organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Phenyl-1H-imidazol-3-ium hydrogen fumarate–fumaric acid (2/1)

aInstitute of Applied Chemistry, Shenyang University of Chemical Technology, Shenyang 110142, People's Republic of China
*Correspondence e-mail: gh2103@163.com

(Received 15 December 2011; accepted 8 February 2012; online 10 March 2012)

The asymmetric unit of the title compound, C9H9N2+·C4H3O4·0.5C4H4O4, consists of one 2-phenyl­imidazolium cation, one hydrogen fumarate anion and half a fumaric acid mol­ecule, which lies on an inversion center. N—H⋯O and O—H⋯O hydrogen bonds connect the cations, anions and fumaric acid mol­ecules into sheets parallel to the (102) plane.

Related literature

For similar structures, see: Jiang (2009[Jiang, P. (2009). Acta Cryst. E65, o2177.]); Song (2011[Song, J.-N. (2011). Acta Cryst. E67, o1773.]); Xia & Yao (2010[Xia, D.-C. & Yao, J.-H. (2010). Acta Cryst. E66, o649.]).

[Scheme 1]

Experimental

Crystal data
  • C9H9N2+·C4H3O4·0.5C4H4O4

  • Mr = 318.28

  • Monoclinic, P 21 /c

  • a = 9.572 (3) Å

  • b = 19.276 (4) Å

  • c = 8.289 (5) Å

  • β = 106.480 (3)°

  • V = 1466.6 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.18 × 0.15 × 0.14 mm

Data collection
  • Oxford Diffraction Gemini R Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.980, Tmax = 0.984

  • 11042 measured reflections

  • 2675 independent reflections

  • 1963 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.091

  • S = 1.00

  • 2675 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O2 0.82 1.75 2.5721 (14) 176
O5—H5A⋯O6i 0.82 1.83 2.6360 (14) 169
N1—H1A⋯O2 0.86 1.98 2.7903 (15) 157
N2—H2A⋯O1ii 0.86 1.86 2.7106 (14) 168
Symmetry codes: (i) -x+2, -y+1, -z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Noncovalent hydrogen-bonding interactions have attracted great interest for chemists because of their physicochemical properties (Jiang, 2009). 2-Phenylimidazole can be used to form various supramolecular architectures with anions such as acetate (Xia & Yao, 2010) and hydrogen oxalate (Song, 2011). In this work, we report the crystal structure of the title compound prepared from 2-phenylimidazole and fumaric acid.

The asymmetric unit of the title compound contains one 2-phenylimidazolium cation, one hydrogen fumarate anion and a half of fumaric acid (Fig. 1). The fumaric acid molecule lies on an inversion center. N—H···O and O—H···O hydrogen bonds connect the cations, anions and fumaric acid molecules into sheets parallel to the (1 0 2) plane (Fig. 2, Table 1).

Related literature top

For similar structures, see: Jiang (2009); Song (2011); Xia & Yao (2010).

Experimental top

2-Phenylimidazole (2 mmol), fumaric acid (1 mmol) and ethanol (15 ml) were mixed. Colorless crystals were obtained by slow evaporation of the solution at room temperature after three days.

Refinement top

All H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93, N—H = 0.86 and O—H = 0.82 Å and with Uiso(H) = 1.2Ueq(C, N) or 1.5Ueq(O).

Structure description top

Noncovalent hydrogen-bonding interactions have attracted great interest for chemists because of their physicochemical properties (Jiang, 2009). 2-Phenylimidazole can be used to form various supramolecular architectures with anions such as acetate (Xia & Yao, 2010) and hydrogen oxalate (Song, 2011). In this work, we report the crystal structure of the title compound prepared from 2-phenylimidazole and fumaric acid.

The asymmetric unit of the title compound contains one 2-phenylimidazolium cation, one hydrogen fumarate anion and a half of fumaric acid (Fig. 1). The fumaric acid molecule lies on an inversion center. N—H···O and O—H···O hydrogen bonds connect the cations, anions and fumaric acid molecules into sheets parallel to the (1 0 2) plane (Fig. 2, Table 1).

For similar structures, see: Jiang (2009); Song (2011); Xia & Yao (2010).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis CCD (Oxford Diffraction, 2006); data reduction: CrysAlis CCD (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with displacement ellipsoids drawn at the 50% probability level. Dashed lines denote hydrogen bonds. [Symmetry code: (i) -x, 1-y, 1-z.]
[Figure 2] Fig. 2. The two-dimensional network connected by hydrogen bonds (dashed lines).
2-Phenyl-1H-imidazol-3-ium 3-carboxyprop-2-enoate–fumaric acid (2/1) top
Crystal data top
C9H9N2+·C4H3O4·0.5C4H4O4F(000) = 664
Mr = 318.28Dx = 1.441 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2675 reflections
a = 9.572 (3) Åθ = 2.2–25.3°
b = 19.276 (4) ŵ = 0.11 mm1
c = 8.289 (5) ÅT = 293 K
β = 106.480 (3)°Block, colorless
V = 1466.6 (10) Å30.18 × 0.15 × 0.14 mm
Z = 4
Data collection top
Oxford Diffraction Gemini R Ultra
diffractometer
2675 independent reflections
Radiation source: fine-focus sealed tube1963 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
Detector resolution: 10.0 pixels mm-1θmax = 25.3°, θmin = 2.2°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
k = 023
Tmin = 0.980, Tmax = 0.984l = 09
11042 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0574P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
2675 reflectionsΔρmax = 0.21 e Å3
209 parametersΔρmin = 0.25 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0068 (12)
Crystal data top
C9H9N2+·C4H3O4·0.5C4H4O4V = 1466.6 (10) Å3
Mr = 318.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.572 (3) ŵ = 0.11 mm1
b = 19.276 (4) ÅT = 293 K
c = 8.289 (5) Å0.18 × 0.15 × 0.14 mm
β = 106.480 (3)°
Data collection top
Oxford Diffraction Gemini R Ultra
diffractometer
2675 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
1963 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.984Rint = 0.000
11042 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.00Δρmax = 0.21 e Å3
2675 reflectionsΔρmin = 0.25 e Å3
209 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.30636 (17)0.70313 (7)0.15392 (19)0.0466 (4)
H10.22950.67530.09480.056*
C20.51445 (15)0.73599 (6)0.33290 (17)0.0339 (3)
C30.31826 (17)0.77144 (7)0.1375 (2)0.0458 (4)
H30.25160.80020.06420.055*
C40.65236 (15)0.73529 (6)0.46476 (17)0.0361 (3)
C50.71012 (18)0.67306 (7)0.53922 (19)0.0441 (4)
H50.66090.63170.50410.053*
C60.83936 (19)0.67245 (8)0.6642 (2)0.0531 (4)
H60.87720.63060.71380.064*
C70.91375 (19)0.73335 (8)0.7170 (2)0.0559 (4)
H71.00200.73250.80110.067*
C80.85745 (19)0.79517 (8)0.6455 (2)0.0554 (4)
H80.90750.83630.68170.067*
C90.72735 (18)0.79677 (7)0.52033 (19)0.0464 (4)
H90.68940.83890.47280.056*
C100.50312 (14)0.48691 (6)0.25178 (15)0.0284 (3)
C110.63137 (14)0.50545 (6)0.19048 (15)0.0316 (3)
H110.65840.55190.19300.038*
C120.70748 (14)0.46016 (7)0.13372 (15)0.0329 (3)
H120.68010.41380.13080.039*
C130.83360 (14)0.47805 (7)0.07425 (15)0.0299 (3)
C140.13846 (14)0.54984 (6)0.41335 (15)0.0306 (3)
C150.01299 (14)0.53111 (7)0.47557 (15)0.0325 (3)
H150.05250.56610.48040.039*
N10.42847 (13)0.68174 (5)0.27399 (15)0.0414 (3)
H1A0.44720.63960.30680.050*
N20.44703 (13)0.79138 (5)0.24890 (14)0.0389 (3)
H2A0.47960.83320.26270.047*
O10.46797 (11)0.42536 (4)0.25506 (12)0.0448 (3)
O20.43619 (9)0.53724 (4)0.29443 (11)0.0356 (2)
O30.21778 (10)0.49744 (5)0.39383 (12)0.0462 (3)
H3A0.28500.51140.35930.055*
O40.16258 (11)0.60952 (5)0.38435 (13)0.0482 (3)
O50.90474 (11)0.42773 (5)0.03852 (12)0.0447 (3)
H5A0.97240.44270.00650.054*
O60.86586 (11)0.54051 (5)0.06280 (12)0.0453 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0451 (10)0.0360 (8)0.0582 (9)0.0057 (7)0.0139 (8)0.0014 (7)
C20.0424 (9)0.0209 (6)0.0464 (8)0.0019 (6)0.0256 (7)0.0009 (6)
C30.0454 (10)0.0354 (8)0.0562 (9)0.0006 (6)0.0137 (8)0.0061 (7)
C40.0423 (9)0.0277 (7)0.0453 (8)0.0013 (6)0.0241 (7)0.0002 (6)
C50.0561 (11)0.0288 (7)0.0516 (9)0.0015 (6)0.0221 (8)0.0008 (6)
C60.0614 (12)0.0431 (9)0.0549 (10)0.0113 (8)0.0165 (9)0.0079 (7)
C70.0523 (11)0.0583 (11)0.0544 (10)0.0015 (8)0.0106 (8)0.0029 (8)
C80.0592 (12)0.0439 (9)0.0607 (10)0.0144 (8)0.0131 (9)0.0017 (8)
C90.0550 (11)0.0289 (8)0.0565 (9)0.0039 (7)0.0176 (8)0.0036 (7)
C100.0279 (7)0.0247 (7)0.0349 (7)0.0016 (5)0.0125 (6)0.0001 (5)
C110.0305 (8)0.0263 (6)0.0411 (8)0.0017 (5)0.0150 (6)0.0001 (5)
C120.0300 (8)0.0292 (7)0.0428 (8)0.0025 (5)0.0156 (6)0.0018 (6)
C130.0266 (7)0.0314 (7)0.0332 (7)0.0007 (6)0.0109 (6)0.0024 (5)
C140.0297 (7)0.0290 (7)0.0351 (7)0.0016 (6)0.0122 (6)0.0021 (5)
C150.0279 (7)0.0335 (6)0.0394 (7)0.0011 (6)0.0150 (6)0.0023 (6)
N10.0488 (8)0.0220 (6)0.0566 (8)0.0036 (5)0.0202 (6)0.0024 (5)
N20.0456 (8)0.0211 (5)0.0543 (7)0.0024 (5)0.0211 (6)0.0033 (5)
O10.0463 (6)0.0222 (5)0.0781 (7)0.0021 (4)0.0375 (6)0.0028 (4)
O20.0352 (6)0.0235 (5)0.0566 (6)0.0021 (4)0.0271 (5)0.0006 (4)
O30.0433 (6)0.0322 (5)0.0782 (7)0.0002 (4)0.0418 (6)0.0038 (5)
O40.0498 (7)0.0303 (6)0.0741 (7)0.0033 (4)0.0329 (6)0.0027 (5)
O50.0381 (6)0.0384 (6)0.0694 (7)0.0005 (4)0.0343 (5)0.0041 (5)
O60.0446 (6)0.0320 (6)0.0692 (7)0.0033 (4)0.0324 (5)0.0017 (5)
Geometric parameters (Å, º) top
C1—C31.332 (2)C10—O11.2357 (14)
C1—N11.3663 (19)C10—O21.2669 (15)
C1—H10.9300C10—C111.4989 (18)
C2—N11.3346 (16)C11—C121.3072 (18)
C2—N21.3366 (17)C11—H110.9300
C2—C41.456 (2)C12—C131.4686 (18)
C3—N21.3687 (19)C12—H120.9300
C3—H30.9300C13—O61.2532 (15)
C4—C51.3899 (19)C13—O51.2676 (15)
C4—C91.3944 (19)C14—O41.2108 (15)
C5—C61.370 (2)C14—O31.3009 (15)
C5—H50.9300C14—C151.4799 (18)
C6—C71.378 (2)C15—C15i1.312 (3)
C6—H60.9300C15—H150.9300
C7—C81.372 (2)N1—H1A0.8592
C7—H70.9300N2—H2A0.8602
C8—C91.377 (2)O3—H3A0.8203
C8—H80.9300O5—H5A0.8193
C9—H90.9300
C3—C1—N1107.00 (13)O1—C10—O2124.52 (12)
C3—C1—H1126.5O1—C10—C11119.39 (11)
N1—C1—H1126.5O2—C10—C11116.08 (11)
N1—C2—N2106.19 (12)C12—C11—C10123.81 (12)
N1—C2—C4126.96 (11)C12—C11—H11118.1
N2—C2—C4126.84 (11)C10—C11—H11118.1
C1—C3—N2107.20 (13)C11—C12—C13124.00 (12)
C1—C3—H3126.4C11—C12—H12118.0
N2—C3—H3126.4C13—C12—H12118.0
C5—C4—C9118.96 (14)O6—C13—O5123.87 (12)
C5—C4—C2120.21 (12)O6—C13—C12119.64 (11)
C9—C4—C2120.82 (12)O5—C13—C12116.49 (11)
C6—C5—C4120.22 (13)O4—C14—O3124.20 (12)
C6—C5—H5119.9O4—C14—C15121.35 (12)
C4—C5—H5119.9O3—C14—C15114.45 (11)
C5—C6—C7120.47 (14)C15i—C15—C14125.05 (16)
C5—C6—H6119.8C15i—C15—H15117.5
C7—C6—H6119.8C14—C15—H15117.5
C8—C7—C6119.90 (16)C2—N1—C1109.96 (11)
C8—C7—H7120.0C2—N1—H1A125.0
C6—C7—H7120.0C1—N1—H1A125.1
C7—C8—C9120.39 (14)C2—N2—C3109.65 (11)
C7—C8—H8119.8C2—N2—H2A125.2
C9—C8—H8119.8C3—N2—H2A125.2
C8—C9—C4120.05 (13)C14—O3—H3A109.4
C8—C9—H9120.0C13—O5—H5A109.5
C4—C9—H9120.0
N1—C1—C3—N20.55 (17)O1—C10—C11—C122.4 (2)
N1—C2—C4—C52.4 (2)O2—C10—C11—C12176.38 (12)
N2—C2—C4—C5179.07 (12)C10—C11—C12—C13179.71 (11)
N1—C2—C4—C9176.51 (13)C11—C12—C13—O66.1 (2)
N2—C2—C4—C92.0 (2)C11—C12—C13—O5173.31 (12)
C9—C4—C5—C60.5 (2)O4—C14—C15—C15i173.42 (16)
C2—C4—C5—C6179.49 (13)O3—C14—C15—C15i6.5 (2)
C4—C5—C6—C70.3 (2)N2—C2—N1—C10.52 (15)
C5—C6—C7—C80.7 (2)C4—C2—N1—C1178.24 (13)
C6—C7—C8—C90.4 (3)C3—C1—N1—C20.67 (17)
C7—C8—C9—C40.4 (2)N1—C2—N2—C30.17 (15)
C5—C4—C9—C80.9 (2)C4—C2—N2—C3178.59 (12)
C2—C4—C9—C8179.82 (13)C1—C3—N2—C20.24 (16)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O20.821.752.5721 (14)176
O5—H5A···O6ii0.821.832.6360 (14)169
N1—H1A···O20.861.982.7903 (15)157
N2—H2A···O1iii0.861.862.7106 (14)168
Symmetry codes: (ii) x+2, y+1, z; (iii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC9H9N2+·C4H3O4·0.5C4H4O4
Mr318.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.572 (3), 19.276 (4), 8.289 (5)
β (°) 106.480 (3)
V3)1466.6 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.18 × 0.15 × 0.14
Data collection
DiffractometerOxford Diffraction Gemini R Ultra
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.980, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
11042, 2675, 1963
Rint0.000
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.091, 1.00
No. of reflections2675
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.25

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O20.821.752.5721 (14)176
O5—H5A···O6i0.821.832.6360 (14)169
N1—H1A···O20.861.982.7903 (15)157
N2—H2A···O1ii0.861.862.7106 (14)168
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y+1/2, z+1/2.
 

References

First citationJiang, P. (2009). Acta Cryst. E65, o2177.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, J.-N. (2011). Acta Cryst. E67, o1773.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXia, D.-C. & Yao, J.-H. (2010). Acta Cryst. E66, o649.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds