3123.  Web of Science CrossRef CAS Google Scholar
First citationZhang, X., Jia, X., Fang, L., Liu, N., Wang, J. & Fan, X. (2011). Org. Lett. 13, 5024–5027.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds