metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(μ-4-nitro-2-{[2-(oxidometh­yl)phen­yl]imino­meth­yl}phenolato)bis­­[chlorido(di­methyl sulfoxide)­iron(III)] di­methyl sulfoxide disolvate

aTaras Shevchenko National University of Kyiv, 64, Volodymyrs'ka St., 01601 Kyiv, Ukraine, and bSTC Institute for Single Crystals, National Academy of Sciences of Ukraine, Lenina ave. 60, Kharkov 61001, Ukraine
*Correspondence e-mail: chigorin@mail.univ.kiev.ua

(Received 3 April 2012; accepted 19 April 2012; online 25 April 2012)

In the centrosymmetric dimeric title complex, [Fe2(C14H10N2O4)2Cl2(C2H6OS)2]·2C2H6OS, two {Fe(L)Cl(DMSO)} units (L is the tridentate ligand 4-nitro-2-{[2-(oxidometh­yl)phen­yl]imino­meth­yl}phenolate; DMSO is dimethyl sulfoxide) are bridged by two O atoms, with an Fe⋯Fe separation of 3.1838 (8) Å. The coordination polyhedron of the FeIII atoms can be described as distorted octa­hedral, with four Fe—O, one Fe—N and one Fe—Cl coordination bonds. The L ligand is not planar, the dihedral angle between the 2-(oxidometh­yl)phen­yl]imino and 4-nitro-2-(imino­meth­yl)phenolate planes being 48.54 (9)°. The solvent DMSO molecule is disordered over two orientations with equal occupancy.

Related literature

For background to direct synthesis, see: Vassilyeva et al. (1997[Vassilyeva, O. Yu., Kokozay, V. N., Zhukova, N. I. & Kovbasyuk, L. A. (1997). Polyhedron, 16, 263-266.]); Babich & Kokozay (1997[Babich, O. A. & Kokozay, V. N. (1997). Polyhedron, 16, 1487-1490.]); Kovbasyuk et al. (1997[Kovbasyuk, L. A., Babich, O. A. & Kokozay, V. N. (1997). Polyhedron, 16, 161-163.], 1998[Kovbasyuk, L. A., Vassilyeva, O. Yu., Kokozay, V. N., Linert, W., Reedijk, J., Skelton, B. W. & Oliver, A. G. (1998). J. Chem. Soc. Dalton Trans., pp. 2735-2738.]); Makhankova et al. (2002[Makhankova, V. G., Vassilyeva, O. Yu., Kokozay, V. N., Skelton, B. W., Sorace, L. & & Gatteschi, D. (2002). J. Chem. Soc. Dalton Trans. 22, pp. 4253-4259.]); Vinogradova et al. (2002[Vinogradova, E. A., Vassilyeva, O. Yu., Kokozay, V. N., Skelton, B. W., Bjernemose, J. K. & Raithby, P. R. (2002). J. Chem. Soc. Dalton Trans. pp. 4248-4252.]); Pryma et al. (2003[Pryma, O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W., Shishkin, O. V. & Teplytska, T. S. (2003). Eur. J. Inorg. Chem. pp. 1426-1432.]); Nesterov et al. (2004[Nesterov, D. S., Makhankova, V. G., Vassilyeva, O. Yu., Kokozay, V. N., Kovbasyuk, L. A., Skelton, B. W. & Jezierska, J. (2004). Inorg. Chem. 43, 7868-7876.]). For the structures of related complexes, see: Elmali et al. (2000[Elmali, A., Elerman, Y., Svoboda, I. & Fuess, H. (2000). J. Mol. Struct. 516, 43-47.]); Chen et al. (2001[Chen, W.-H., Wei, H.-H., Lee, G.-H. & Wang, Y. (2001). Polyhedron, 20, 515-521.]); Koikawa et al. (2004[Koikawa, M., Iwashita, K. & Tokii, T. (2004). Acta Cryst. E60, m239-m241.]); Madhu et al. (2005[Madhu, N. T., Tang, J.-K., Hewitt, I. J., Clerac, R., Wernsdorfer, W., Slageren, J., Anson, C. E. & Powell, A. K. (2005). Polyhedron, 24, 2864-2869.]); Malassa et al. (2006[Malassa, A., Görls, H., Buchholz, A., Plass, W. & Westerhausen, M. (2006). Z. Anorg. Allg. Chem. 632, 2355-2362.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe2(C14H10N2O4)2Cl2(C2H6OS)2]·2C2H6OS

  • Mr = 1035.59

  • Monoclinic, P 21 /c

  • a = 13.5003 (10) Å

  • b = 10.2566 (6) Å

  • c = 16.7453 (12) Å

  • β = 97.027 (6)°

  • V = 2301.3 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.99 mm−1

  • T = 293 K

  • 0.35 × 0.05 × 0.04 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]). Tmin = 0.917, Tmax = 0.961

  • 20394 measured reflections

  • 5457 independent reflections

  • 3448 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.160

  • S = 1.05

  • 5457 reflections

  • 282 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

This work is a continuation of our research in the field of direct synthesis of coordination compounds, which employs metal powders or metal oxides as starting materials and has been proved to be an efficient route to obtain homo- and heterometallic complexes (Vassilyeva et al., (1997); Babich et al., (1997); Kovbasyuk et al., (1997, 1998); Makhankova et al., (2002); Vinogradova et al., (2002); Pryma et al., (2003); Nesterov et al., (2004)).

The title compound, [Fe(C14H10N2O3)(DMSO)Cl]2.2DMSO was obtained unintentionally as the product of an attempted synthesis of a Cu/Fe mixed-metal complex using zerovalent copper, iron(II) chloride tetrahydrate, 5-nitro-salycilic aldehyde, 2-aminobenzylalcohol, triethylamine in dimethyl sulfoxide. It consists of dimer [Fe(C14H10N2O3)(DMSO)Cl]2 and two disordered solvent (DMSO) molecules which are filled voids in crystal packing.

The crystal structure of the title complex without solvent molecules which are omited for clarity is shown in Fig. 1. In contrast to analogous complex [FeCl(C14H11NO2)]2 (Koikawa et al., (2004)) with 5 coordinated Fe atom, in the title complex there is an additional bond Fe –O from the coordinated DMSO molecule, which leads to significant changes in geometry of the iron atom coordination environment – increasing of coordination number to 6 and to a redistribution of bond lengths. Almost unchangeable remains only Fe –O distance with alcohol oxygen atom. The Fe···Fe distances in title compound as well as other bond distances and angles are comparable to the corresponding distances in closely related compounds (Elmali et al., (2000); Chen et al., (2001); Koikawa et al., (2004).; Madhu et al., (2005); Malassa et al., (2006)).

Related literature top

For background to direct synthesis, see: Vassilyeva et al. (1997); Babich & Kokozay (1997); Kovbasyuk et al. (1997, 1998); Makhankova et al. (2002); Vinogradova et al. (2002); Pryma et al. (2003); Nesterov et al. (2004). For the structures of related complexes, see: Elmali et al. (2000); Chen et al. (2001); Koikawa et al. (2004); Madhu et al. (2005); Malassa et al. (2006).

Experimental top

The title compound was prepared by direct synthesis by addition of the zero valent copper powder 0,079 g (1,25 mmol) and FeCl2. 4H2O 0,248 g (1,25 mmol) to the previously mixed within about 10 min at 323–333 K (until the yellow color) mixture of the 5-nitro-salycilic aldehyde 0,418 g (2,5 mmol), 2-aminobenzylalcohol 0,308 g (2,5 mmol), DMSO 25 ml and triethylamine 0,350 ml (2,5 mmol) and stirred magnetically for 4.5 h till complete dissolution of copper powder was observed. Dark red crystals suitable for X-ray analysis precipitated within two months by adding of Prí—OH and diethyl ether to the dark red solution. They were collected by filter-suction, washed with dry Prí—OH and finally dried in vacuo at room temperature (yield: 0.2 g).

Refinement top

Solvate DMSO molecule is disordered over two position A and B only for sulfur atom with equal multiplicity. All H atoms were placed at calculated positions and refinement as a "riding" model.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular view of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
Bis(µ-4-nitro-2-{[2- (oxidomethyl)phenyl]iminomethyl}phenolato)bis[chlorido(dimethyl sulfoxide)iron(III)] dimethyl sulfoxide disolvate top
Crystal data top
[Fe2(C14H10N2O4)2Cl2(C2H6OS)2]·2C2H6OSF(000) = 1068
Mr = 1035.59Dx = 1.495 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2ybcCell parameters from 4779 reflections
a = 13.5003 (10) Åθ = 2.9–28.6°
b = 10.2566 (6) ŵ = 0.99 mm1
c = 16.7453 (12) ÅT = 293 K
β = 97.027 (6)°Prism, dark-red
V = 2301.3 (3) Å30.35 × 0.05 × 0.04 mm
Z = 2
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
5457 independent reflections
Radiation source: Enhance (Mo) X-ray Source3448 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
Detector resolution: 16.1827 pixels mm-1θmax = 28.7°, θmin = 2.9°
ω scansh = 1817
Absorption correction: multi-scan
CrysAlis PRO, Oxford Diffraction (2010).
k = 1213
Tmin = 0.917, Tmax = 0.961l = 2220
20394 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0648P)2 + 2.0858P]
where P = (Fo2 + 2Fc2)/3
5457 reflections(Δ/σ)max < 0.001
282 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Fe2(C14H10N2O4)2Cl2(C2H6OS)2]·2C2H6OSV = 2301.3 (3) Å3
Mr = 1035.59Z = 2
Monoclinic, P21/cMo Kα radiation
a = 13.5003 (10) ŵ = 0.99 mm1
b = 10.2566 (6) ÅT = 293 K
c = 16.7453 (12) Å0.35 × 0.05 × 0.04 mm
β = 97.027 (6)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
5457 independent reflections
Absorption correction: multi-scan
CrysAlis PRO, Oxford Diffraction (2010).
3448 reflections with I > 2σ(I)
Tmin = 0.917, Tmax = 0.961Rint = 0.050
20394 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.160H-atom parameters constrained
S = 1.05Δρmax = 0.43 e Å3
5457 reflectionsΔρmin = 0.30 e Å3
282 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.54824 (4)0.35880 (5)0.01293 (3)0.04140 (18)
Cl10.56904 (9)0.20842 (10)0.11735 (7)0.0625 (3)
S10.41820 (8)0.12129 (9)0.05553 (7)0.0503 (3)
S2A0.9728 (3)0.8274 (3)0.0026 (3)0.1070 (13)0.50
S2B0.9931 (3)0.7273 (4)0.0176 (3)0.1014 (11)0.50
O10.48948 (18)0.4976 (2)0.07173 (14)0.0400 (6)
O20.6276 (2)0.2709 (3)0.06064 (17)0.0525 (7)
O30.9361 (4)0.6035 (5)0.2201 (3)0.1141 (16)
O40.8945 (4)0.4653 (6)0.3122 (3)0.1294 (18)
O50.4218 (2)0.2671 (2)0.03552 (17)0.0511 (7)
O60.8873 (4)0.7636 (6)0.0133 (4)0.149 (2)
N10.6840 (2)0.4594 (3)0.05581 (19)0.0418 (7)
N20.8868 (4)0.5106 (6)0.2461 (3)0.0842 (14)
C10.7040 (3)0.5091 (4)0.1360 (2)0.0436 (9)
C20.6269 (3)0.5362 (3)0.1821 (2)0.0430 (9)
C30.6529 (4)0.5857 (4)0.2587 (2)0.0544 (11)
H30.60240.60680.28960.065*
C40.7499 (4)0.6049 (5)0.2908 (3)0.0647 (13)
H40.76440.63910.34230.078*
C50.8258 (4)0.5735 (5)0.2467 (3)0.0698 (14)
H50.89210.58490.26820.084*
C60.8024 (3)0.5250 (5)0.1704 (3)0.0590 (11)
H60.85370.50200.14090.071*
C70.5167 (3)0.5185 (4)0.1551 (2)0.0460 (9)
H7A0.49320.44500.18400.055*
H7B0.48190.59540.17080.055*
C80.7399 (3)0.4989 (4)0.0034 (2)0.0482 (10)
H80.78240.56860.01790.058*
C90.7420 (3)0.4444 (4)0.0756 (2)0.0475 (9)
C100.6896 (3)0.3290 (4)0.1021 (3)0.0491 (10)
C110.7062 (3)0.2774 (5)0.1774 (3)0.0587 (12)
H110.67370.20100.19540.070*
C120.7681 (4)0.3357 (5)0.2244 (3)0.0669 (14)
H120.77700.30030.27410.080*
C130.8176 (3)0.4479 (5)0.1977 (3)0.0605 (12)
C140.8059 (3)0.5023 (5)0.1244 (3)0.0563 (11)
H140.84060.57760.10740.068*
C150.3493 (7)0.1186 (5)0.1514 (4)0.128 (3)
H15A0.28460.15590.14860.192*
H15B0.34190.03020.16990.192*
H15C0.38360.16830.18800.192*
C160.3284 (5)0.0564 (5)0.0007 (4)0.0949 (19)
H16A0.35560.05150.05640.142*
H16B0.30990.02940.01870.142*
H16C0.27050.11160.00470.142*
C171.0304 (7)0.8170 (11)0.0944 (5)0.185 (5)
H17A0.98790.85390.13040.278*0.50
H17B1.09240.86400.09900.278*0.50
H17C1.04320.72710.10810.278*0.50
H17D1.02740.90710.07880.278*0.50
H17E1.09790.79460.11450.278*0.50
H17F0.98820.80270.13570.278*0.50
C181.0679 (6)0.7618 (11)0.0498 (5)0.161 (4)
H18A1.08070.67410.03130.242*0.50
H18B1.12710.81340.03740.242*0.50
H18C1.04870.76130.10690.242*0.50
H18D1.04790.71320.09810.242*0.50
H18E1.13510.73900.02910.242*0.50
H18F1.06430.85340.06160.242*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0469 (3)0.0338 (3)0.0417 (3)0.0014 (2)0.0023 (2)0.0014 (2)
Cl10.0832 (8)0.0466 (6)0.0540 (7)0.0007 (5)0.0065 (6)0.0103 (5)
S10.0594 (6)0.0376 (5)0.0516 (6)0.0015 (4)0.0028 (5)0.0012 (4)
S2A0.091 (2)0.0677 (19)0.154 (4)0.0049 (17)0.022 (2)0.008 (2)
S2B0.095 (3)0.086 (2)0.122 (3)0.0097 (19)0.007 (2)0.003 (2)
O10.0461 (15)0.0377 (13)0.0346 (14)0.0014 (11)0.0013 (11)0.0006 (10)
O20.0589 (18)0.0421 (15)0.0556 (18)0.0060 (13)0.0035 (15)0.0089 (13)
O30.120 (4)0.138 (4)0.093 (3)0.038 (3)0.048 (3)0.010 (3)
O40.135 (4)0.185 (5)0.080 (3)0.030 (4)0.061 (3)0.033 (3)
O50.0547 (17)0.0385 (14)0.0566 (17)0.0014 (12)0.0075 (14)0.0036 (12)
O60.106 (4)0.166 (5)0.171 (6)0.007 (4)0.004 (4)0.035 (4)
N10.0431 (18)0.0406 (16)0.0410 (18)0.0047 (14)0.0018 (15)0.0025 (14)
N20.075 (3)0.116 (4)0.064 (3)0.002 (3)0.021 (2)0.007 (3)
C10.049 (2)0.041 (2)0.039 (2)0.0025 (17)0.0016 (18)0.0005 (16)
C20.055 (2)0.0372 (19)0.035 (2)0.0019 (17)0.0027 (18)0.0032 (16)
C30.067 (3)0.056 (2)0.039 (2)0.004 (2)0.002 (2)0.0011 (19)
C40.075 (3)0.079 (3)0.037 (2)0.005 (3)0.006 (2)0.005 (2)
C50.057 (3)0.094 (4)0.054 (3)0.007 (3)0.010 (2)0.007 (3)
C60.051 (3)0.071 (3)0.053 (3)0.000 (2)0.000 (2)0.007 (2)
C70.052 (2)0.052 (2)0.034 (2)0.0045 (19)0.0034 (17)0.0009 (17)
C80.048 (2)0.044 (2)0.050 (2)0.0010 (18)0.001 (2)0.0050 (18)
C90.047 (2)0.054 (2)0.041 (2)0.0083 (18)0.0032 (18)0.0002 (19)
C100.050 (2)0.048 (2)0.047 (2)0.0150 (18)0.0036 (19)0.0059 (18)
C110.056 (3)0.065 (3)0.053 (3)0.012 (2)0.000 (2)0.016 (2)
C120.062 (3)0.092 (4)0.046 (3)0.021 (3)0.001 (2)0.018 (3)
C130.049 (3)0.085 (3)0.049 (3)0.014 (2)0.010 (2)0.000 (2)
C140.049 (2)0.065 (3)0.053 (3)0.007 (2)0.001 (2)0.005 (2)
C150.219 (9)0.055 (3)0.088 (5)0.010 (4)0.071 (5)0.006 (3)
C160.094 (4)0.061 (3)0.139 (6)0.004 (3)0.050 (4)0.003 (3)
C170.143 (8)0.269 (12)0.129 (7)0.099 (8)0.044 (6)0.062 (8)
C180.126 (7)0.210 (10)0.151 (8)0.053 (7)0.030 (6)0.036 (8)
Geometric parameters (Å, º) top
Fe1—Cl12.3228 (11)C6—H60.9300
Fe1—O11.954 (2)C7—H7A0.9700
Fe1—O1i2.064 (2)C7—H7B0.9700
Fe1—O21.949 (3)C8—H80.9300
Fe1—O52.030 (3)C8—C91.440 (6)
Fe1—N12.149 (3)C9—C101.422 (6)
S1—O51.532 (3)C9—C141.391 (6)
S1—C151.754 (6)C10—C111.411 (6)
S1—C161.755 (6)C11—H110.9300
S2A—O61.320 (6)C11—C121.354 (7)
S2A—C171.717 (9)C12—H120.9300
S2A—C181.724 (9)C12—C131.378 (7)
S2B—O61.506 (6)C13—C141.375 (6)
S2B—C171.611 (9)C14—H140.9300
S2B—C181.641 (9)C15—H15A0.9600
O1—Fe1i2.064 (2)C15—H15B0.9600
O1—C71.416 (4)C15—H15C0.9600
O2—C101.296 (5)C16—H16A0.9600
O3—N21.212 (6)C16—H16B0.9600
O4—N21.216 (6)C16—H16C0.9600
N1—C11.431 (5)C17—H17A0.9600
N1—C81.291 (5)C17—H17B0.9600
N2—C131.459 (7)C17—H17C0.9600
C1—C21.398 (6)C17—H17D0.9600
C1—C61.391 (5)C17—H17E0.9600
C2—C31.385 (5)C17—H17F0.9600
C2—C71.512 (5)C18—H18A0.9600
C3—H30.9300C18—H18B0.9600
C3—C41.367 (6)C18—H18C0.9600
C4—H40.9300C18—H18D0.9600
C4—C51.373 (7)C18—H18E0.9600
C5—H50.9300C18—H18F0.9600
C5—C61.370 (6)
O1i—Fe1—Cl1171.00 (8)H7A—C7—H7B107.4
O1—Fe1—Cl197.10 (8)N1—C8—H8117.2
O1—Fe1—O1i75.23 (11)N1—C8—C9125.6 (4)
O1—Fe1—O599.53 (11)C9—C8—H8117.2
O1—Fe1—N182.16 (11)C10—C9—C8123.1 (4)
O1i—Fe1—N190.88 (11)C14—C9—C8117.2 (4)
O2—Fe1—Cl198.25 (9)C14—C9—C10119.5 (4)
O2—Fe1—O1160.70 (12)O2—C10—C9123.0 (4)
O2—Fe1—O1i90.25 (11)O2—C10—C11119.4 (4)
O2—Fe1—O591.92 (12)C11—C10—C9117.7 (4)
O2—Fe1—N185.49 (12)C10—C11—H11119.0
O5—Fe1—Cl190.66 (9)C12—C11—C10122.0 (5)
O5—Fe1—O1i86.06 (10)C12—C11—H11119.0
O5—Fe1—N1175.99 (12)C11—C12—H12120.3
N1—Fe1—Cl192.74 (9)C11—C12—C13119.4 (4)
O5—S1—C15102.4 (2)C13—C12—H12120.3
O5—S1—C16105.0 (2)C12—C13—N2120.4 (5)
C15—S1—C1699.3 (4)C14—C13—N2118.0 (5)
O6—S2A—C17112.6 (6)C14—C13—C12121.5 (5)
O6—S2A—C18115.6 (5)C9—C14—H14120.0
C17—S2A—C1897.6 (4)C13—C14—C9119.9 (4)
O6—S2B—C17108.9 (4)C13—C14—H14120.0
O6—S2B—C18110.4 (5)S1—C15—H15A109.5
C17—S2B—C18105.5 (6)S1—C15—H15B109.5
Fe1—O1—Fe1i104.77 (11)S1—C15—H15C109.5
C7—O1—Fe1122.3 (2)H15A—C15—H15B109.5
C7—O1—Fe1i125.6 (2)H15A—C15—H15C109.5
C10—O2—Fe1124.5 (2)H15B—C15—H15C109.5
S1—O5—Fe1122.83 (16)S1—C16—H16A109.5
C1—N1—Fe1122.7 (3)S1—C16—H16B109.5
C8—N1—Fe1118.0 (3)S1—C16—H16C109.5
C8—N1—C1117.8 (3)H16A—C16—H16B109.5
O3—N2—O4121.5 (5)H16A—C16—H16C109.5
O3—N2—C13120.5 (5)H16B—C16—H16C109.5
O4—N2—C13117.9 (5)S2A—C17—H17A109.5
C2—C1—N1121.4 (3)S2A—C17—H17B109.5
C6—C1—N1119.5 (4)S2A—C17—H17C109.5
C6—C1—C2119.1 (4)S2B—C17—H17D109.5
C1—C2—C7125.7 (3)S2B—C17—H17E109.5
C3—C2—C1117.6 (4)S2B—C17—H17F109.5
C3—C2—C7116.7 (4)H17A—C17—H17B109.5
C2—C3—H3118.7H17A—C17—H17C109.5
C4—C3—C2122.6 (4)H17B—C17—H17C109.5
C4—C3—H3118.7H17D—C17—H17E109.5
C3—C4—H4120.1H17D—C17—H17F109.5
C3—C4—C5119.8 (4)H17E—C17—H17F109.5
C5—C4—H4120.1S2A—C18—H18A109.5
C4—C5—H5120.5S2A—C18—H18B109.5
C6—C5—C4118.9 (4)S2A—C18—H18C109.5
C6—C5—H5120.5S2B—C18—H18D109.5
C1—C6—H6119.1S2B—C18—H18E109.5
C5—C6—C1121.9 (4)S2B—C18—H18F109.5
C5—C6—H6119.1H18A—C18—H18B109.5
O1—C7—C2116.1 (3)H18A—C18—H18C109.5
O1—C7—H7A108.3H18B—C18—H18C109.5
O1—C7—H7B108.3H18D—C18—H18E109.5
C2—C7—H7A108.3H18D—C18—H18F109.5
C2—C7—H7B108.3H18E—C18—H18F109.5
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Fe2(C14H10N2O4)2Cl2(C2H6OS)2]·2C2H6OS
Mr1035.59
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.5003 (10), 10.2566 (6), 16.7453 (12)
β (°) 97.027 (6)
V3)2301.3 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.99
Crystal size (mm)0.35 × 0.05 × 0.04
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
diffractometer
Absorption correctionMulti-scan
CrysAlis PRO, Oxford Diffraction (2010).
Tmin, Tmax0.917, 0.961
No. of measured, independent and
observed [I > 2σ(I)] reflections
20394, 5457, 3448
Rint0.050
(sin θ/λ)max1)0.675
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.160, 1.05
No. of reflections5457
No. of parameters282
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.30

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

 

References

First citationBabich, O. A. & Kokozay, V. N. (1997). Polyhedron, 16, 1487–1490.  CSD CrossRef CAS Web of Science Google Scholar
First citationChen, W.-H., Wei, H.-H., Lee, G.-H. & Wang, Y. (2001). Polyhedron, 20, 515–521.  Web of Science CSD CrossRef CAS Google Scholar
First citationElmali, A., Elerman, Y., Svoboda, I. & Fuess, H. (2000). J. Mol. Struct. 516, 43–47.  Web of Science CSD CrossRef CAS Google Scholar
First citationKoikawa, M., Iwashita, K. & Tokii, T. (2004). Acta Cryst. E60, m239–m241.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKovbasyuk, L. A., Babich, O. A. & Kokozay, V. N. (1997). Polyhedron, 16, 161–163.  CSD CrossRef CAS Web of Science Google Scholar
First citationKovbasyuk, L. A., Vassilyeva, O. Yu., Kokozay, V. N., Linert, W., Reedijk, J., Skelton, B. W. & Oliver, A. G. (1998). J. Chem. Soc. Dalton Trans., pp. 2735–2738.  Google Scholar
First citationMadhu, N. T., Tang, J.-K., Hewitt, I. J., Clerac, R., Wernsdorfer, W., Slageren, J., Anson, C. E. & Powell, A. K. (2005). Polyhedron, 24, 2864–2869.  Web of Science CSD CrossRef CAS Google Scholar
First citationMakhankova, V. G., Vassilyeva, O. Yu., Kokozay, V. N., Skelton, B. W., Sorace, L. & & Gatteschi, D. (2002). J. Chem. Soc. Dalton Trans. 22, pp. 4253–4259.  Web of Science CSD CrossRef Google Scholar
First citationMalassa, A., Görls, H., Buchholz, A., Plass, W. & Westerhausen, M. (2006). Z. Anorg. Allg. Chem. 632, 2355–2362.  Web of Science CSD CrossRef CAS Google Scholar
First citationNesterov, D. S., Makhankova, V. G., Vassilyeva, O. Yu., Kokozay, V. N., Kovbasyuk, L. A., Skelton, B. W. & Jezierska, J. (2004). Inorg. Chem. 43, 7868–7876.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPryma, O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W., Shishkin, O. V. & Teplytska, T. S. (2003). Eur. J. Inorg. Chem. pp. 1426–1432.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVassilyeva, O. Yu., Kokozay, V. N., Zhukova, N. I. & Kovbasyuk, L. A. (1997). Polyhedron, 16, 263–266.  CSD CrossRef CAS Web of Science Google Scholar
First citationVinogradova, E. A., Vassilyeva, O. Yu., Kokozay, V. N., Skelton, B. W., Bjernemose, J. K. & Raithby, P. R. (2002). J. Chem. Soc. Dalton Trans. pp. 4248–4252.  Web of Science CSD CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds