inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages i37-i38

Tetra­aqua­tetra­manganese(II) catena-[germanodi­hydroxidodi(hydrogen­phosphate)diphosphate]

aDepartment of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, Fujian Province, People's Republic of China
*Correspondence e-mail: yaxihuang@xmu.edu.cn

(Received 11 April 2012; accepted 17 April 2012; online 25 April 2012)

The title compound, Mn4(H2O)4[Ge(OH)2(HPO4)2(PO4)2], was synthesized by the solvothermal method. Its crystal structure is isotypic with the iron and cobalt analogues [Huang et al. (2012[Huang, Y.-X., Zhang, X., Huang, X., Schnelle, W., Lin, J., Mi, J.-X., Tang, M.-B. & Zhao, J.-T. (2012). Inorg. Chem. 51, 3316-3323.]). Inorg. Chem. 51, 3316–3323]. In the crystal structure, the framework is built from undulating manganese phosphate sheets parallel to (010) inter­connected by GeO6 octa­hedra (at the inversion center), resulting in a three-dimensional network with eight-membered ring channels into which all the protons point. The undulating manganese phosphate sheet consists of zigzag manganese octa­hedral chains along [10-1], built from MnO4(OH)(OH2) octa­hedra and MnO5(OH2) octa­hedra by sharing their trans or skew edges, which are inter­connected by PO3(OH) and PO4 tetra­hedra via corner-sharing. The crystal structure features extensive O—H⋯O hydrogen-bonding inter­actions.

Related literature

For background to germanophosphates, see: Brock et al. (1998[Brock, S. L., Duan, N., Tian, Z. R., Giraldo, O., Zhou, H. & Suib, S. L. (1998). Chem. Mater. 10, 2619-2628.]); Corma (1997[Corma, A. (1997). Chem. Rev. 97, 2373-2419.]); Li et al. (2000[Li, J.-M., Ke, Y.-X., Zhang, Y.-G., He, G.-F., Jiang, Z., Nishiura, M. & Imamoto, T. (2000). J. Am. Chem. Soc. 122, 6110-6111.]); Liu, Yang, Wang et al. (2008[Liu, Y., Yang, X.-L., Wang, G.-L., Zhang, J., Li, Y.-Z., Du, H.-B. & You, X.-Z. (2008). J. Solid State Chem. 181, 2542-2546.]); Liu, Yang, Zhang et al. (2008[Liu, Y., Yang, X.-L., Zhang, J., Li, Y.-Z., Song, Y., Du, H.-B. & You, X.-Z. (2008). Chem. Commun. 27, 3145-3147.]); Zhao et al. (2009[Zhao, D., Xie, Z., Hu, J.-M., Zhang, H., Zhang, W.-L., Yang, S.-L. & Cheng, W.-D. (2009). J. Mol. Struct., 922, 127-134.]); Zubieta (1994[Zubieta, J. (1994). Comments Inorg. Chem. 16, 153-183.]). For isotypic structures of the FeII and CoII analogues, see: Huang et al. (2012[Huang, Y.-X., Zhang, X., Huang, X., Schnelle, W., Lin, J., Mi, J.-X., Tang, M.-B. & Zhao, J.-T. (2012). Inorg. Chem. 51, 3316-3323.]).

Experimental

Crystal data
  • Mn4(H2O)4[Ge(OH)2(HPO4)2(PO4)2]

  • Mr = 780.33

  • Monoclinic, P 21 /n

  • a = 6.5336 (3) Å

  • b = 16.3869 (7) Å

  • c = 7.7048 (3) Å

  • β = 98.506 (4)°

  • V = 815.84 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.35 mm−1

  • T = 173 K

  • 0.10 × 0.08 × 0.05 mm

Data collection
  • Oxford Diffraction CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2005[Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, Oxfordshire, England.]) Tmin = 0.604, Tmax = 0.765

  • 5173 measured reflections

  • 2215 independent reflections

  • 1808 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.064

  • S = 1.11

  • 2215 reflections

  • 158 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.71 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O9i 0.82 (1) 2.49 (5) 3.039 (5) 126 (5)
O1—H1⋯O7i 0.82 (1) 2.60 (5) 3.166 (4) 127 (5)
O1—H2⋯O8ii 0.82 (1) 2.33 (3) 3.101 (4) 157 (6)
O1—H2⋯O11iii 0.82 (1) 2.39 (5) 2.878 (4) 119 (5)
O2—H3⋯O9iv 0.82 (1) 2.01 (3) 2.733 (4) 147 (5)
O2—H4⋯O1iii 0.82 (1) 2.03 (3) 2.765 (5) 149 (6)
O2—H3⋯O10v 0.82 (1) 2.63 (5) 3.161 (4) 123 (5)
O8—H5⋯O10vi 0.83 2.11 2.692 (4) 126 (1)
O9—H6⋯O5vii 0.82 (1) 1.80 (2) 2.584 (4) 160 (6)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) -x+1, -y, -z+2; (v) x-1, y, z; (vi) -x+1, -y, -z+1; (vii) x+1, y, z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2005[Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2005[Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, Oxfordshire, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and ATOMS (Dowty, 2004[Dowty, E. (2004). ATOMS. Shape Software, Kingsport, Tennessee, USA.]); software used to prepare material for publication: SHELXL97 and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Open-framework compounds attract much attention due to their rich structural chemistry and potential catalytic, electrical, optical, and magnetic properties (Brock et al., 1998; Corma, 1997; Zubieta, 1994). Germanophosphates, as one kind of open-framework compounds, have not been fully explored, and only a few compounds had been synthesized up to date (Li et al., 2000; Liu, Yang, Wang et al., 2008; Liu, Yang, Zhang et al., 2008; Zhao et al., 2009). During our systematical investigation on the transition metal germanophosphate system, we obtain the first manganese compound, MnII4(H2O)4[Ge(OH)2(HPO4)2(PO4)2], which is isostructural with its Fe and Co-analogues (Huang et al., 2012) published recently.

The asymmetric unit of the title compound consists of two distinct Mn atoms, one Ge atom, and two crystallographically independent P atoms (Figure 1). Mn1 is surrounding by four O atoms, an OH-group, and a H2O molecule forming a distorted octahedron Mn1O4(OH)(OH2) with bond distances of 2.159-2.207 Å. Mn2 adopt a nearly regular octahedral coordination to five O atoms and a water molecule with bond distances ranging from 2.176 to 2.224 Å. Ge atom coordinates to four O-atoms in the equatorial plane with shorter bond lengths of 1.846-1.871 Å and two hydroxyl groups in trans-position with longer distance of 1.913 Å. Both P atoms are in tetrahedral coordination with bond lengths of 1.526-1.573 Å. All the bond lengths and angles of the title compound are similar to those of the known germanophosphates (Huang et al., 2012; Liu, Yang, Wang et al., 2008; Liu, Yang, Zhang et al., 2008; Zhao et al., 2009). The Mn2O5(OH2) octahedra share their trans-edges with two adjacent Mn1O4(OH)(OH2) octahedra, in turn, Mn1-octahedra share skew-edges to two neighboring Mn2-octahedra, resulting in a zigzag chain running along [10-1] (Figure 2a). These manganese octahedral chains are further linked by the P1O3(OH) and P2O4 tetrahedra through corner sharing to form undulating sheets (Figure 2b). These sheets are further interconnected by GeO4(OH)2 octahedra, sitting at the inverse center, along [010] via common O-corners (Figure 2c) to form a neutral 3-D network with 8-membered ring channels parallel to [100] where all the protons protrude to (Figure 2d). Compared with the two isotypic Fe- and Co-compounds, the Mn-O distances are longer than those of Co- and Fe-compound which is consistent to the longer ionic radius of Mn than those of Fe and Co analogues.

Related literature top

For background to germanophosphates, see: Brock et al. (1998); Corma (1997); Li et al. (2000); Liu, Yang, Wang et al. (2008); Liu, Yang, Zhang et al. (2008); Zhao et al. (2009); Zubieta (1994). For the related structures FeII4(H2O)4[Ge(OH)2(HPO4)2(PO4)2] and CoII4(H2O)4[Ge(OH)2(HPO4)2(PO4)2], see: Huang et al. (2012).

Experimental top

The crystals of the title compound were solvothermally synthesized by a mixture of GeO2 (0.073 g), Mn(CH3COO)2.4H2O (0.171 g), H3PO4(85 wt%, 1 mL), H2O (2 mL), triethylamine (1 mL), and 1,2-propanediol (2 mL). The mixture was transferred into a Teflon-lined stainless steel autoclave (internal volume of 15 mL) and heated at 423K for 7 days under static conditions. After the autoclaves cooling to room temperature, the products were filtered off and washed by distilled water for several times and dried in air. Finally light-pink block-shaped crystals were obtained. It is needed to note that the products often contain a minor impurity of GeO2. Many efforts have been made to get pure phase. However, even the pure phase was obtained but the yield is so low that not enough for further characterization. Thus only single crystal X-ray diffraction of the title compound was carried out.

Refinement top

Originally, all hydrogen positions were located from the difference Fourier map and refined by applying the constraint of displacement parameters as 0.05 eÅ3 and a bond distance of d(O–H) = 0.82 (1)Å. After the refinement, O8-H5 turned out to have no acceptor atom. Therefore, the H5 position was calculated geometrically and fixed without applying further refinement.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2005); cell refinement: CrysAlis CCD (Oxford Diffraction, 2005); data reduction: CrysAlis CCD (Oxford Diffraction, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005) and ATOMS (Dowty, 2004); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Asymmetric unit of the title compound, showing the coordination environments of Ge, Mn and P atoms. Thermal ellipsoids are drawn at the 50% probability level. Symmetry codes: (i) –x, –y, –z+1; (ii) –x+1, –y, –z+1; (iii) x–1, y, z; (iv) x–1/2, –y+1/2, z+1/2; (v) x, y, z+1; (vi) x+1, y, z; (vii) x–1/2, –y+1/2, z–1/2.
[Figure 2] Fig. 2. Polyhedral presentation of the title compound, a) manganese octahedra share their trans or skew edges to form zigzag chains parallel to [10-1], b) these manganese octahedral chains are linked by phosphate tetrahedra via common O-corners to form undulating manganese phosphate sheets parallel to (010), c) the undulating sheets are further connected by GeO4(OH)2 octahedra along [010], resulting in a three-dimensional network structure, d) the network structure comprises 8-membered ring channels running along [100] direction where all the protons protrude to. MnO6 octahedra: purple, GeO6 octahedra: green, PO4 tetrahedra: orange, H atoms: light grey spheres.
Tetraaquatetramanganese(II) catena-[germanodihydroxidodi(hydrogenphosphate)diphosphate] top
Crystal data top
Mn4(H2O)4[Ge(OH)2(HPO4)2(PO4)2]Z = 2
Mr = 780.33F(000) = 760
Monoclinic, P21/nDx = 3.176 Mg m3
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 6.5336 (3) Åθ = 3.0–32.5°
b = 16.3869 (7) ŵ = 5.35 mm1
c = 7.7048 (3) ÅT = 173 K
β = 98.506 (4)°Block-shaped, light pink
V = 815.84 (6) Å30.10 × 0.08 × 0.05 mm
Data collection top
Oxford Diffraction CCD area-detector
diffractometer
2215 independent reflections
Radiation source: fine-focus sealed tube1808 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
326 images,Δω=1°, Exp time: 40 s. scansθmax = 30.7°, θmin = 3.0°
Absorption correction: multi-scan
(CrysAlis CCD; Oxford Diffraction, 2005)
h = 88
Tmin = 0.604, Tmax = 0.765k = 2321
5173 measured reflectionsl = 105
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.064 w = 1/[σ2(Fo2) + (0.007P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
2215 reflectionsΔρmax = 0.67 e Å3
158 parametersΔρmin = 0.71 e Å3
5 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0025 (3)
Crystal data top
Mn4(H2O)4[Ge(OH)2(HPO4)2(PO4)2]V = 815.84 (6) Å3
Mr = 780.33Z = 2
Monoclinic, P21/nMo Kα radiation
a = 6.5336 (3) ŵ = 5.35 mm1
b = 16.3869 (7) ÅT = 173 K
c = 7.7048 (3) Å0.10 × 0.08 × 0.05 mm
β = 98.506 (4)°
Data collection top
Oxford Diffraction CCD area-detector
diffractometer
2215 independent reflections
Absorption correction: multi-scan
(CrysAlis CCD; Oxford Diffraction, 2005)
1808 reflections with I > 2σ(I)
Tmin = 0.604, Tmax = 0.765Rint = 0.049
5173 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0425 restraints
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.67 e Å3
2215 reflectionsΔρmin = 0.71 e Å3
158 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ge10.00000.00000.50000.00570 (15)
Mn10.33624 (9)0.13618 (4)0.73967 (8)0.00616 (15)
Mn20.10405 (9)0.27193 (4)0.97488 (8)0.00687 (15)
P10.85555 (15)0.10913 (6)0.78765 (14)0.0048 (2)
P20.06543 (15)0.18774 (6)0.37557 (14)0.0048 (2)
O10.0486 (5)0.3570 (2)0.7515 (5)0.0212 (8)
O20.3396 (5)0.05675 (19)0.9714 (4)0.0169 (7)
O30.6508 (4)0.13783 (16)0.6846 (4)0.0068 (6)
O40.0282 (4)0.17242 (16)0.7897 (4)0.0075 (6)
O50.0928 (4)0.18148 (16)0.1813 (4)0.0071 (6)
O60.2743 (4)0.20020 (16)0.4915 (4)0.0063 (6)
O70.4116 (4)0.24382 (15)0.9032 (4)0.0071 (6)
O80.2712 (4)0.02156 (17)0.5966 (4)0.0099 (6)
O90.8236 (4)0.09402 (17)0.9835 (4)0.0094 (6)
O100.9176 (4)0.02614 (16)0.7215 (4)0.0078 (6)
O110.0403 (4)0.10841 (16)0.4270 (4)0.0074 (6)
H10.101 (8)0.336 (3)0.672 (5)0.050*
H20.117 (8)0.399 (2)0.768 (8)0.050*
H30.252 (6)0.020 (2)0.959 (8)0.050*
H40.364 (9)0.076 (3)1.070 (3)0.050*
H50.2960.0140.4950.050*
H60.917 (6)0.111 (3)1.056 (6)0.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ge10.0067 (3)0.0038 (3)0.0065 (3)0.0004 (2)0.0006 (2)0.0006 (2)
Mn10.0059 (3)0.0056 (3)0.0069 (3)0.0000 (2)0.0010 (2)0.0001 (2)
Mn20.0075 (3)0.0062 (3)0.0069 (3)0.0002 (2)0.0011 (2)0.0009 (3)
P10.0050 (5)0.0048 (5)0.0048 (5)0.0003 (4)0.0008 (4)0.0003 (4)
P20.0048 (5)0.0038 (5)0.0056 (5)0.0009 (4)0.0006 (4)0.0006 (4)
O10.0201 (19)0.024 (2)0.0185 (19)0.0062 (15)0.0014 (15)0.0063 (16)
O20.0222 (18)0.0140 (18)0.0122 (17)0.0081 (13)0.0054 (15)0.0033 (14)
O30.0040 (13)0.0076 (15)0.0088 (15)0.0006 (11)0.0005 (12)0.0015 (12)
O40.0070 (14)0.0081 (15)0.0083 (15)0.0002 (11)0.0043 (12)0.0025 (11)
O50.0092 (14)0.0059 (15)0.0061 (15)0.0004 (11)0.0003 (12)0.0024 (11)
O60.0042 (13)0.0082 (15)0.0061 (15)0.0010 (11)0.0010 (11)0.0011 (11)
O70.0080 (14)0.0040 (14)0.0090 (15)0.0000 (11)0.0000 (12)0.0013 (12)
O80.0097 (14)0.0117 (16)0.0087 (15)0.0027 (11)0.0023 (12)0.0027 (12)
O90.0110 (15)0.0136 (16)0.0031 (15)0.0034 (12)0.0009 (12)0.0003 (12)
O100.0119 (14)0.0037 (14)0.0078 (15)0.0001 (11)0.0018 (12)0.0005 (11)
O110.0089 (14)0.0038 (14)0.0092 (15)0.0008 (11)0.0000 (12)0.0004 (12)
Geometric parameters (Å, º) top
Ge1—O8i1.851 (3)Mn2—O72.210 (3)
Ge1—O81.851 (3)Mn2—O6iv2.225 (3)
Ge1—O11i1.870 (3)P1—O31.525 (3)
Ge1—O111.870 (3)P1—O101.528 (3)
Ge1—O10ii1.913 (3)P1—O4vi1.531 (3)
Ge1—O10iii1.913 (3)P1—O91.573 (3)
Ge1—H51.9535P2—O61.530 (3)
Mn1—O32.159 (3)P2—O51.537 (3)
Mn1—O62.166 (3)P2—O7vii1.542 (3)
Mn1—O72.181 (3)P2—O111.551 (3)
Mn1—O42.186 (3)O1—H10.817 (10)
Mn1—O82.188 (3)O1—H20.818 (10)
Mn1—O22.207 (3)O2—H30.822 (10)
Mn2—O42.175 (3)O2—H40.815 (10)
Mn2—O3iv2.178 (3)O8—H50.83
Mn2—O5v2.183 (3)O9—H60.816 (10)
Mn2—O12.203 (4)
O8i—Ge1—O8180.00 (7)O5v—Mn2—O799.81 (10)
O8i—Ge1—O11i91.35 (12)O1—Mn2—O789.26 (12)
O8—Ge1—O11i88.65 (12)O4—Mn2—O6iv93.62 (10)
O8i—Ge1—O1188.65 (12)O3iv—Mn2—O6iv81.31 (10)
O8—Ge1—O1191.35 (12)O5v—Mn2—O6iv87.72 (10)
O11i—Ge1—O11180.0O1—Mn2—O6iv82.32 (12)
O8i—Ge1—O10ii91.28 (12)O7—Mn2—O6iv168.93 (11)
O8—Ge1—O10ii88.72 (12)O3—P1—O10110.87 (15)
O11i—Ge1—O10ii89.43 (12)O3—P1—O4vi112.63 (16)
O11—Ge1—O10ii90.57 (12)O10—P1—O4vi112.02 (16)
O8i—Ge1—O10iii88.72 (12)O3—P1—O9108.50 (16)
O8—Ge1—O10iii91.28 (12)O10—P1—O9105.01 (16)
O11i—Ge1—O10iii90.57 (12)O4vi—P1—O9107.40 (16)
O11—Ge1—O10iii89.43 (12)O6—P2—O5110.80 (16)
O10ii—Ge1—O10iii180.0O6—P2—O7vii111.45 (15)
O3—Mn1—O683.08 (10)O5—P2—O7vii110.81 (16)
O3—Mn1—O787.89 (10)O6—P2—O11110.82 (15)
O6—Mn1—O796.60 (10)O5—P2—O11108.25 (16)
O3—Mn1—O4163.50 (10)O7vii—P2—O11104.49 (16)
O6—Mn1—O488.13 (10)H1—O1—H2101 (6)
O7—Mn1—O479.25 (10)H3—O2—H4115 (6)
O3—Mn1—O891.79 (10)P1—O3—Mn1132.90 (17)
O6—Mn1—O888.50 (10)P1—O3—Mn2viii127.70 (16)
O7—Mn1—O8174.81 (11)Mn1—O3—Mn2viii96.96 (10)
O4—Mn1—O8101.94 (10)P1ii—O4—Mn2127.63 (17)
O3—Mn1—O2105.70 (12)P1ii—O4—Mn1120.69 (15)
O6—Mn1—O2167.96 (11)Mn2—O4—Mn1101.13 (10)
O7—Mn1—O292.02 (11)P2—O5—Mn2ix133.27 (16)
O4—Mn1—O285.22 (12)P2—O6—Mn1119.00 (15)
O8—Mn1—O283.08 (11)P2—O6—Mn2viii141.41 (17)
O4—Mn2—O3iv171.44 (11)Mn1—O6—Mn2viii95.39 (10)
O4—Mn2—O5v86.56 (10)P2x—O7—Mn1127.21 (17)
O3iv—Mn2—O5v86.36 (10)P2x—O7—Mn2121.22 (15)
O4—Mn2—O188.11 (12)Mn1—O7—Mn2100.20 (10)
O3iv—Mn2—O197.96 (12)Ge1—O8—Mn1118.00 (13)
O5v—Mn2—O1168.39 (12)P1—O10—Ge1vi128.35 (17)
O4—Mn2—O778.87 (10)P2—O11—Ge1145.55 (17)
O3iv—Mn2—O7107.09 (10)
Symmetry codes: (i) x, y, z+1; (ii) x1, y, z; (iii) x+1, y, z+1; (iv) x1/2, y+1/2, z+1/2; (v) x, y, z+1; (vi) x+1, y, z; (vii) x1/2, y+1/2, z1/2; (viii) x+1/2, y+1/2, z1/2; (ix) x, y, z1; (x) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O9vii0.82 (1)2.49 (5)3.039 (5)126 (5)
O1—H1···O7vii0.82 (1)2.60 (5)3.166 (4)127 (5)
O1—H2···O8xi0.82 (1)2.33 (3)3.101 (4)157 (6)
O1—H2···O11x0.82 (1)2.39 (5)2.878 (4)119 (5)
O2—H3···O9xii0.82 (1)2.01 (3)2.733 (4)147 (5)
O2—H4···O1x0.82 (1)2.03 (3)2.765 (5)149 (6)
O2—H3···O10ii0.82 (1)2.63 (5)3.161 (4)123 (5)
O8—H5···O10iii0.832.112.692 (4)126 (1)
O9—H6···O5xiii0.82 (1)1.80 (2)2.584 (4)160 (6)
Symmetry codes: (ii) x1, y, z; (iii) x+1, y, z+1; (vii) x1/2, y+1/2, z1/2; (x) x+1/2, y+1/2, z+1/2; (xi) x+1/2, y+1/2, z+3/2; (xii) x+1, y, z+2; (xiii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaMn4(H2O)4[Ge(OH)2(HPO4)2(PO4)2]
Mr780.33
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)6.5336 (3), 16.3869 (7), 7.7048 (3)
β (°) 98.506 (4)
V3)815.84 (6)
Z2
Radiation typeMo Kα
µ (mm1)5.35
Crystal size (mm)0.10 × 0.08 × 0.05
Data collection
DiffractometerOxford Diffraction CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrysAlis CCD; Oxford Diffraction, 2005)
Tmin, Tmax0.604, 0.765
No. of measured, independent and
observed [I > 2σ(I)] reflections
5173, 2215, 1808
Rint0.049
(sin θ/λ)max1)0.718
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.064, 1.11
No. of reflections2215
No. of parameters158
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.67, 0.71

Computer programs: CrysAlis CCD (Oxford Diffraction, 2005), SHELXS97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2005) and ATOMS (Dowty, 2004), SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O9i0.817 (10)2.49 (5)3.039 (5)126 (5)
O1—H1···O7i0.817 (10)2.60 (5)3.166 (4)127 (5)
O1—H2···O8ii0.818 (10)2.33 (3)3.101 (4)157 (6)
O1—H2···O11iii0.818 (10)2.39 (5)2.878 (4)119 (5)
O2—H3···O9iv0.822 (10)2.01 (3)2.733 (4)147 (5)
O2—H4···O1iii0.815 (10)2.03 (3)2.765 (5)149 (6)
O2—H3···O10v0.822 (10)2.63 (5)3.161 (4)123 (5)
O8—H5···O10vi0.832.112.692 (4)126.2 (2)
O9—H6···O5vii0.816 (10)1.80 (2)2.584 (4)160 (6)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z+3/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1, y, z+2; (v) x1, y, z; (vi) x+1, y, z+1; (vii) x+1, y, z+1.
 

Acknowledgements

This work was supported by the Scientific Research Foundation for Returned Overseas Chinese Scholars of the State Education Ministry, the National Natural Science Foundation of China (grant No. 40972035), the Natural Science Foundation of Fujian Province of China (grant No. 2010J01308) and the Scientific and Technological Innovation Platform of Fujian Province of China (grant No. 2009J1009).

References

First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrock, S. L., Duan, N., Tian, Z. R., Giraldo, O., Zhou, H. & Suib, S. L. (1998). Chem. Mater. 10, 2619–2628.  Web of Science CrossRef CAS Google Scholar
First citationCorma, A. (1997). Chem. Rev. 97, 2373–2419.  CrossRef PubMed CAS Web of Science Google Scholar
First citationDowty, E. (2004). ATOMS. Shape Software, Kingsport, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHuang, Y.-X., Zhang, X., Huang, X., Schnelle, W., Lin, J., Mi, J.-X., Tang, M.-B. & Zhao, J.-T. (2012). Inorg. Chem. 51, 3316–3323.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLi, J.-M., Ke, Y.-X., Zhang, Y.-G., He, G.-F., Jiang, Z., Nishiura, M. & Imamoto, T. (2000). J. Am. Chem. Soc. 122, 6110–6111.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, Y., Yang, X.-L., Wang, G.-L., Zhang, J., Li, Y.-Z., Du, H.-B. & You, X.-Z. (2008). J. Solid State Chem. 181, 2542–2546.  Web of Science CrossRef CAS Google Scholar
First citationLiu, Y., Yang, X.-L., Zhang, J., Li, Y.-Z., Song, Y., Du, H.-B. & You, X.-Z. (2008). Chem. Commun. 27, 3145–3147.  Web of Science CrossRef Google Scholar
First citationOxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, D., Xie, Z., Hu, J.-M., Zhang, H., Zhang, W.-L., Yang, S.-L. & Cheng, W.-D. (2009). J. Mol. Struct., 922, 127–134.  Web of Science CrossRef CAS Google Scholar
First citationZubieta, J. (1994). Comments Inorg. Chem. 16, 153–183.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages i37-i38
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds