organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o964-o965

(Z)-2-(5-Chloro-2-oxoindolin-3-yl­­idene)-N-methyl­hydrazinecarbo­thio­amide

aSchool of Chemical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia, bFaculty of Science, Sabha University, Libya, cDepartment of Chemistry, International University of Africa, Khartoum, Sudan, and dX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: sgteoh@usm.my

(Received 18 January 2012; accepted 18 February 2012; online 7 March 2012)

In the title compound, C10H9ClN4OS, an intra­molecular N—H⋯O hydrogen-bonding inter­action and an N—H⋯N inter­action generate ring motifs [graph sets S(6) and S(5), respectively]. In the crystal, mol­ecules form a chain through N—H⋯O hydrogen bonds, and these are extended by N—H⋯S hydrogen-bonding inter­actions into an infinite three-dimensional network. The crystal structure also exhibits weak C—H⋯π inter­actions.

Related literature

For related structures, see: Qasem Ali et al. (2012[Qasem Ali, A., Eltayeb, N. E., Teoh, S. G., Salhin, A. & Fun, H.-K. (2012). Acta Cryst. E68, o953-o954.], 2011a[Qasem Ali, A., Eltayeb, N. E., Teoh, S. G., Salhin, A. & Fun, H.-K. (2011a). Acta Cryst. E67, o3141-o3142.],b[Qasem Ali, A., Eltayeb, N. E., Teoh, S. G., Salhin, A. & Fun, H.-K. (2011b). Acta Cryst. E67, o3476-o3477.]); Ali et al. (2012[Ali, A. Q., Eltayeb, N. E., Teoh, S. G., Salhin, A. & Fun, H.-K. (2012). Acta Cryst. E68, o285-o286.]). For various biological activities of Schiff bases, see: Bhandari et al. (2008[Bhandari, S. V., Bothara, K. G., Raut, M. K., Patil, A. A., Sarkate, A. P. & Mokale, V. J. (2008). Bioorg. Med. Chem. 16, 1822-1831.]); Bhardwaj et al. (2010[Bhardwaj, S., Kumar, L., Verma, R. & Sing, U. K. (2010). J. Pharm. Res. 3, 2983-2985.]); Pandeya et al. (1999[Pandeya, S. N., Sriram, D., Nath, G. & Clercq, E. De. (1999). Indian J. Pharm. Sci. 61, 358-361.]); Sridhar et al. (2002[Sridhar, S. K., Pandeya, S. N., Stables, J. P. & Ramesh, A. (2002). Eur. J. Pharm. Sci. 16, 129-132.]); Suryavanshi & Pai (2006[Suryavanshi, J. P. & Pai, N. R. (2006). Ind. J. Chem. Sect. B, 45, 1227-1230.]). For cytotoxic and anti­cancer activities of isatin and its derivatives, see: Vine et al. (2009[Vine, K. L., Matesic, L., Locke, J. M., Ranson, M. & Skropeta, D. (2009). Anticancer Agents Med. Chem. 9, 397-414.]). For graph-set analysis, see Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9ClN4OS

  • Mr = 268.72

  • Orthorhombic, P 21 21 21

  • a = 6.2558 (1) Å

  • b = 10.1449 (1) Å

  • c = 18.5682 (2) Å

  • V = 1178.42 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.49 mm−1

  • T = 100 K

  • 0.34 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.853, Tmax = 0.961

  • 16807 measured reflections

  • 4886 independent reflections

  • 4072 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.078

  • S = 1.05

  • 4886 reflections

  • 167 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.32 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2074 Friedel pairs

  • Flack parameter: 0.01 (5)

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H1N4⋯N2 0.88 (2) 2.27 (2) 2.6416 (18) 105.6 (15)
N4—H1N4⋯S1i 0.88 (2) 2.70 (2) 3.4972 (13) 152.2 (16)
N3—H1N3⋯O1 0.86 (2) 2.086 (19) 2.7526 (16) 134.3 (17)
N1—H1N1⋯O1ii 0.81 (2) 2.01 (2) 2.8161 (16) 175 (2)
C3—H3ACg2iii 0.95 2.59 3.38 141
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2]; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+2].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Isatin (2,3-dioxindole) is an endogenous compound identified in humans, and its effect has been studied in a variety of systems. Biological properties of isatin and its derivatives include a range of actions in the brain, offer protection against bacterial (Suryavanshi & Pai, 2006) and fungal infections and possess anticonvulsant, anti-HIV (Pandeya et al., 1999), anti-depressant and anti-inflammatory activities (Bhandari et al., 2008). Recently, we reported the crystal structure of (Z)-2-(5-chloro-2-oxoindolin-3-ylidene)-N-methylhydrazinecarbothioamide (Qasem Ali et al., 2012). In the present paper we describe the single-crystal X-ray diffraction study of title compound, C10H9ClN4OS (Fig. 1).

In this compound, the chain N2/N3/C9/S1/N4/C10 is connected to the nine-membered 5-chloroindolin-2-one ring system at C7. In this chain C7—N2—N3—C9 and C10—N4—C9—S1 torsion angles are -177.77 (13)° and 2.7 (2)°, respectively. The essentially planar conformation of the molecule is maintained by the cyclic intramolecular N3—H1N3···O1 hydrogen-bonding interaction together with the N4—H1N4···N2 interaction [graph sets S(6) and S(5), respectively (Bernstein et al., 1995)] (Table 1).

In the crystal the molecules form chain substructures through intermolecular N1—H1N1···O1 hydrogen bonds and these are extended by N4—H1N4···S1 hydrogen-bonding interactions into an infinite a three-dimensional network (Table 1, Fig. 2). Weak C—H···π interactions are also present [C3—H···Cg2iii = 3.38 Å], where Cg2 is the centroid of the C1—C6 ring. For symmetry code (iii), see Table 1.

Related literature top

For related structures, see: Qasem Ali et al. (2012, 2011a,b); Ali et al. (2012). For various biological activities of Schiff bases, see: Bhandari et al. (2008); Bhardwaj et al. (2010); Pandeya et al. (1999); Sridhar et al. (2002); Suryavanshi & Pai (2006). For cytotoxic and anticancer activities of isatin and its derivatives, see: Vine et al. (2009). For graph-set analysis, see Bernstein et al. (1995).

Experimental top

The Schiff base has been synthesized by refluxing the reaction mixture of a hot ethanolic solution (30 ml) of 5-methyl-3-thiosemicarbazide (0.01 mol) and a hot ethanolic solution (30 ml) of 5-chloroisatin (0.01 mol) for 2 hr. The precipitate formed during reflux was filtered, washed with cold ethanol and recrystallized from hot ethanol. Yield (m.p.): 85% (568.4–569.0 K). The yellow crystals were grown in ethylacetate–DMF (3:1) by slow evaporation at room temperature.

Refinement top

Nitrogen bound H atoms were located in a difference Fourier map and were refined freely. The remaining H atoms were positioned geometrically and refined using a riding model with C—H = 0.95 Å (aromatic ring) and C—H = 0.98 Å (methyl group) with Uiso(H) = 1.2Ueq(aromatic C) and Uiso(H) = 1.5Ueq(methyl C). The highest residual electron density peak (0.41 eÅ-3) is located at 0.73 Å from Cl1 and the deepest hole (-0.32 eÅ-3) is located at 0.59 Å from Sl.

Structure description top

Isatin (2,3-dioxindole) is an endogenous compound identified in humans, and its effect has been studied in a variety of systems. Biological properties of isatin and its derivatives include a range of actions in the brain, offer protection against bacterial (Suryavanshi & Pai, 2006) and fungal infections and possess anticonvulsant, anti-HIV (Pandeya et al., 1999), anti-depressant and anti-inflammatory activities (Bhandari et al., 2008). Recently, we reported the crystal structure of (Z)-2-(5-chloro-2-oxoindolin-3-ylidene)-N-methylhydrazinecarbothioamide (Qasem Ali et al., 2012). In the present paper we describe the single-crystal X-ray diffraction study of title compound, C10H9ClN4OS (Fig. 1).

In this compound, the chain N2/N3/C9/S1/N4/C10 is connected to the nine-membered 5-chloroindolin-2-one ring system at C7. In this chain C7—N2—N3—C9 and C10—N4—C9—S1 torsion angles are -177.77 (13)° and 2.7 (2)°, respectively. The essentially planar conformation of the molecule is maintained by the cyclic intramolecular N3—H1N3···O1 hydrogen-bonding interaction together with the N4—H1N4···N2 interaction [graph sets S(6) and S(5), respectively (Bernstein et al., 1995)] (Table 1).

In the crystal the molecules form chain substructures through intermolecular N1—H1N1···O1 hydrogen bonds and these are extended by N4—H1N4···S1 hydrogen-bonding interactions into an infinite a three-dimensional network (Table 1, Fig. 2). Weak C—H···π interactions are also present [C3—H···Cg2iii = 3.38 Å], where Cg2 is the centroid of the C1—C6 ring. For symmetry code (iii), see Table 1.

For related structures, see: Qasem Ali et al. (2012, 2011a,b); Ali et al. (2012). For various biological activities of Schiff bases, see: Bhandari et al. (2008); Bhardwaj et al. (2010); Pandeya et al. (1999); Sridhar et al. (2002); Suryavanshi & Pai (2006). For cytotoxic and anticancer activities of isatin and its derivatives, see: Vine et al. (2009). For graph-set analysis, see Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure and the atom-numbering scheme of the title compound, with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down the a axis. Hydrogen bonds are shown as dashed lines.
(Z)-2-(5-Chloro-2-oxoindolin-3-ylidene)-N- methylhydrazinecarbothioamide top
Crystal data top
C10H9ClN4OSDx = 1.515 Mg m3
Mr = 268.72Melting point = 568.4–569.0 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5715 reflections
a = 6.2558 (1) Åθ = 3.0–34.1°
b = 10.1449 (1) ŵ = 0.49 mm1
c = 18.5682 (2) ÅT = 100 K
V = 1178.42 (3) Å3Needle, yellow
Z = 40.34 × 0.10 × 0.08 mm
F(000) = 552
Data collection top
Bruker APEXII CCD
diffractometer
4886 independent reflections
Radiation source: fine-focus sealed tube4072 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
φ and ω scansθmax = 34.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 89
Tmin = 0.853, Tmax = 0.961k = 1616
16807 measured reflectionsl = 2929
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0318P)2 + 0.1624P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
4886 reflectionsΔρmax = 0.41 e Å3
167 parametersΔρmin = 0.32 e Å3
0 restraintsAbsolute structure: Flack (1983), 2074 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (5)
Crystal data top
C10H9ClN4OSV = 1178.42 (3) Å3
Mr = 268.72Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.2558 (1) ŵ = 0.49 mm1
b = 10.1449 (1) ÅT = 100 K
c = 18.5682 (2) Å0.34 × 0.10 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
4886 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4072 reflections with I > 2σ(I)
Tmin = 0.853, Tmax = 0.961Rint = 0.037
16807 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.078Δρmax = 0.41 e Å3
S = 1.05Δρmin = 0.32 e Å3
4886 reflectionsAbsolute structure: Flack (1983), 2074 Friedel pairs
167 parametersAbsolute structure parameter: 0.01 (5)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.30754 (7)0.94253 (3)0.877263 (19)0.02071 (9)
S10.74171 (6)0.27814 (3)0.785567 (19)0.01723 (8)
O10.15801 (18)0.26544 (10)0.93453 (5)0.0176 (2)
N10.1313 (2)0.39745 (12)0.96526 (6)0.0154 (3)
N20.2697 (2)0.50267 (11)0.84352 (6)0.0131 (2)
N30.4038 (2)0.39983 (12)0.83590 (6)0.0144 (2)
N40.6135 (2)0.52656 (12)0.76196 (7)0.0147 (2)
C10.2019 (3)0.52525 (13)0.94808 (7)0.0138 (3)
C20.3841 (3)0.58915 (15)0.97154 (7)0.0160 (3)
H2A0.48300.54741.00290.019*
C30.4167 (2)0.71814 (15)0.94706 (7)0.0163 (3)
H3A0.54110.76500.96130.020*
C40.2680 (3)0.77827 (13)0.90194 (7)0.0148 (3)
C50.0871 (2)0.71336 (14)0.87730 (7)0.0139 (3)
H5A0.01140.75510.84580.017*
C60.0562 (2)0.58458 (14)0.90075 (7)0.0124 (3)
C70.1086 (2)0.48782 (13)0.88630 (7)0.0127 (3)
C80.0532 (3)0.36840 (14)0.93058 (7)0.0139 (3)
C90.5824 (2)0.41081 (13)0.79306 (7)0.0127 (3)
C100.7903 (3)0.55324 (15)0.71346 (8)0.0201 (3)
H10A0.80410.64860.70650.030*
H10B0.76340.51070.66700.030*
H10C0.92280.51840.73420.030*
H1N40.516 (4)0.588 (2)0.7671 (10)0.033 (6)*
H1N30.383 (3)0.328 (2)0.8590 (10)0.032 (6)*
H1N10.189 (4)0.3462 (19)0.9928 (11)0.035 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0223 (2)0.01646 (14)0.02338 (15)0.00725 (15)0.00058 (16)0.00258 (13)
S10.01584 (18)0.01392 (14)0.02193 (15)0.00320 (15)0.00197 (16)0.00174 (13)
O10.0214 (6)0.0140 (4)0.0174 (4)0.0042 (5)0.0002 (4)0.0032 (4)
N10.0183 (7)0.0138 (5)0.0141 (5)0.0012 (5)0.0033 (5)0.0017 (4)
N20.0134 (6)0.0118 (4)0.0140 (5)0.0016 (5)0.0007 (5)0.0013 (4)
N30.0150 (7)0.0122 (5)0.0161 (5)0.0026 (5)0.0026 (5)0.0008 (4)
N40.0129 (6)0.0138 (5)0.0175 (5)0.0005 (5)0.0018 (5)0.0017 (4)
C10.0155 (7)0.0135 (5)0.0123 (5)0.0014 (5)0.0011 (6)0.0011 (4)
C20.0145 (7)0.0189 (6)0.0148 (6)0.0014 (6)0.0018 (6)0.0014 (5)
C30.0130 (7)0.0201 (6)0.0159 (6)0.0021 (6)0.0002 (6)0.0040 (5)
C40.0157 (7)0.0142 (5)0.0146 (5)0.0022 (6)0.0034 (6)0.0002 (5)
C50.0144 (7)0.0146 (5)0.0128 (5)0.0000 (6)0.0003 (6)0.0013 (5)
C60.0119 (7)0.0145 (6)0.0108 (5)0.0006 (5)0.0009 (5)0.0003 (4)
C70.0142 (7)0.0109 (5)0.0129 (6)0.0000 (5)0.0013 (5)0.0010 (4)
C80.0168 (7)0.0135 (6)0.0113 (5)0.0019 (6)0.0007 (6)0.0010 (4)
C90.0115 (7)0.0129 (5)0.0136 (6)0.0000 (5)0.0023 (5)0.0026 (5)
C100.0162 (8)0.0229 (7)0.0211 (6)0.0025 (6)0.0021 (6)0.0042 (6)
Geometric parameters (Å, º) top
Cl1—C41.7458 (14)C1—C61.402 (2)
S1—C91.6806 (14)C2—C31.400 (2)
O1—C81.2354 (18)C2—H2A0.9500
N1—C81.355 (2)C3—C41.392 (2)
N1—C11.4062 (18)C3—H3A0.9500
N1—H1N10.81 (2)C4—C51.387 (2)
N2—C71.292 (2)C5—C61.3906 (19)
N2—N31.3463 (17)C5—H5A0.9500
N3—C91.376 (2)C6—C71.449 (2)
N3—H1N30.86 (2)C7—C81.5044 (19)
N4—C91.3229 (18)C10—H10A0.9800
N4—C101.4520 (19)C10—H10B0.9800
N4—H1N40.88 (2)C10—H10C0.9800
C1—C21.382 (2)
C8—N1—C1111.11 (12)C4—C5—C6117.14 (13)
C8—N1—H1N1122.4 (16)C4—C5—H5A121.4
C1—N1—H1N1126.4 (16)C6—C5—H5A121.4
C7—N2—N3117.41 (11)C5—C6—C1120.62 (14)
N2—N3—C9120.27 (12)C5—C6—C7132.66 (13)
N2—N3—H1N3121.0 (14)C1—C6—C7106.73 (12)
C9—N3—H1N3118.7 (14)N2—C7—C6126.15 (12)
C9—N4—C10123.25 (13)N2—C7—C8127.55 (13)
C9—N4—H1N4119.0 (14)C6—C7—C8106.30 (12)
C10—N4—H1N4117.5 (14)O1—C8—N1127.44 (13)
C2—C1—C6122.18 (13)O1—C8—C7126.25 (14)
C2—C1—N1128.31 (14)N1—C8—C7106.31 (12)
C6—C1—N1109.52 (13)N4—C9—N3116.33 (13)
C1—C2—C3117.14 (14)N4—C9—S1125.98 (12)
C1—C2—H2A121.4N3—C9—S1117.69 (10)
C3—C2—H2A121.4N4—C10—H10A109.5
C4—C3—C2120.50 (14)N4—C10—H10B109.5
C4—C3—H3A119.7H10A—C10—H10B109.5
C2—C3—H3A119.7N4—C10—H10C109.5
C5—C4—C3122.37 (13)H10A—C10—H10C109.5
C5—C4—Cl1118.82 (11)H10B—C10—H10C109.5
C3—C4—Cl1118.79 (12)
C7—N2—N3—C9177.77 (13)N3—N2—C7—C6178.53 (13)
C8—N1—C1—C2178.80 (14)N3—N2—C7—C81.2 (2)
C8—N1—C1—C60.92 (16)C5—C6—C7—N22.2 (3)
C6—C1—C2—C31.2 (2)C1—C6—C7—N2177.97 (14)
N1—C1—C2—C3179.15 (13)C5—C6—C7—C8177.99 (15)
C1—C2—C3—C41.0 (2)C1—C6—C7—C81.83 (15)
C2—C3—C4—C52.3 (2)C1—N1—C8—O1179.09 (15)
C2—C3—C4—Cl1176.16 (11)C1—N1—C8—C70.27 (16)
C3—C4—C5—C61.3 (2)N2—C7—C8—O12.1 (3)
Cl1—C4—C5—C6177.14 (11)C6—C7—C8—O1178.07 (14)
C4—C5—C6—C10.9 (2)N2—C7—C8—N1178.50 (14)
C4—C5—C6—C7179.33 (14)C6—C7—C8—N11.30 (15)
C2—C1—C6—C52.1 (2)C10—N4—C9—N3178.06 (13)
N1—C1—C6—C5178.12 (13)C10—N4—C9—S12.7 (2)
C2—C1—C6—C7178.02 (13)N2—N3—C9—N41.08 (19)
N1—C1—C6—C71.72 (15)N2—N3—C9—S1179.58 (10)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N4—H1N4···N20.88 (2)2.27 (2)2.6416 (18)105.6 (15)
N4—H1N4···S1i0.88 (2)2.70 (2)3.4972 (13)152.2 (16)
N3—H1N3···O10.86 (2)2.086 (19)2.7526 (16)134.3 (17)
N1—H1N1···O1ii0.81 (2)2.01 (2)2.8161 (16)175 (2)
C3—H3A···Cg2iii0.952.593.38141
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x1/2, y+1/2, z+2; (iii) x1/2, y+3/2, z+2.

Experimental details

Crystal data
Chemical formulaC10H9ClN4OS
Mr268.72
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)6.2558 (1), 10.1449 (1), 18.5682 (2)
V3)1178.42 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.49
Crystal size (mm)0.34 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.853, 0.961
No. of measured, independent and
observed [I > 2σ(I)] reflections
16807, 4886, 4072
Rint0.037
(sin θ/λ)max1)0.795
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.078, 1.05
No. of reflections4886
No. of parameters167
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.32
Absolute structureFlack (1983), 2074 Friedel pairs
Absolute structure parameter0.01 (5)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N4—H1N4···N20.88 (2)2.27 (2)2.6416 (18)105.6 (15)
N4—H1N4···S1i0.88 (2)2.70 (2)3.4972 (13)152.2 (16)
N3—H1N3···O10.86 (2)2.086 (19)2.7526 (16)134.3 (17)
N1—H1N1···O1ii0.81 (2)2.01 (2)2.8161 (16)175 (2)
C3—H3A···Cg2iii0.952.593.38141
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x1/2, y+1/2, z+2; (iii) x1/2, y+3/2, z+2.
 

Footnotes

Thomson Reuters ResearcherID: E-9395-2011.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia for the RU research grant (No. 1001/PKIMIA/815067). AQA thanks the Ministry of Higher Education and the University of Sabha (Libya) for a scholarship.

References

First citationAli, A. Q., Eltayeb, N. E., Teoh, S. G., Salhin, A. & Fun, H.-K. (2012). Acta Cryst. E68, o285–o286.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBhandari, S. V., Bothara, K. G., Raut, M. K., Patil, A. A., Sarkate, A. P. & Mokale, V. J. (2008). Bioorg. Med. Chem. 16, 1822–1831.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBhardwaj, S., Kumar, L., Verma, R. & Sing, U. K. (2010). J. Pharm. Res. 3, 2983–2985.  CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPandeya, S. N., Sriram, D., Nath, G. & Clercq, E. De. (1999). Indian J. Pharm. Sci. 61, 358–361.  Google Scholar
First citationQasem Ali, A., Eltayeb, N. E., Teoh, S. G., Salhin, A. & Fun, H.-K. (2011a). Acta Cryst. E67, o3141–o3142.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQasem Ali, A., Eltayeb, N. E., Teoh, S. G., Salhin, A. & Fun, H.-K. (2011b). Acta Cryst. E67, o3476–o3477.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQasem Ali, A., Eltayeb, N. E., Teoh, S. G., Salhin, A. & Fun, H.-K. (2012). Acta Cryst. E68, o953–o954.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSridhar, S. K., Pandeya, S. N., Stables, J. P. & Ramesh, A. (2002). Eur. J. Pharm. Sci. 16, 129–132.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSuryavanshi, J. P. & Pai, N. R. (2006). Ind. J. Chem. Sect. B, 45, 1227–1230.  Google Scholar
First citationVine, K. L., Matesic, L., Locke, J. M., Ranson, M. & Skropeta, D. (2009). Anticancer Agents Med. Chem. 9, 397–414.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o964-o965
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds