organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1331-o1332

The pseudosymmetric structure of bis­­(pentane-1,5-diaminium) iodide tris­­(triiodide)

aInstitut für Anorganische Chemie und Strukturchemie, Lehrstuhl II: Material- und Strukturforschung, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
*Correspondence e-mail: reissg@hhu.de

(Received 19 March 2012; accepted 3 April 2012; online 6 April 2012)

The asymmetric unit of the title compound, [H3N(CH2)5NH3]2I[I3]3 or 2C5H16N22+·3I3·I, consists of two crystallographically independent pentane-1,5-diaminium dications and two triiodide anions in general positions besides two additional triiodide and two iodide anions located on twofold axes. The compound crystallizes in the centrosymmetric monoclinic space group P2/n. The structure refinement was handicapped by the pseudosymmetry (pseudo-centering) of the structure and by twinning. The crystal structure is composed of two alternate layers, which differ in their arrangement of the pentane-1,5-diaminium dications and the iodide/triiodide anions and which are connected via weak to medium–strong N—H⋯I hydrogen bonds, constructing a complex hydrogen-bonded network.

Related literature

For general background to polyiodides, see: Svensson & Kloo (2003[Svensson, P. H. & Kloo, L. (2003). Chem. Rev. 103, 1649-1684.]). For materials constructed by α,ω-diaminiumalkanes, see: Feng et al. (2000[Feng, P., Bu, X. & Stucky, G. D. (2000). Inorg. Chem. 39, 2-3.]); Wiebcke (2002[Wiebcke, M. (2002). J. Mater. Chem. 12, 143-147.]); Frank & Reiss (1997[Frank, W. & Reiss, G. J. (1997). Inorg. Chem. 36, 4593-4595.]); Johnson et al. (2000[Johnson, B. F. G., Judkins, C. M. G., Matters, J. M., Shephard, D. S. & Parsons, S. (2000). J. Chem. Soc. Chem. Commun. pp. 1549-1550.]). For applications of polyiodides, see: O'Regan & Grätzel (1991[O'Regan, B. & Grätzel, M. (1991). Nature, 353, 737-739.]); Gorlov & Kloo (2008[Gorlov, M. & Kloo, L. (2008). Dalton Trans. pp. 2655-2666.]); Yang et al. (2011[Yang, Y., Sun, R., Shi, C., Wu, Y. & Xia, M. (2011). Int. J. Photoenergy, Article ID 986869, 5 pages; doi:10.1155/2011/986869.]). For Raman spectroscopy of polyiodides, see: Deplano et al. (1999[Deplano, P., Ferraro, J. R., Mercuri, M. L. & Trogu, E. F. (1999). Coord. Chem. Rev. 188, 71-95.]). For polyiodide-containing compounds with other stick-shaped cationic templates, see: Tebbe & Bittner (1995[Tebbe, K.-F. & Bittner, M. (1995). Z. Anorg. Allg. Chem. 621, 218-224.]); Svensson et al. (2008[Svensson, P. H., Gorlov, M. & Kloo, L. (2008). Inorg. Chem. 47, 11464-11466.]); Abate et al. (2010[Abate, A., Brischetto, M., Cavallo, G., Lahtinen, M., Metrangolo, P., Pilati, T., Radice, S., Resnati, G., Rissanen, K. & Terraneo, G. (2010). J. Chem. Soc. Chem. Commun. 46, 2724-2726.]); Meyer et al. (2010[Meyer, M. K., Graf, J. & Reiss, G. J. (2010). Z. Naturforsch. Teil B, 65, 1462-1466.]); Müller et al. (2010[Müller, M., Albrecht, M., Gossen, V., Peters, T., Hoffmann, A., Raabe, G., Valkonen, A. & Rissanen, K. (2010). Chem. Eur. J. 16, 12446-12453.]); García et al. (2011[García, M. D., Martí-Rujas, J., Metrangolo, P., Peinador, C., Pilati, T., Resnati, G., Terraneo, G. & Ursini, M. (2011). CrystEngComm, 13, 4411-4416.]); Reiss & van Megen (2012[Reiss, G. J. & van Megen, M. (2012). Z. Naturforsch. Teil B 67, 5-10.]). For polyiodide-containing α,ω-diaminiumalkanes compounds, see: Reiss & Engel (2002[Reiss, G. J. & Engel, J. S. (2002). CrystEngComm, 4, 155-161.], 2004[Reiss, G. J. & Engel, J. S. (2004). Z. Naturforsch. Teil B, 59, 1114-1117.]). For background to hydrogen bonds, see: Steiner (2002[Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.]). For graph sets, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]). For elemental analysis of iodine, see: Egli (1969[Egli, R. A. (1969). Z. Anal. Chem. 247, 39-41.]). For programmes used to handle the pseudosymmetry, see: Sheldrick (2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Scheme 1]

Experimental

Crystal data
  • 2C5H16N22+·3I3·I

  • Mr = 1477.40

  • Monoclinic, P 2/n

  • a = 11.24742 (18) Å

  • b = 24.4932 (3) Å

  • c = 11.49947 (16) Å

  • β = 99.5311 (14)°

  • V = 3124.21 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 9.92 mm−1

  • T = 110 K

  • 0.35 × 0.13 × 0.03 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: analytical [CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]), using a multi-faceted crystal model (Clark & Reid, 1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.184, Tmax = 0.746

  • 42753 measured reflections

  • 5507 independent reflections

  • 5106 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.048

  • S = 1.78

  • 5507 reflections

  • 260 parameters

  • 12 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.89 e Å−3

  • Δρmin = −0.85 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H11⋯I2 0.89 (2) 2.87 (4) 3.632 (4) 144 (5)
N1—H12⋯I5i 0.89 (2) 3.00 (4) 3.757 (4) 145 (5)
N1—H13⋯I12ii 0.90 (2) 3.02 (5) 3.558 (4) 120 (4)
N2—H21⋯I5ii 0.90 (2) 3.02 (3) 3.786 (4) 145 (4)
N2—H22⋯I6 0.90 (2) 2.71 (3) 3.562 (4) 158 (4)
N3—H31⋯I6 0.89 (2) 2.85 (4) 3.607 (4) 144 (5)
N3—H32⋯I12 0.90 (2) 2.66 (3) 3.492 (4) 154 (5)
N4—H41⋯I9 0.90 (2) 2.82 (3) 3.634 (4) 153 (4)
N4—H42⋯I8 0.90 (2) 2.70 (2) 3.564 (4) 162 (4)
N4—H43⋯I11iii 0.90 (2) 2.94 (4) 3.621 (4) 134 (4)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (ii) -x+1, -y, -z+1; (iii) [x-{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2011[Brandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

There is a general interest in diaminiumalkane iodides and polyiodides as they are well known for having a significant influence on the redox chemistry in dye-sensitized solar cells (O'Regan & Grätzel, 1991; Gorlov & Kloo, 2008; Yang et al., 2011). The semi-flexible, stick-shaped α,ω-diaminiumalkane dications have proved to be potent templates for crystal engineering with a wide field of application, e. g. for the synthesis of layered structures of aluminium and zinc phosphates (Feng et al., 2000; Wiebcke, 2002), for the encapsulation of hydronium cations with unusual topology in hydrogen-bonded frameworks (Frank & Reiss, 1997) and for connecting metal clusters as special spacers (Johnson et al., 2000). In the recent past several groups have also synthesized new polyiodides using stick-shaped cationic templates whose lengths and shapes fit with the structures of the polyiodides (Tebbe & Bittner, 1995; Abate et al., 2010; Meyer et al., 2010; García et al., 2011; Reiss & van Megen, 2012). This selective and robust synthetic protocol for solid polyiodides is now termed dimensional caging (Svensson et al., 2008). Especially the α,ω-diaminiumalkane dications have successfully been used for the dimensional caging of polyiodides (Reiss & Engel, 2002; Reiss & Engel, 2004). This contribution presents the crystal structure of a salt composed of pentane-1,5-diaminium dications and iodide and triiodide anions.

The asymmetric unit of the title compound consists of two crystallographically independent pentane-1,5-diaminium dications and two triiodides in general positions. In addition to that there are two more triiodides and two iodide anions all located on twofold axes. The organic dications exhibit an all-trans conformation within the experimental uncertainties. The crystallographically independent dications are found in two different, alternate layers which are connected by weak to medium strong N–H···I hydrogen-bonds (Steiner, 2002). The pentane-1,5-diaminium dications and the different types of anions construct a complex hydrogen-bonded framework. Generally the N–H···I hydrogen bonds accepted by the iodide anions are, as expected, shorter than those accepted by the triiodide anions. However, there is also one triiodide anion which is not involved in any classical hydrogen bonding, but it is integrated in the structure by weak H···I contacts (Fig. 1).

The basic hydrogen-bonded structural motif in both layers consists of two cations, one iodide and one triiodide arranged as a ring (Fig. 2 and Fig. 3). In these hydrogen-bonded rings the iodide anion accepts two hydrogen bonds and the triiodide anion accepts one hydrogen bond at each terminal iodine atom (graph set: R34(22); Etter, 1990). In the A layer the iodide anion accepts two more hydrogen bonds of neighbouring aminium groups whereas the triiodide anion is not further connected (Fig. 2, Table 1). In contrast to that in layer B the iodide and the triiodide anion of the basic hydrogen-bonded ring motif are not involved in further hydrogen bonding. The connection to neighbouring units in this case is performed by the aminium groups (Fig. 3, Table 1). In both layers triiodide anions (I3–I4–I5; I9–I10–I11) are arranged parallel to the rod-shaped cations. The inclusion of these triiodides can be understood as a typical encapsulation of a small polyiodide (Abate et al., 2010; Müller et al., 2010; García et al., 2011).

All triiodide anions in this compound are nearly linear and symmetric with bond lengths and angles in the expected ranges (Svensson & Kloo, 2003). Furthermore the Raman spectroscopic results are in excellent agreement with those of the crystal structure analysis. For a centrosymmetric triiodide anion with Dh symmetry one Raman active band from the centrosymmetric stretching vibration is predicted at ~110 cm-1 by selection rules (Deplano et al., 1999). The experimental Raman spectrum of the title compound shows one very strong band at 110 cm-1.

The whole structure determination is affected by pseudosymmetry problems. The diffraction pattern shows weak superstructure reflections besides the main reflections (Fig. 4). The ADDSYM option of the PLATON programme (Spek, 2009) detects a centering of most non-hydrogen atoms which produces a B-Alert using the IUCR-CheckCif programme. A view along [010] shows the title structure (Fig. 5) with the true monoclinic cell (red) and the pseudo-orthorhombic cell (black). From all the non-hydrogen atom positions in the asymmetric unit, only two iodide anion positions do not fit with a face-centered description of the structure. In the projection along [010] the deviation from the higher symmetric description is marginal. Fig. 4 and Fig. 5 document the difficulties which arose during the data collection and the structure refinement. As the final structural model does not reveal any disorder, including the hydrogen atoms, a description in a higher symmetric model accepting a disorder has definitively been ruled out.

Related literature top

For general background to polyiodides, see: Svensson & Kloo (2003). For materials constructed by α,ω-diazaniumalkanes, see: Feng et al. (2000); Wiebcke (2002); Frank & Reiss (1997); Johnson et al. (2000). For applications of polyiodides, see: O'Regan & Grätzel (1991); Gorlov & Kloo (2008); Yang et al. (2011). For Raman spectroscopy of polyiodides, see: Deplano et al. (1999). For polyiodide-containing compounds with other stick-shaped cationic templates, see: Tebbe & Bittner (1995); Svensson et al. (2008); Abate et al. (2010); Meyer et al. (2010); Müller et al. (2010); García et al. (2011); Reiss & van Megen (2012). For polyiodide-containing α,ω-diazaniumalkane compounds, see: Reiss & Engel (2002, 2004). For background to hydrogen bonds, see: Steiner (2002). For graph sets, see: Etter et al. (1990). For elemental analysis of iodine, see: Egli (1969). For programmes used to handle the pseudosymmetry, see: Sheldrick (2008); Spek (2009).

Experimental top

The title compound, [H3N(CH2)5NH3]2I[I3]3, was prepared by dissolving 0.16 g (1.6 mmol) 1,5-diaminopentane and 0.81 g (3.2 mmol) iodine in 10 ml concentrated (57%) hydroiodic acid. Heating to 373 K yielded a dark coloured solution. Upon slow cooling to room temperature, dark-red, shiny crystals were formed at the bottom of the reaction vessel within one to two days.

The Raman spectrum was measured using a Bruker MULTIRAM spectrometer (Nd:YAG-laser at 1064 nm; InGaAs-detector); 300–70 cm-1: 216(w), 110(vs). – IR spectroscopic data were collected on a Digilab FT3500 spectrometer using a MIRacle ATR unit (Pike Technologies); 4000–560 cm-1: 3358(vs, br), 3197(vs, sh) 3161(vs), 2980(s), 2953(s), 2901(s), 2851(s), 2430(w), 2354(w), 1615(m, br), 1558(m), 1455(m), 1439(m), 1155(w), 948(w), 796(w), 721(w). – Elemental analyses (C, H, N) were performed with a HEKA-Tech Euro EA3000 instrument; C10H32N4I10 (1477.44): calcd. C 8.13, H 2.18, N 3.79; found C 7.81, H 2.02, N 3.77. – Elemental analysis of iodine: In a typical experiment 100 mg of the title compound were dissolved in 15 ml of a water/acetone (10:1) mixture. After adding some drops of acetic acid and heating up to approximately 373 K zinc powder was added until the solution turns colourless. Filtering off the surplus of zinc yielded a clear solution which was analyzed by a classical precipitation titration (AgNO3 solution (0.1 mol/L); potentiometric endpoint; Ag/AgCl//Ag electrodes) (Egli, 1969): calcd. 85.9%; found 84.0%.

Refinement top

A crystal of the title compound was mounted in the cold stream of an Oxford four-circle diffractometer. Most crystals were seriously twinned. The irradiation time was raised to outgrow the weak superstructure reflections from the background. A closer examination showed that there was also a small amount of a twin component attached to the single-crystal (below 5% of reflections of the peak hunting table). The true monoclinic cell could be transformed to an approximately orthorombic cell (14.69 Å, 24.49 Å, 17.36 Å, 90.0 °, 91.3°, 90.0 °) which has been ruled out for the angle deviation and the high Rint (>0.24) value. The secondary structure solution and the refinement were complicated due to the pseudosymmetry effects. Fig. 4 shows a reconstruction from the data collection images of the h-2 l layer of the reciprocal lattice. This figure shows abundantly clear the pseudosymmetry expressed as very strong reflections belonging to a higher translational symmetry (basis structure) and weak superstructure reflections defining the true structure. The refinement of the anisotropic displacement parameters for the nitrogen and carbon atoms only succeeded with the parameters kept roughly isotropical (ISOR option of the SHELX programme; Sheldrick, 2008). The hydrogen atoms of the CH2 groups were included using a riding model. The Uiso(H) values were set 1.2 times of their parent atoms. Refinement of this structural model yielded all 12 missing hydrogen atom positions of the aminium groups. In the latest stages of refinement the hydrogen atom positions of these were refined with their N—H distances softly restrained with a common U value for each group. In the final refinements it was possible to omit the restraints on the anisotropic displacement parameters. For the most disagreeable reflections in the Fo/Fc statistic it was observed that the Fo value is always too large. This finding must be attributed to the fact that a small twin component added its intensity to some reflections.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. : View along [001] on the structure of the title compound. Showing the hydrogen-bonded motifs arranged as two alternate layers (atom radii are drawn at arbitrary size; only classical hydrogen bonds are shown).
[Figure 2] Fig. 2. : Showing the basic structural motif of the A layer (symmetry code: ' = 0.5 - x, y, 0.5 - z, displacement ellipsoids are drawn at the 70% probability level; hydrogen atoms are drawn as spheres with arbitrary radii; only classical hydrogen bonds are shown).
[Figure 3] Fig. 3. : Showing the basic structural motif of the B layer (symmetry code: ' = 0.5 - x, y, 1.5 - z, displacement ellipsoids are drawn with 70% probability; hydrogen atoms are drawn as spheres with arbitrary radii; only classical hydrogen bonds are shown).
[Figure 4] Fig. 4. : Reconstruction (Oxford Diffraction, 2009) of the h-2 l layer of the reciprocal lattice of the title compound; a, c: true cell (red); a', c': pseudosymmetric cell (black).
[Figure 5] Fig. 5. : View along [010] on the pseudosymmetric title structure; a, c: true cell (red); a', c': pseudosymmetric cell (black).
bis(pentane-1,5-diaminium) iodide tris(triiodide) top
Crystal data top
2C5H16N22+·3I3·IF(000) = 2600
Mr = 1477.40Dx = 3.141 Mg m3
Monoclinic, P2/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yacCell parameters from 34080 reflections
a = 11.24742 (18) Åθ = 2.9–32.9°
b = 24.4932 (3) ŵ = 9.92 mm1
c = 11.49947 (16) ÅT = 110 K
β = 99.5311 (14)°Plate, dark-red
V = 3124.21 (8) Å30.35 × 0.13 × 0.03 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
5507 independent reflections
Radiation source: fine-focus sealed tube5106 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 16.2711 pixels mm-1θmax = 25.0°, θmin = 2.9°
ω scanh = 1313
Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction, 2009), using a multi-faceted crystal model (Clark & Reid, 1995)]
k = 2929
Tmin = 0.184, Tmax = 0.746l = 1313
42753 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.048 w = 1/[σ2(Fo2) + (0.010P)2 + 2.P]
where P = (Fo2 + 2Fc2)/3
S = 1.78(Δ/σ)max = 0.002
5507 reflectionsΔρmax = 0.89 e Å3
260 parametersΔρmin = 0.85 e Å3
12 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.000079 (7)
Crystal data top
2C5H16N22+·3I3·IV = 3124.21 (8) Å3
Mr = 1477.40Z = 4
Monoclinic, P2/nMo Kα radiation
a = 11.24742 (18) ŵ = 9.92 mm1
b = 24.4932 (3) ÅT = 110 K
c = 11.49947 (16) Å0.35 × 0.13 × 0.03 mm
β = 99.5311 (14)°
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
5507 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction, 2009), using a multi-faceted crystal model (Clark & Reid, 1995)]
5106 reflections with I > 2σ(I)
Tmin = 0.184, Tmax = 0.746Rint = 0.025
42753 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02412 restraints
wR(F2) = 0.048H atoms treated by a mixture of independent and constrained refinement
S = 1.78Δρmax = 0.89 e Å3
5507 reflectionsΔρmin = 0.85 e Å3
260 parameters
Special details top

Experimental. Absorption correction: CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.44. Analytical numeric absorption correction using a multifaceted crystal model (Clark & Reid, 1995).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.25000.244327 (17)0.25000.01394 (10)
I20.43884 (3)0.243981 (13)0.46114 (2)0.01481 (8)
I30.21847 (3)0.122482 (12)0.52226 (3)0.01339 (8)
I40.21879 (3)0.003697 (12)0.52343 (2)0.01055 (8)
I50.21699 (3)0.116102 (12)0.52918 (3)0.01481 (8)
I60.25000.239763 (18)0.25000.01396 (10)
I70.25000.742057 (18)0.75000.01391 (10)
I80.05106 (3)0.741845 (13)0.54698 (3)0.01517 (8)
I90.51718 (3)0.623905 (13)0.71356 (3)0.01481 (8)
I100.52267 (3)0.505510 (12)0.71916 (2)0.01173 (8)
I110.53337 (3)0.385420 (13)0.72274 (3)0.01511 (8)
I120.25000.253336 (18)0.75000.01617 (10)
N10.5149 (4)0.15499 (17)0.2316 (4)0.0158 (9)
H110.496 (5)0.1876 (13)0.259 (5)0.037 (10)*
H120.487 (5)0.154 (2)0.155 (2)0.037 (10)*
H130.5955 (19)0.152 (2)0.249 (5)0.037 (10)*
N20.5001 (4)0.15009 (17)0.2556 (4)0.0147 (9)
H210.574 (3)0.158 (2)0.295 (4)0.024 (8)*
H220.453 (4)0.1790 (15)0.266 (4)0.024 (8)*
H230.496 (5)0.148 (2)0.1766 (18)0.024 (8)*
N30.2715 (4)0.33075 (17)0.4993 (4)0.0160 (9)
H310.239 (5)0.320 (2)0.427 (3)0.037 (10)*
H320.262 (5)0.3018 (16)0.545 (4)0.037 (10)*
H330.3522 (19)0.334 (2)0.513 (5)0.037 (10)*
N40.2500 (4)0.63571 (17)0.4891 (4)0.0142 (9)
H410.326 (2)0.640 (2)0.525 (4)0.024 (8)*
H420.211 (4)0.6674 (13)0.496 (4)0.024 (8)*
H430.242 (5)0.629 (2)0.4116 (19)0.024 (8)*
C10.4644 (4)0.10655 (19)0.2854 (4)0.0153 (10)
H1A0.48580.10840.37060.018*
H1B0.37710.10690.26550.018*
C20.5124 (4)0.05421 (19)0.2416 (4)0.0126 (10)
H2A0.49230.05280.15630.015*
H2B0.59960.05370.26270.015*
C30.4602 (4)0.00432 (18)0.2939 (4)0.0137 (10)
H3A0.37310.00490.27260.016*
H3B0.48000.00580.37920.016*
C40.5083 (4)0.04858 (19)0.2507 (4)0.0112 (10)
H4A0.59500.05010.27560.013*
H4B0.49220.04930.16520.013*
C50.4506 (4)0.09804 (19)0.2983 (4)0.0156 (10)
H5A0.36410.09680.27270.019*
H5B0.46610.09720.38380.019*
C60.1961 (4)0.58547 (19)0.5357 (4)0.0163 (10)
H6A0.10930.58560.51110.020*
H6B0.21280.58540.62120.020*
C70.2497 (4)0.53499 (19)0.4888 (4)0.0128 (10)
H7A0.33670.53600.51130.015*
H7B0.23120.53500.40340.015*
C80.2013 (4)0.4825 (2)0.5357 (4)0.0146 (10)
H8A0.22040.48220.62110.018*
H8B0.11430.48150.51360.018*
C90.2558 (4)0.43232 (19)0.4869 (4)0.0125 (10)
H9A0.23360.43170.40170.015*
H9B0.34300.43410.50590.015*
C100.2115 (4)0.38037 (18)0.5385 (4)0.0162 (11)
H10A0.22770.38250.62390.019*
H10B0.12490.37730.51410.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0179 (2)0.0086 (2)0.0172 (2)0.0000.00819 (18)0.000
I20.01940 (17)0.01083 (17)0.01497 (15)0.00174 (12)0.00510 (13)0.00131 (12)
I30.01559 (16)0.00995 (16)0.01443 (15)0.00031 (12)0.00189 (13)0.00010 (12)
I40.01090 (16)0.01066 (16)0.00983 (15)0.00076 (11)0.00097 (13)0.00075 (11)
I50.01700 (16)0.00901 (16)0.01688 (16)0.00144 (12)0.00170 (13)0.00120 (12)
I60.0174 (2)0.0088 (2)0.0169 (2)0.0000.00622 (18)0.000
I70.0179 (2)0.0094 (2)0.0164 (2)0.0000.00837 (18)0.000
I80.01680 (16)0.01138 (17)0.01794 (16)0.00001 (12)0.00468 (13)0.00029 (12)
I90.01788 (17)0.01071 (17)0.01540 (15)0.00194 (12)0.00146 (13)0.00085 (12)
I100.01125 (16)0.01285 (17)0.01060 (15)0.00072 (11)0.00034 (13)0.00022 (12)
I110.01647 (16)0.01090 (17)0.01654 (16)0.00027 (12)0.00146 (13)0.00011 (12)
I120.0243 (2)0.0087 (2)0.0173 (2)0.0000.00892 (18)0.000
N10.018 (2)0.008 (2)0.021 (2)0.0010 (18)0.0036 (19)0.0046 (18)
N20.019 (2)0.007 (2)0.017 (2)0.0005 (17)0.0021 (19)0.0019 (18)
N30.020 (2)0.012 (2)0.016 (2)0.0002 (18)0.0045 (19)0.0004 (17)
N40.014 (2)0.009 (2)0.019 (2)0.0044 (17)0.0027 (18)0.0021 (18)
C10.020 (3)0.010 (3)0.017 (2)0.001 (2)0.005 (2)0.002 (2)
C20.012 (2)0.013 (3)0.012 (2)0.0026 (19)0.002 (2)0.0027 (19)
C30.014 (2)0.014 (3)0.013 (2)0.0008 (19)0.004 (2)0.0016 (19)
C40.011 (2)0.010 (2)0.012 (2)0.0002 (19)0.0018 (19)0.0010 (19)
C50.016 (2)0.013 (3)0.018 (2)0.000 (2)0.004 (2)0.001 (2)
C60.019 (3)0.012 (3)0.019 (2)0.002 (2)0.005 (2)0.002 (2)
C70.014 (2)0.012 (3)0.012 (2)0.0004 (19)0.000 (2)0.0002 (19)
C80.016 (2)0.013 (3)0.015 (2)0.000 (2)0.003 (2)0.002 (2)
C90.013 (2)0.014 (3)0.010 (2)0.0008 (19)0.0016 (19)0.0027 (19)
C100.023 (3)0.005 (2)0.021 (2)0.000 (2)0.005 (2)0.002 (2)
Geometric parameters (Å, º) top
I1—I22.9494 (3)C1—H1B0.9700
I1—I2i2.9494 (3)C2—C31.522 (6)
I3—I42.9095 (4)C2—H2A0.9700
I4—I52.9352 (4)C2—H2B0.9700
I7—I8ii2.9542 (3)C3—C41.519 (6)
I7—I82.9542 (3)C3—H3A0.9700
I9—I102.9010 (4)C3—H3B0.9700
I10—I112.9439 (4)C4—C51.519 (6)
N1—C11.493 (6)C4—H4A0.9700
N1—H110.892 (19)C4—H4B0.9700
N1—H120.888 (19)C5—H5A0.9700
N1—H130.899 (19)C5—H5B0.9700
N2—C51.506 (6)C6—C71.513 (7)
N2—H210.898 (19)C6—H6A0.9700
N2—H220.904 (19)C6—H6B0.9700
N2—H230.903 (19)C7—C81.528 (7)
N3—C101.496 (6)C7—H7A0.9700
N3—H310.891 (19)C7—H7B0.9700
N3—H320.904 (19)C8—C91.522 (7)
N3—H330.899 (19)C8—H8A0.9700
N4—C61.509 (6)C8—H8B0.9700
N4—H410.895 (19)C9—C101.522 (6)
N4—H420.900 (19)C9—H9A0.9700
N4—H430.898 (19)C9—H9B0.9700
C1—C21.510 (6)C10—H10A0.9700
C1—H1A0.9700C10—H10B0.9700
I2—I1—I2i179.67 (2)C2—C3—H3B109.2
I3—I4—I5178.805 (15)H3A—C3—H3B107.9
I8ii—I7—I8179.80 (2)C5—C4—C3111.4 (4)
I9—I10—I11178.713 (15)C5—C4—H4A109.3
C1—N1—H11116 (4)C3—C4—H4A109.3
C1—N1—H12107 (4)C5—C4—H4B109.3
H11—N1—H12108 (5)C3—C4—H4B109.3
C1—N1—H13107 (4)H4A—C4—H4B108.0
H11—N1—H13106 (5)N2—C5—C4110.8 (4)
H12—N1—H13114 (5)N2—C5—H5A109.5
C5—N2—H21112 (3)C4—C5—H5A109.5
C5—N2—H22111 (3)N2—C5—H5B109.5
H21—N2—H22106 (5)C4—C5—H5B109.5
C5—N2—H23109 (3)H5A—C5—H5B108.1
H21—N2—H23114 (5)N4—C6—C7109.5 (4)
H22—N2—H23104 (5)N4—C6—H6A109.8
C10—N3—H31113 (4)C7—C6—H6A109.8
C10—N3—H32111 (4)N4—C6—H6B109.8
H31—N3—H32104 (5)C7—C6—H6B109.8
C10—N3—H33112 (4)H6A—C6—H6B108.2
H31—N3—H33116 (5)C6—C7—C8112.1 (4)
H32—N3—H33101 (5)C6—C7—H7A109.2
C6—N4—H41110 (3)C8—C7—H7A109.2
C6—N4—H42116 (3)C6—C7—H7B109.2
H41—N4—H42108 (5)C8—C7—H7B109.2
C6—N4—H43103 (3)H7A—C7—H7B107.9
H41—N4—H43114 (5)C9—C8—C7111.2 (4)
H42—N4—H43106 (5)C9—C8—H8A109.4
N1—C1—C2110.8 (4)C7—C8—H8A109.4
N1—C1—H1A109.5C9—C8—H8B109.4
C2—C1—H1A109.5C7—C8—H8B109.4
N1—C1—H1B109.5H8A—C8—H8B108.0
C2—C1—H1B109.5C10—C9—C8110.7 (4)
H1A—C1—H1B108.1C10—C9—H9A109.5
C1—C2—C3111.6 (4)C8—C9—H9A109.5
C1—C2—H2A109.3C10—C9—H9B109.5
C3—C2—H2A109.3C8—C9—H9B109.5
C1—C2—H2B109.3H9A—C9—H9B108.1
C3—C2—H2B109.3N3—C10—C9111.6 (4)
H2A—C2—H2B108.0N3—C10—H10A109.3
C4—C3—C2112.0 (4)C9—C10—H10A109.3
C4—C3—H3A109.2N3—C10—H10B109.3
C2—C3—H3A109.2C9—C10—H10B109.3
C4—C3—H3B109.2H10A—C10—H10B108.0
N1—C1—C2—C3179.0 (4)N4—C6—C7—C8178.4 (4)
C1—C2—C3—C4179.8 (4)C6—C7—C8—C9179.6 (4)
C2—C3—C4—C5177.0 (4)C7—C8—C9—C10177.4 (4)
C3—C4—C5—N2179.5 (4)C8—C9—C10—N3175.4 (4)
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+1/2, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···I20.89 (2)2.87 (4)3.632 (4)144 (5)
N1—H12···I5i0.89 (2)3.00 (4)3.757 (4)145 (5)
N1—H13···I12iii0.90 (2)3.02 (5)3.558 (4)120 (4)
N2—H21···I5iii0.90 (2)3.02 (3)3.786 (4)145 (4)
N2—H22···I60.90 (2)2.71 (3)3.562 (4)158 (4)
N3—H31···I60.89 (2)2.85 (4)3.607 (4)144 (5)
N3—H32···I120.90 (2)2.66 (3)3.492 (4)154 (5)
N4—H41···I90.90 (2)2.82 (3)3.634 (4)153 (4)
N4—H42···I80.90 (2)2.70 (2)3.564 (4)162 (4)
N4—H43···I11iv0.90 (2)2.94 (4)3.621 (4)134 (4)
Symmetry codes: (i) x+1/2, y, z+1/2; (iii) x+1, y, z+1; (iv) x1/2, y+1, z1/2.

Experimental details

Crystal data
Chemical formula2C5H16N22+·3I3·I
Mr1477.40
Crystal system, space groupMonoclinic, P2/n
Temperature (K)110
a, b, c (Å)11.24742 (18), 24.4932 (3), 11.49947 (16)
β (°) 99.5311 (14)
V3)3124.21 (8)
Z4
Radiation typeMo Kα
µ (mm1)9.92
Crystal size (mm)0.35 × 0.13 × 0.03
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
diffractometer
Absorption correctionAnalytical
[CrysAlis PRO (Oxford Diffraction, 2009), using a multi-faceted crystal model (Clark & Reid, 1995)]
Tmin, Tmax0.184, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
42753, 5507, 5106
Rint0.025
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.048, 1.78
No. of reflections5507
No. of parameters260
No. of restraints12
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.89, 0.85

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2011), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···I20.892 (19)2.87 (4)3.632 (4)144 (5)
N1—H12···I5i0.888 (19)3.00 (4)3.757 (4)145 (5)
N1—H13···I12ii0.899 (19)3.02 (5)3.558 (4)120 (4)
N2—H21···I5ii0.898 (19)3.02 (3)3.786 (4)145 (4)
N2—H22···I60.904 (19)2.71 (3)3.562 (4)158 (4)
N3—H31···I60.891 (19)2.85 (4)3.607 (4)144 (5)
N3—H32···I120.904 (19)2.66 (3)3.492 (4)154 (5)
N4—H41···I90.895 (19)2.82 (3)3.634 (4)153 (4)
N4—H42···I80.900 (19)2.70 (2)3.564 (4)162 (4)
N4—H43···I11iii0.898 (19)2.94 (4)3.621 (4)134 (4)
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+1, y, z+1; (iii) x1/2, y+1, z1/2.
 

Acknowledgements

We thank E. Hammes and P. Roloff for technical support. This publication was funded by the German Research Found­ation (DFG) and the Heinrich-Heine-Universität Düsseldorf under the funding programme Open Access Publishing.

References

First citationAbate, A., Brischetto, M., Cavallo, G., Lahtinen, M., Metrangolo, P., Pilati, T., Radice, S., Resnati, G., Rissanen, K. & Terraneo, G. (2010). J. Chem. Soc. Chem. Commun. 46, 2724–2726.  CrossRef CAS Google Scholar
First citationBrandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDeplano, P., Ferraro, J. R., Mercuri, M. L. & Trogu, E. F. (1999). Coord. Chem. Rev. 188, 71–95.  Web of Science CrossRef CAS Google Scholar
First citationEgli, R. A. (1969). Z. Anal. Chem. 247, 39–41.  CrossRef CAS Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFeng, P., Bu, X. & Stucky, G. D. (2000). Inorg. Chem. 39, 2–3.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFrank, W. & Reiss, G. J. (1997). Inorg. Chem. 36, 4593–4595.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationGarcía, M. D., Martí-Rujas, J., Metrangolo, P., Peinador, C., Pilati, T., Resnati, G., Terraneo, G. & Ursini, M. (2011). CrystEngComm, 13, 4411–4416.  Google Scholar
First citationGorlov, M. & Kloo, L. (2008). Dalton Trans. pp. 2655–2666.  Web of Science CrossRef Google Scholar
First citationJohnson, B. F. G., Judkins, C. M. G., Matters, J. M., Shephard, D. S. & Parsons, S. (2000). J. Chem. Soc. Chem. Commun. pp. 1549–1550.  CrossRef Google Scholar
First citationMeyer, M. K., Graf, J. & Reiss, G. J. (2010). Z. Naturforsch. Teil B, 65, 1462–1466.  CAS Google Scholar
First citationMüller, M., Albrecht, M., Gossen, V., Peters, T., Hoffmann, A., Raabe, G., Valkonen, A. & Rissanen, K. (2010). Chem. Eur. J. 16, 12446–12453.  Web of Science PubMed Google Scholar
First citationO'Regan, B. & Grätzel, M. (1991). Nature, 353, 737–739.  CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationReiss, G. J. & Engel, J. S. (2002). CrystEngComm, 4, 155–161.  Google Scholar
First citationReiss, G. J. & Engel, J. S. (2004). Z. Naturforsch. Teil B, 59, 1114–1117.  CAS Google Scholar
First citationReiss, G. J. & van Megen, M. (2012). Z. Naturforsch. Teil B 67, 5–10.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.  Web of Science CrossRef CAS Google Scholar
First citationSvensson, P. H., Gorlov, M. & Kloo, L. (2008). Inorg. Chem. 47, 11464–11466.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSvensson, P. H. & Kloo, L. (2003). Chem. Rev. 103, 1649–1684.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTebbe, K.-F. & Bittner, M. (1995). Z. Anorg. Allg. Chem. 621, 218–224.  CSD CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWiebcke, M. (2002). J. Mater. Chem. 12, 143–147.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, Y., Sun, R., Shi, C., Wu, Y. & Xia, M. (2011). Int. J. Photoenergy, Article ID 986869, 5 pages; doi:10.1155/2011/986869.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1331-o1332
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds