organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1493-o1494

2-Amino-3-carb­­oxy­pyridinium chloride hemihydrate

aLaboratoire de Chimie Appliquée et Technologie des Matériaux (LCATM), Université Oum El Bouaghi, Algeria, bDépartement Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Oum El Bouaghi, Algeria, cUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Université Mentouri–Constantine, 25000 Algeria, and dLaboratoire de Chimie de Coodination, UPR–CNRS 8241, 205 route de Narbonne, 31077 Toulouse Cedex 04, France
*Correspondence e-mail: bouacida_sofiane@yahoo.fr

(Received 15 April 2012; accepted 18 April 2012; online 21 April 2012)

The asymmetric unit of the title compound, C6H7N2O2+·Cl·0.5H2O, consists of two protonated 2-amino-3-carb­oxy­pyridine cations, two chloride anions and one mol­ecule of water. The crystal packing can be described as alternating layers of cations and anions parallel to (110), which are linked together by Ow—H⋯Cl inter­actions. In the crystal, four types of classical hydrogen bonds are observed, viz. cation–anion (O—H⋯Cl and N—H⋯Cl), cation–cation (N—H⋯O), cation–water (N—H⋯Ow) and water–anion (Ow—H⋯Cl), resulting in the formation of an infinite three-dimensional network.

Related literature

For applications of hybrid organic–inorganic compounds, see: Bouacida (2008[Bouacida, S. (2008). PhD thesis, Montouri-Constantine University, Algeria.]); Kickelbick (2007[Kickelbick, G. (2007). In Hybrid Materials: Synthesis, Characterization and Applications. Weinheim: Wiley-VCH.]); Mitzi et al. (1998[Mitzi, D. B., Liang, K. & Wang, S. (1998). Inorg. Chem. 37, 321-327.]); Asaji et al. (2007[Asaji, T., Eda, K., Fujimori, H., Adachi, T., Shibusawa, T. & Oguni, M. (2007). J. Mol. Struct. 826, 24-28.]); Lynch & Jones (2004[Lynch, D. E. & Jones, G. D. (2004). Acta Cryst. B60, 748-754.]). For related structures, see: Beatty (2003[Beatty, A. M. (2003). Coord. Chem. Rev., 246, 131-143.]); Sengupta et al. (2001[Sengupta, P., Dinda, R., Ghosh, S. & Sheldrick, W. S. (2001). Polyhedron, 20, 3349-3354.]); Berrah et al. (2011a[Berrah, F., Ouakkaf, A., Bouacida, S. & Roisnel, T. (2011a). Acta Cryst. E67, o953-o954.],b[Berrah, F., Ouakkaf, A., Bouacida, S. & Roisnel, T. (2011b). Acta Cryst. E67, o525-o526.],c[Berrah, F., Bouacida, S. & Roisnel, T. (2011c). Acta Cryst. E67, o2057-o2058.]); Akriche & Rzaigui (2007[Akriche, S. & Rzaigui, M. (2007). Acta Cryst. E63, o3460.]).

[Scheme 1]

Experimental

Crystal data
  • C6H7N2O2+·Cl·0.5H2O

  • Mr = 183.60

  • Triclinic, [P \overline 1]

  • a = 7.8949 (4) Å

  • b = 9.1639 (5) Å

  • c = 11.0285 (6) Å

  • α = 81.392 (4)°

  • β = 81.276 (3)°

  • γ = 81.682 (4)°

  • V = 773.68 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 180 K

  • 0.1 × 0.08 × 0.06 mm

Data collection
  • Agilent Xcalibur Sapphire1 long-nozzle diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.831, Tmax = 1

  • 14449 measured reflections

  • 3600 independent reflections

  • 2857 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.08

  • S = 1.01

  • 3600 reflections

  • 214 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯Cl1 0.85 (1) 2.24 (1) 3.0887 (12) 173 (2)
O1W—H2W⋯Cl2 0.84 (2) 2.33 (2) 3.1639 (12) 170 (2)
O2A—H2A⋯Cl1i 0.82 2.18 2.9948 (11) 177
O2B—H2B⋯O1Wi 0.82 1.78 2.5818 (15) 166
N3B—H3B2⋯O1B 0.86 2.10 2.7176 (17) 128
N3B—H3B2⋯O1Aii 0.86 2.25 2.9903 (17) 144
N3A—H3A2⋯O1A 0.86 2.04 2.6644 (16) 129
N3A—H3A2⋯O1Bii 0.86 2.17 2.8781 (17) 140
N3A—H3A1⋯Cl2iii 0.86 2.34 3.1447 (13) 156
N4A—H4A⋯Cl2iii 0.86 2.44 3.2265 (12) 152
N4B—H4B⋯Cl2 0.86 2.21 3.0510 (13) 166
Symmetry codes: (i) x, y, z-1; (ii) -x, -y+1, -z; (iii) -x, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia,1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Organic-inorganic hybrid compounds represent one of the most important developments in materials chemistry in recent years. The tremendous possibilities of combination of different properties in one material initiated an explosion of ideas about potential materials and applications (Bouacida, 2008; Kickelbick, 2007; Mitzi et al., 1998). Hybrid structures including substituted pyridines organic units have drawn increasing attention due to their potential applications in biological and industrial fields (Asaji et al., 2007; Lynch & Jones, 2004), nitrogen in the pyridine ring has a lone pair of electrons which is not delocalized with the aromatic π-electron system and is easily available for protonation (Berrah et al., 2011a). In the presence of a carboxylic acid substituent, they are recognized as efficient N–O donors exhibiting diverse mode of coordination (Beatty, 2003; Sengupta et al., 2001). Their fascinating structures are rich in H-bonds wich have a potential importance in crystal stability (Berrah et al., 2011a,b,c; Akriche & Rzaigui, 2007).

In continuation of our search to enrich the varieties in such kinds of hybrid compounds and to investigate the influence of hydrogen bonds on the structural features, we report here the synthesis and crystal structure of 2-amino-3-carboxypyridinium chloride hemi hydrate, (I).

The asymmetric unit in this compound consists of two protonated, "2-amino-3-carboxypyridine", amino acids cations (A and B), two chloride anions and one molecule of water. The molecular geometry and the atom-numbering scheme of (I) are shown in Fig. 1. Bond distances and angles observed in the different entities, present no unusual features and are consistent with those reported previously (Berrah et al., 2011b). The crystal packing can be described as alternating layers parallel to (110) plane, which are linked together by O1W—H···Cl interactions involving molecule of water and anions chloride (Fig.2). In this structure, four types of classical hydrogen bonds are observed, viz. cation-anion [O—H···Cl & N—H···Cl], cation-cation [N—H···O], cation-water [N—H···O1W] and water-anion [O1W—H···Cl] (Fig. 3). All these interactions bonds link the molecules within the layers and also link the layers together, forming a three-dimensional network and reinforcing the cohesion of the structure. Additional hydrogen bond parameters are listed in table 1.

Related literature top

For applications of hybrid compounds, see: Bouacida (2008); Kickelbick (2007); Mitzi et al. (1998); Asaji et al. (2007); Lynch & Jones (2004). For related structures, see: Beatty (2003); Sengupta et al. (2001); Berrah et al. (2011a,b,c); Akriche & Rzaigui (2007).

Experimental top

The title compound was synthesized by reacting 3-amino-pyridine-2-carboxylic acid (3 mmol) with InCl3 (1 mmol)in an aqueous solution of hydrochloric acid. The solutions were slowly evaporated to dryness for a couple of weeks. Some colorless crystals were carefully isolated under polarizing microscope for analysis by X-ray diffraction.

Refinement top

The H atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent atoms (C, N or O) with C—H = 0.93 Å, O—H = 0.82 Å and N—H = 0.86 Å with Uiso(H) = 1.2 Ueq(C or N) and Uiso(H) = 1.5 Ueq(O). H1W and H2W were located in a difference Fourier map and refined isotropically with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia,1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) with the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. (Brandenburg & Berndt, 2001) Partial packing viewed via c axis showing layers parallel to (110) plane, which are connected with O—H···Cl Hydrogen bonds, shown as dashed lines.
[Figure 3] Fig. 3. (Brandenburg & Berndt, 2001) Partial packing viewed via b axis showing Hydrogen bonds interactions, as dashed lines, cation-anion [O—H···Cl & N—H···Cl], cation-cation [N—H···O], cation-water [N—H···O1W] and water-anion [O1W—H···Cl].
2-Amino-3-carboxypyridinium chloride hemihydrate top
Crystal data top
C6H7N2O2+·Cl·0.5H2OZ = 4
Mr = 183.60F(000) = 380
Triclinic, P1Dx = 1.576 Mg m3
a = 7.8949 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.1639 (5) ÅCell parameters from 8921 reflections
c = 11.0285 (6) Åθ = 3.0–28.3°
α = 81.392 (4)°µ = 0.45 mm1
β = 81.276 (3)°T = 180 K
γ = 81.682 (4)°Box, colourless
V = 773.68 (7) Å30.1 × 0.08 × 0.06 mm
Data collection top
Agilent Xcalibur Sapphire1 long-nozzle
diffractometer
3600 independent reflections
Radiation source: fine-focus sealed tube2857 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 8.2632 pixels mm-1θmax = 28.4°, θmin = 3.0°
ω scansh = 109
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1212
Tmin = 0.831, Tmax = 1l = 1314
14449 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.08H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0442P)2 + 0.1332P]
where P = (Fo2 + 2Fc2)/3
3600 reflections(Δ/σ)max = 0.006
214 parametersΔρmax = 0.26 e Å3
3 restraintsΔρmin = 0.28 e Å3
Crystal data top
C6H7N2O2+·Cl·0.5H2Oγ = 81.682 (4)°
Mr = 183.60V = 773.68 (7) Å3
Triclinic, P1Z = 4
a = 7.8949 (4) ÅMo Kα radiation
b = 9.1639 (5) ŵ = 0.45 mm1
c = 11.0285 (6) ÅT = 180 K
α = 81.392 (4)°0.1 × 0.08 × 0.06 mm
β = 81.276 (3)°
Data collection top
Agilent Xcalibur Sapphire1 long-nozzle
diffractometer
3600 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2857 reflections with I > 2σ(I)
Tmin = 0.831, Tmax = 1Rint = 0.033
14449 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0303 restraints
wR(F2) = 0.08H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.26 e Å3
3600 reflectionsΔρmin = 0.28 e Å3
214 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N3A0.02482 (16)0.24894 (14)0.18532 (11)0.0277 (3)
H3A10.07720.29620.24480.033*
H3A20.04970.27610.11140.033*
N3B0.13489 (17)0.59931 (14)0.23112 (12)0.0291 (3)
H3B10.08570.64320.29330.035*
H3B20.10530.62980.15880.035*
O1W0.33167 (15)0.38876 (12)0.72134 (10)0.0306 (2)
H1W0.287 (2)0.3146 (14)0.7070 (17)0.046*
H2W0.280 (2)0.4650 (14)0.6834 (16)0.046*
Cl10.19706 (5)0.11808 (4)0.64870 (3)0.03012 (11)
Cl20.14081 (5)0.65043 (4)0.55111 (3)0.03071 (11)
O1A0.05136 (14)0.18895 (12)0.04721 (9)0.0301 (2)
O2A0.26652 (14)0.01182 (12)0.09112 (9)0.0287 (2)
H2A0.24450.03920.16190.043*
O1B0.20803 (14)0.54951 (12)0.00916 (10)0.0333 (3)
N4A0.12830 (15)0.09603 (13)0.32534 (10)0.0220 (2)
H4A0.0740.14860.38090.026*
N4B0.29795 (16)0.44117 (14)0.36162 (11)0.0259 (3)
H4B0.24250.4880.42040.031*
C2B0.34601 (17)0.40270 (14)0.15203 (12)0.0193 (3)
C2A0.19059 (17)0.05053 (15)0.11658 (12)0.0196 (3)
C3A0.09315 (17)0.13510 (15)0.20751 (12)0.0201 (3)
C5A0.24283 (19)0.01981 (16)0.36061 (13)0.0256 (3)
H5A0.25930.04210.44340.031*
C7A0.30817 (19)0.06680 (16)0.15319 (13)0.0238 (3)
H7A0.3720.12270.09420.029*
C1A0.16107 (18)0.09171 (15)0.01399 (12)0.0210 (3)
O2B0.38993 (13)0.34859 (11)0.05118 (9)0.0272 (2)
H2B0.36380.37470.12110.041*
C1B0.30608 (17)0.44226 (15)0.02359 (12)0.0209 (3)
C7B0.47068 (18)0.28766 (16)0.18251 (13)0.0227 (3)
H7B0.53040.23390.12080.027*
C3B0.25557 (18)0.48538 (15)0.24663 (13)0.0218 (3)
C5B0.4206 (2)0.32921 (17)0.39066 (14)0.0279 (3)
H5B0.44410.30640.47190.033*
C6B0.51055 (19)0.24892 (17)0.30269 (13)0.0264 (3)
H6B0.59560.1710.3220.032*
C6A0.3345 (2)0.10448 (17)0.27672 (14)0.0281 (3)
H6A0.4130.18560.30080.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N3A0.0289 (7)0.0298 (7)0.0217 (6)0.0094 (6)0.0026 (5)0.0084 (5)
N3B0.0302 (7)0.0268 (6)0.0280 (7)0.0051 (6)0.0008 (5)0.0080 (5)
O1W0.0410 (7)0.0254 (6)0.0259 (5)0.0005 (5)0.0104 (5)0.0036 (4)
Cl10.0377 (2)0.0322 (2)0.02155 (18)0.00542 (16)0.00607 (15)0.00379 (14)
Cl20.0382 (2)0.0302 (2)0.02172 (18)0.00677 (16)0.00392 (15)0.00771 (14)
O1A0.0310 (6)0.0335 (6)0.0227 (5)0.0100 (5)0.0058 (4)0.0049 (4)
O2A0.0349 (6)0.0301 (6)0.0179 (5)0.0084 (5)0.0028 (4)0.0059 (4)
O1B0.0351 (6)0.0326 (6)0.0278 (6)0.0113 (5)0.0065 (5)0.0024 (4)
N4A0.0249 (6)0.0228 (6)0.0185 (5)0.0021 (5)0.0001 (5)0.0062 (4)
N4B0.0261 (6)0.0306 (7)0.0208 (6)0.0008 (5)0.0008 (5)0.0093 (5)
C2B0.0190 (6)0.0178 (6)0.0209 (6)0.0034 (5)0.0004 (5)0.0032 (5)
C2A0.0190 (7)0.0188 (6)0.0209 (7)0.0021 (5)0.0015 (5)0.0042 (5)
C3A0.0193 (7)0.0216 (7)0.0197 (6)0.0041 (5)0.0017 (5)0.0033 (5)
C5A0.0304 (8)0.0265 (7)0.0202 (7)0.0028 (6)0.0061 (6)0.0014 (6)
C7A0.0250 (7)0.0223 (7)0.0232 (7)0.0005 (6)0.0013 (6)0.0055 (5)
C1A0.0211 (7)0.0212 (7)0.0204 (7)0.0028 (6)0.0003 (5)0.0045 (5)
O2B0.0330 (6)0.0277 (5)0.0197 (5)0.0050 (5)0.0058 (4)0.0058 (4)
C1B0.0191 (7)0.0204 (7)0.0225 (7)0.0017 (6)0.0007 (5)0.0039 (5)
C7B0.0224 (7)0.0227 (7)0.0232 (7)0.0025 (6)0.0009 (6)0.0058 (5)
C3B0.0201 (7)0.0217 (7)0.0239 (7)0.0049 (6)0.0005 (5)0.0043 (5)
C5B0.0284 (8)0.0344 (8)0.0210 (7)0.0043 (7)0.0050 (6)0.0024 (6)
C6B0.0247 (7)0.0269 (7)0.0264 (7)0.0007 (6)0.0059 (6)0.0013 (6)
C6A0.0300 (8)0.0249 (7)0.0273 (7)0.0049 (6)0.0070 (6)0.0018 (6)
Geometric parameters (Å, º) top
N3A—C3A1.3143 (18)C2B—C7B1.3738 (19)
N3A—H3A10.86C2B—C3B1.4236 (19)
N3A—H3A20.86C2B—C1B1.4785 (18)
N3B—C3B1.3172 (18)C2A—C7A1.3695 (19)
N3B—H3B10.86C2A—C3A1.4227 (19)
N3B—H3B20.86C2A—C1A1.4778 (18)
O1W—H1W0.854 (9)C5A—C6A1.353 (2)
O1W—H2W0.843 (9)C5A—H5A0.93
O1A—C1A1.2058 (17)C7A—C6A1.394 (2)
O2A—C1A1.3221 (16)C7A—H7A0.93
O2A—H2A0.82O2B—C1B1.3179 (16)
O1B—C1B1.2058 (17)O2B—H2B0.82
N4A—C5A1.3420 (18)C7B—C6B1.3911 (19)
N4A—C3A1.3548 (17)C7B—H7B0.93
N4A—H4A0.86C5B—C6B1.357 (2)
N4B—C5B1.342 (2)C5B—H5B0.93
N4B—C3B1.3491 (18)C6B—H6B0.93
N4B—H4B0.86C6A—H6A0.93
C3A—N3A—H3A1120C2A—C7A—C6A121.60 (13)
C3A—N3A—H3A2120C2A—C7A—H7A119.2
H3A1—N3A—H3A2120C6A—C7A—H7A119.2
C3B—N3B—H3B1120O1A—C1A—O2A123.10 (12)
C3B—N3B—H3B2120O1A—C1A—C2A123.28 (12)
H3B1—N3B—H3B2120O2A—C1A—C2A113.62 (12)
H1W—O1W—H2W106.3 (15)C1B—O2B—H2B109.5
C1A—O2A—H2A109.5O1B—C1B—O2B123.72 (13)
C5A—N4A—C3A123.91 (12)O1B—C1B—C2B123.43 (12)
C5A—N4A—H4A118O2B—C1B—C2B112.84 (12)
C3A—N4A—H4A118C2B—C7B—C6B122.19 (13)
C5B—N4B—C3B124.58 (13)C2B—C7B—H7B118.9
C5B—N4B—H4B117.7C6B—C7B—H7B118.9
C3B—N4B—H4B117.7N3B—C3B—N4B118.05 (13)
C7B—C2B—C3B118.77 (12)N3B—C3B—C2B125.61 (13)
C7B—C2B—C1B121.29 (12)N4B—C3B—C2B116.33 (13)
C3B—C2B—C1B119.94 (12)N4B—C5B—C6B120.70 (13)
C7A—C2A—C3A118.82 (12)N4B—C5B—H5B119.7
C7A—C2A—C1A122.21 (12)C6B—C5B—H5B119.7
C3A—C2A—C1A118.96 (12)C5B—C6B—C7B117.41 (14)
N3A—C3A—N4A118.07 (12)C5B—C6B—H6B121.3
N3A—C3A—C2A125.06 (12)C7B—C6B—H6B121.3
N4A—C3A—C2A116.85 (12)C5A—C6A—C7A118.20 (14)
N4A—C5A—C6A120.56 (13)C5A—C6A—H6A120.9
N4A—C5A—H5A119.7C7A—C6A—H6A120.9
C6A—C5A—H5A119.7
C5A—N4A—C3A—N3A178.44 (13)C7B—C2B—C1B—O2B5.75 (18)
C5A—N4A—C3A—C2A2.8 (2)C3B—C2B—C1B—O2B174.82 (12)
C7A—C2A—C3A—N3A179.18 (14)C3B—C2B—C7B—C6B0.4 (2)
C1A—C2A—C3A—N3A0.5 (2)C1B—C2B—C7B—C6B179.82 (13)
C7A—C2A—C3A—N4A2.20 (19)C5B—N4B—C3B—N3B178.55 (13)
C1A—C2A—C3A—N4A178.08 (12)C5B—N4B—C3B—C2B1.8 (2)
C3A—N4A—C5A—C6A1.4 (2)C7B—C2B—C3B—N3B179.06 (13)
C3A—C2A—C7A—C6A0.2 (2)C1B—C2B—C3B—N3B0.4 (2)
C1A—C2A—C7A—C6A179.93 (14)C7B—C2B—C3B—N4B1.36 (19)
C7A—C2A—C1A—O1A175.54 (13)C1B—C2B—C3B—N4B179.19 (12)
C3A—C2A—C1A—O1A4.2 (2)C3B—N4B—C5B—C6B1.3 (2)
C7A—C2A—C1A—O2A4.50 (19)N4B—C5B—C6B—C7B0.1 (2)
C3A—C2A—C1A—O2A175.79 (12)C2B—C7B—C6B—C5B0.3 (2)
C7B—C2B—C1B—O1B173.77 (14)N4A—C5A—C6A—C7A0.8 (2)
C3B—C2B—C1B—O1B5.7 (2)C2A—C7A—C6A—C5A1.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···Cl10.85 (1)2.24 (1)3.0887 (12)173 (2)
O1W—H2W···Cl20.84 (2)2.33 (2)3.1639 (12)170 (2)
O2A—H2A···Cl1i0.822.182.9948 (11)177
O2B—H2B···O1Wi0.821.782.5818 (15)166
N3B—H3B2···O1B0.862.102.7176 (17)128
N3B—H3B2···O1Aii0.862.252.9903 (17)144
N3A—H3A2···O1A0.862.042.6644 (16)129
N3A—H3A2···O1Bii0.862.172.8781 (17)140
N3A—H3A1···Cl2iii0.862.343.1447 (13)156
N4A—H4A···Cl2iii0.862.443.2265 (12)152
N4B—H4B···Cl20.862.213.0510 (13)166
C5A—H5A···Cl10.932.823.5417 (15)135
C6A—H6A···O1Wiv0.932.553.427 (2)158
C7A—H7A···O2A0.932.422.7397 (17)100
C7B—H7B···O2B0.932.372.7065 (17)101
Symmetry codes: (i) x, y, z1; (ii) x, y+1, z; (iii) x, y+1, z+1; (iv) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC6H7N2O2+·Cl·0.5H2O
Mr183.60
Crystal system, space groupTriclinic, P1
Temperature (K)180
a, b, c (Å)7.8949 (4), 9.1639 (5), 11.0285 (6)
α, β, γ (°)81.392 (4), 81.276 (3), 81.682 (4)
V3)773.68 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.45
Crystal size (mm)0.1 × 0.08 × 0.06
Data collection
DiffractometerAgilent Xcalibur Sapphire1 long-nozzle
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.831, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
14449, 3600, 2857
Rint0.033
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.08, 1.01
No. of reflections3600
No. of parameters214
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.28

Computer programs: CrysAlis PRO (Agilent, 2011), SIR2002 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia,1997) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···Cl10.854 (14)2.240 (14)3.0887 (12)172.6 (16)
O1W—H2W···Cl20.844 (15)2.330 (15)3.1639 (12)170.1 (15)
O2A—H2A···Cl1i0.82002.18002.9948 (11)177.00
O2B—H2B···O1Wi0.82001.78002.5818 (15)166.00
N3B—H3B2···O1B0.86002.10002.7176 (17)128.00
N3B—H3B2···O1Aii0.86002.25002.9903 (17)144.00
N3A—H3A2···O1A0.86002.04002.6644 (16)129.00
N3A—H3A2···O1Bii0.86002.17002.8781 (17)140.00
N3A—H3A1···Cl2iii0.86002.34003.1447 (13)156.00
N4A—H4A···Cl2iii0.86002.44003.2265 (12)152.00
N4B—H4B···Cl20.86002.21003.0510 (13)166.00
Symmetry codes: (i) x, y, z1; (ii) x, y+1, z; (iii) x, y+1, z+1.
 

Acknowledgements

We are grateful to all personel of the LCATM laboratory, Université Oum El Bouaghi, Algérie for their assistance. Thanks are due to MESRS and ANDRU (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique et l'Agence Nationale pour le Développement de la Recherche Universitaire (ANDRU) - Algérie) via the PNR programme for financial support.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAkriche, S. & Rzaigui, M. (2007). Acta Cryst. E63, o3460.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAsaji, T., Eda, K., Fujimori, H., Adachi, T., Shibusawa, T. & Oguni, M. (2007). J. Mol. Struct. 826, 24–28.  Web of Science CSD CrossRef CAS Google Scholar
First citationBeatty, A. M. (2003). Coord. Chem. Rev., 246, 131–143.  Web of Science CrossRef CAS Google Scholar
First citationBerrah, F., Bouacida, S. & Roisnel, T. (2011c). Acta Cryst. E67, o2057–o2058.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBerrah, F., Ouakkaf, A., Bouacida, S. & Roisnel, T. (2011a). Acta Cryst. E67, o953–o954.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBerrah, F., Ouakkaf, A., Bouacida, S. & Roisnel, T. (2011b). Acta Cryst. E67, o525–o526.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBouacida, S. (2008). PhD thesis, Montouri–Constantine University, Algeria.  Google Scholar
First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKickelbick, G. (2007). In Hybrid Materials: Synthesis, Characterization and Applications. Weinheim: Wiley-VCH.  Google Scholar
First citationLynch, D. E. & Jones, G. D. (2004). Acta Cryst. B60, 748–754.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMitzi, D. B., Liang, K. & Wang, S. (1998). Inorg. Chem. 37, 321–327.  Web of Science CSD CrossRef CAS Google Scholar
First citationSengupta, P., Dinda, R., Ghosh, S. & Sheldrick, W. S. (2001). Polyhedron, 20, 3349–3354.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1493-o1494
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds