organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1327

N-(3-Methyl­benzo­yl)benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 29 March 2012; accepted 30 March 2012; online 6 April 2012)

The asymmetric unit of the title compound, C14H13NO3S, contains three independent mol­ecules in which the dihedral angles between the sulfonyl and benzoyl benzene rings are 83.3 (2), 84.4 (2) and 87.6 (2)°. In the crystal, mol­ecules are linked into chains running along the a axis via N—H⋯O hydrogen bonds.

Related literature

For our studies on the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Gowda et al. (2000[Gowda, B. T., Svoboda, I. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 779-790.], 2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o1975-o1976.]), on N-(substitutedbenzo­yl)-aryl­sulfonamides, see: Gowda et al. (2009[Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o2750.]), on N-chloro­aryl­amides, see: Jyothi & Gowda (2004[Jyothi, K. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 64-68.]) and on N-bromo­aryl­sulfonamides, see: Usha & Gowda (2006[Usha, K. M. & Gowda, B. T. (2006). J. Chem. Sci. 118, 351-359.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13NO3S

  • Mr = 275.31

  • Monoclinic, P 21 /c

  • a = 11.6028 (8) Å

  • b = 35.100 (3) Å

  • c = 10.4886 (8) Å

  • β = 100.920 (7)°

  • V = 4194.2 (6) Å3

  • Z = 12

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 293 K

  • 0.46 × 0.30 × 0.04 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.900, Tmax = 0.991

  • 15537 measured reflections

  • 7317 independent reflections

  • 4440 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.097

  • wR(F2) = 0.146

  • S = 1.29

  • 7317 reflections

  • 526 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O7i 0.85 (2) 2.04 (2) 2.864 (5) 164 (5)
N2—H2N⋯O2ii 0.86 (2) 2.15 (3) 2.920 (5) 150 (5)
N3—H3N⋯O6 0.85 (2) 2.05 (2) 2.891 (5) 172 (5)
Symmetry codes: (i) x-1, y, z+1; (ii) x, y, z-1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Diaryl acylsulfonamides are known as potent antitumor agents against a broad spectrum of human tumor xenografts (colon, lung, breast, ovary and prostate) in nude mice. As part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Gowda et al., 2000, 2007), N-(substitutedbenzoyl)-arylsulfonamides (Gowda et al., 2009), N-chloroarylsulfonamides (Jyothi & Gowda, 2004) and N-bromoarylsulfonamides (Usha & Gowda, 2006), in the present work, the crystal structure of N-(3-methylbenzoyl)benzenesulfonamide has been determined (Fig.1).

The conformation of the N—H bond in the C—SO2—NH—C(O) segment is anti to the C=O bond (Fig.1), similar to that observed in N-(3-chlorobenzoyl)benzenesulfonamide (I)(Gowda et al., 2009).

In the title compound, the dihedral angles between the sulfonyl benzene rings and the —SO2—NH—C—O segments are 76.6 (2)°, 82.2 (2)° and 78.4 (2)°, compared to the value of 79.6 (1)° in (I).

The dihedral angles between the sulfonyl and the benzoyl benzene rings are 83.3 (2)°, 84.4 (2)° and 87.6 (2)°, compared to the value of 89.3 (1)° in (I).

The packing of molecules linked by of N—H···O hydrogen bonds (Table 1) is shown in Fig. 2.

Related literature top

For our studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Gowda et al. (2000, 2007), on N-(substitutedbenzoyl)-arylsulfonamides, see: Gowda et al. (2009), on N-chloroarylamides, see: Jyothi & Gowda (2004) and on N-bromoarylsulfonamides, see: Usha & Gowda (2006).

Experimental top

The title compound was prepared by refluxing a mixture of 3-methylbenzoic acid, benzene sulfonamide and phosphorous oxy chloride for 5 h on a water bath. The resultant mixture was cooled and poured into ice cold water. The solid obtained was filtered, washed thoroughly with water and then dissolved in sodium bicarbonate solution. The compound was later reprecipitated by acidifying the filtered solution with dilute HCl. The filtered and dried solid was recrystallized to the constant melting point.

Plate like colourless single crystals of the title compound used in X-ray diffraction studies were obtained from a slow evaporation of the solvent from its toluene solution at room temperature.

Refinement top

The coordinates of the H atoms bonded to N were refined with the to N—H distance restrained to 0.86 (2) %A. The other H atoms were positioned with idealized geometry using a riding model with C—H distances of 0.93 Å (C-aromatic) and 0.96 Å (C-methyl).

All H atoms were refined with isotropic displacement parameters were set at 1.2 Ueq(Caromatic, N) and 1.5 Ueq(Cmethyl).

The (1 1 1) reflection is probably affected by the beamstop and was omitted from the refinement.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom- labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing in the title compound. Hydrogen bonds are shown as dashed lines.
N-(3-Methylbenzoyl)benzenesulfonamide top
Crystal data top
C14H13NO3SF(000) = 1728
Mr = 275.31Dx = 1.308 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3245 reflections
a = 11.6028 (8) Åθ = 2.6–27.9°
b = 35.100 (3) ŵ = 0.23 mm1
c = 10.4886 (8) ÅT = 293 K
β = 100.920 (7)°Plate, colourless
V = 4194.2 (6) Å30.46 × 0.30 × 0.04 mm
Z = 12
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
7317 independent reflections
Radiation source: fine-focus sealed tube4440 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Rotation method data acquisition using ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 813
Tmin = 0.900, Tmax = 0.991k = 4128
15537 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.097Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H atoms treated by a mixture of independent and constrained refinement
S = 1.29 w = 1/[σ2(Fo2) + (0.P)2 + 7.5834P]
where P = (Fo2 + 2Fc2)/3
7317 reflections(Δ/σ)max < 0.001
526 parametersΔρmax = 0.30 e Å3
3 restraintsΔρmin = 0.33 e Å3
Crystal data top
C14H13NO3SV = 4194.2 (6) Å3
Mr = 275.31Z = 12
Monoclinic, P21/cMo Kα radiation
a = 11.6028 (8) ŵ = 0.23 mm1
b = 35.100 (3) ÅT = 293 K
c = 10.4886 (8) Å0.46 × 0.30 × 0.04 mm
β = 100.920 (7)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
7317 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
4440 reflections with I > 2σ(I)
Tmin = 0.900, Tmax = 0.991Rint = 0.045
15537 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0973 restraints
wR(F2) = 0.146H atoms treated by a mixture of independent and constrained refinement
S = 1.29Δρmax = 0.30 e Å3
7317 reflectionsΔρmin = 0.33 e Å3
526 parameters
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1661 (4)0.20368 (14)0.9680 (5)0.0404 (13)
C20.2356 (5)0.23047 (17)0.9252 (6)0.0666 (18)
H20.31690.22860.94660.080*
C30.1831 (7)0.2603 (2)0.8495 (7)0.089 (2)
H30.22940.27850.81920.107*
C40.0632 (7)0.2631 (2)0.8189 (7)0.088 (2)
H40.02820.28330.76860.105*
C50.0049 (6)0.2361 (2)0.8625 (7)0.078 (2)
H50.08630.23800.84100.094*
C60.0452 (5)0.20613 (16)0.9377 (6)0.0565 (16)
H60.00140.18790.96750.068*
C70.2962 (5)0.12424 (15)0.8764 (5)0.0456 (14)
C80.2903 (4)0.08623 (14)0.8128 (5)0.0398 (13)
C90.3140 (5)0.08350 (17)0.6894 (6)0.0600 (17)
H90.33060.10550.64700.072*
C100.3136 (6)0.04891 (19)0.6271 (6)0.0654 (18)
C110.2922 (5)0.01670 (18)0.6924 (7)0.0638 (18)
H110.29390.00690.65280.077*
C120.2686 (5)0.01875 (17)0.8150 (7)0.0646 (18)
H120.25390.00340.85790.078*
C130.2665 (5)0.05358 (15)0.8749 (6)0.0518 (15)
H130.24880.05500.95760.062*
C140.3375 (9)0.0467 (2)0.4911 (7)0.142 (4)
H14A0.42060.04550.49430.170*
H14B0.30590.06880.44320.170*
H14C0.30110.02420.44920.170*
N10.2269 (4)0.12842 (11)0.9691 (4)0.0408 (11)
H1N0.172 (3)0.1133 (11)0.979 (5)0.049*
O10.1566 (3)0.15579 (10)1.1538 (3)0.0563 (10)
O20.3507 (3)0.17572 (10)1.1137 (4)0.0588 (11)
O30.3556 (4)0.15030 (11)0.8490 (4)0.0723 (13)
S10.23040 (12)0.16583 (4)1.06531 (14)0.0439 (4)
C150.5844 (5)0.12158 (15)0.3849 (5)0.0477 (14)
C160.4896 (5)0.14058 (17)0.4163 (6)0.0617 (17)
H160.42260.14480.35360.074*
C170.4954 (7)0.1532 (2)0.5411 (8)0.083 (2)
H170.43220.16620.56340.099*
C180.5945 (8)0.1468 (2)0.6327 (7)0.095 (3)
H180.59770.15520.71740.113*
C190.6884 (7)0.1283 (2)0.6011 (7)0.099 (3)
H190.75540.12420.66400.118*
C200.6843 (6)0.11550 (19)0.4757 (6)0.074 (2)
H200.74820.10300.45330.089*
C210.6831 (4)0.16510 (14)0.1471 (5)0.0372 (12)
C220.6719 (4)0.19969 (14)0.0646 (5)0.0373 (12)
C230.5861 (4)0.20471 (14)0.0453 (5)0.0399 (13)
H230.53130.18550.07070.048*
C240.5803 (5)0.23784 (17)0.1181 (5)0.0515 (15)
C250.6612 (6)0.26632 (17)0.0762 (7)0.0692 (19)
H250.65700.28910.12230.083*
C260.7470 (7)0.26166 (19)0.0314 (7)0.082 (2)
H260.80120.28100.05740.098*
C270.7531 (5)0.22833 (17)0.1012 (6)0.0609 (17)
H270.81230.22500.17360.073*
C280.4903 (6)0.2429 (2)0.2401 (6)0.083 (2)
H28A0.43040.22380.24370.100*
H28B0.52730.24030.31420.100*
H28C0.45560.26770.24050.100*
N20.5845 (4)0.14267 (12)0.1351 (4)0.0414 (11)
H2N0.516 (2)0.1500 (13)0.099 (4)0.050*
O40.4570 (3)0.09120 (10)0.1793 (4)0.0667 (12)
O50.6724 (4)0.08030 (10)0.2222 (4)0.0646 (12)
O60.7731 (3)0.15704 (10)0.2228 (3)0.0512 (10)
S20.57382 (13)0.10423 (4)0.22610 (14)0.0492 (4)
C290.8038 (4)0.06031 (14)0.0737 (4)0.0378 (13)
C300.8412 (5)0.02571 (15)0.1099 (5)0.0462 (14)
H300.92090.02040.10050.055*
C310.7585 (6)0.00106 (17)0.1605 (5)0.0592 (16)
H310.78260.02460.18670.071*
C320.6408 (6)0.00656 (19)0.1728 (6)0.0678 (19)
H320.58570.01180.20660.081*
C330.6045 (5)0.04131 (19)0.1353 (6)0.0711 (19)
H330.52470.04630.14320.085*
C340.6850 (5)0.06871 (17)0.0862 (5)0.0548 (16)
H340.66070.09240.06180.066*
C350.9608 (4)0.06864 (16)0.2280 (5)0.0430 (14)
C360.9756 (4)0.07833 (17)0.3685 (5)0.0479 (14)
C371.0054 (5)0.11455 (18)0.4134 (5)0.0580 (17)
H371.01610.13360.35500.070*
C381.0198 (6)0.1230 (2)0.5453 (6)0.076 (2)
C391.0025 (6)0.0938 (3)0.6276 (7)0.090 (3)
H391.01150.09880.71600.108*
C400.9728 (6)0.0580 (3)0.5849 (7)0.092 (3)
H400.96130.03910.64330.110*
C410.9598 (5)0.04983 (19)0.4545 (7)0.0698 (19)
H410.94050.02530.42450.084*
C421.0549 (8)0.1623 (2)0.5946 (7)0.138 (4)
H42A1.01510.18090.53470.166*
H42B1.13820.16530.60250.166*
H42C1.03370.16590.67790.166*
N30.9179 (4)0.09775 (12)0.1442 (4)0.0393 (10)
H3N0.881 (4)0.1165 (10)0.167 (5)0.047*
O71.0178 (3)0.08427 (12)0.0409 (4)0.0700 (13)
O80.8578 (4)0.13197 (11)0.0578 (3)0.0686 (12)
O90.9847 (4)0.03767 (11)0.1896 (4)0.0700 (12)
S30.90607 (13)0.09578 (4)0.01381 (13)0.0471 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.038 (3)0.037 (3)0.045 (3)0.006 (3)0.006 (3)0.006 (3)
C20.050 (4)0.057 (4)0.094 (5)0.002 (3)0.019 (4)0.014 (4)
C30.078 (6)0.070 (5)0.123 (7)0.004 (4)0.030 (5)0.046 (5)
C40.084 (6)0.074 (5)0.101 (6)0.019 (4)0.008 (5)0.037 (5)
C50.058 (4)0.079 (5)0.092 (6)0.016 (4)0.002 (4)0.017 (4)
C60.051 (4)0.051 (4)0.066 (4)0.001 (3)0.008 (3)0.007 (3)
C70.042 (3)0.040 (3)0.055 (4)0.005 (3)0.011 (3)0.003 (3)
C80.030 (3)0.037 (3)0.052 (4)0.007 (2)0.007 (3)0.006 (3)
C90.074 (4)0.054 (4)0.058 (4)0.011 (3)0.028 (3)0.002 (3)
C100.082 (5)0.066 (5)0.052 (4)0.009 (4)0.023 (4)0.022 (4)
C110.067 (4)0.048 (4)0.077 (5)0.009 (3)0.014 (4)0.024 (4)
C120.077 (5)0.039 (4)0.082 (5)0.003 (3)0.024 (4)0.004 (4)
C130.057 (4)0.044 (4)0.057 (4)0.000 (3)0.018 (3)0.003 (3)
C140.239 (11)0.116 (7)0.092 (7)0.016 (8)0.085 (7)0.037 (6)
N10.038 (3)0.034 (3)0.052 (3)0.010 (2)0.014 (2)0.008 (2)
O10.078 (3)0.050 (2)0.045 (2)0.006 (2)0.021 (2)0.0014 (19)
O20.046 (2)0.048 (2)0.072 (3)0.0000 (19)0.015 (2)0.012 (2)
O30.078 (3)0.047 (2)0.104 (4)0.026 (2)0.049 (3)0.018 (2)
S10.0458 (9)0.0375 (8)0.0454 (9)0.0031 (7)0.0012 (7)0.0060 (7)
C150.060 (4)0.037 (3)0.051 (4)0.006 (3)0.023 (3)0.010 (3)
C160.068 (4)0.063 (4)0.057 (4)0.006 (3)0.020 (3)0.006 (3)
C170.093 (6)0.085 (5)0.082 (6)0.011 (5)0.045 (5)0.002 (5)
C180.132 (7)0.110 (7)0.052 (5)0.005 (6)0.045 (5)0.006 (5)
C190.105 (6)0.143 (8)0.046 (5)0.024 (6)0.010 (4)0.006 (5)
C200.075 (5)0.099 (6)0.047 (4)0.021 (4)0.009 (4)0.014 (4)
C210.043 (3)0.036 (3)0.034 (3)0.004 (3)0.010 (3)0.008 (3)
C220.034 (3)0.039 (3)0.040 (3)0.003 (2)0.010 (2)0.004 (3)
C230.046 (3)0.031 (3)0.045 (3)0.002 (3)0.013 (3)0.001 (3)
C240.054 (4)0.053 (4)0.051 (4)0.013 (3)0.020 (3)0.013 (3)
C250.097 (6)0.041 (4)0.078 (5)0.000 (4)0.038 (4)0.015 (4)
C260.095 (6)0.064 (5)0.089 (6)0.037 (4)0.023 (5)0.002 (4)
C270.054 (4)0.064 (4)0.063 (4)0.017 (3)0.007 (3)0.006 (4)
C280.081 (5)0.092 (5)0.079 (5)0.017 (4)0.023 (4)0.037 (4)
N20.041 (3)0.037 (3)0.044 (3)0.004 (2)0.001 (2)0.007 (2)
O40.070 (3)0.048 (2)0.078 (3)0.019 (2)0.004 (2)0.006 (2)
O50.086 (3)0.044 (2)0.066 (3)0.026 (2)0.020 (2)0.006 (2)
O60.043 (2)0.056 (2)0.048 (2)0.0163 (19)0.0081 (19)0.0036 (19)
S20.0638 (10)0.0343 (8)0.0493 (9)0.0036 (8)0.0100 (7)0.0068 (7)
C290.046 (3)0.044 (3)0.025 (3)0.002 (3)0.010 (2)0.004 (2)
C300.047 (3)0.054 (4)0.038 (3)0.002 (3)0.008 (3)0.008 (3)
C310.078 (5)0.050 (4)0.049 (4)0.000 (3)0.008 (3)0.012 (3)
C320.065 (5)0.063 (5)0.071 (5)0.022 (4)0.001 (4)0.017 (4)
C330.043 (4)0.078 (5)0.088 (5)0.001 (4)0.000 (3)0.015 (4)
C340.054 (4)0.052 (4)0.057 (4)0.004 (3)0.006 (3)0.009 (3)
C350.035 (3)0.050 (4)0.043 (4)0.005 (3)0.006 (3)0.006 (3)
C360.039 (3)0.057 (4)0.046 (4)0.012 (3)0.002 (3)0.007 (3)
C370.070 (4)0.066 (4)0.033 (3)0.016 (3)0.003 (3)0.004 (3)
C380.084 (5)0.091 (5)0.044 (4)0.034 (4)0.013 (4)0.012 (4)
C390.075 (5)0.157 (8)0.032 (4)0.044 (6)0.004 (4)0.008 (5)
C400.081 (6)0.142 (8)0.049 (5)0.012 (6)0.006 (4)0.038 (5)
C410.063 (4)0.076 (5)0.066 (5)0.004 (4)0.002 (4)0.023 (4)
C420.194 (10)0.126 (8)0.072 (6)0.045 (7)0.030 (6)0.040 (6)
N30.045 (3)0.041 (3)0.031 (2)0.006 (2)0.005 (2)0.002 (2)
O70.054 (3)0.102 (3)0.064 (3)0.032 (2)0.036 (2)0.029 (2)
O80.109 (3)0.049 (3)0.042 (2)0.019 (2)0.001 (2)0.012 (2)
O90.081 (3)0.054 (3)0.071 (3)0.029 (2)0.004 (2)0.009 (2)
S30.0568 (9)0.0533 (9)0.0331 (8)0.0165 (8)0.0134 (7)0.0054 (7)
Geometric parameters (Å, º) top
C1—C21.369 (7)C23—C241.386 (7)
C1—C61.381 (7)C23—H230.9300
C1—S11.754 (5)C24—C251.384 (8)
C2—C31.383 (8)C24—C281.501 (8)
C2—H20.9300C25—C261.366 (9)
C3—C41.371 (9)C25—H250.9300
C3—H30.9300C26—C271.374 (8)
C4—C51.367 (9)C26—H260.9300
C4—H40.9300C27—H270.9300
C5—C61.375 (8)C28—H28A0.9600
C5—H50.9300C28—H28B0.9600
C6—H60.9300C28—H28C0.9600
C7—O31.212 (6)N2—S21.671 (4)
C7—N11.381 (6)N2—H2N0.857 (19)
C7—C81.487 (7)O4—S21.426 (4)
C8—C131.372 (7)O5—S21.426 (4)
C8—C91.377 (7)C29—C301.367 (7)
C9—C101.378 (8)C29—C341.391 (7)
C9—H90.9300C29—S31.753 (5)
C10—C111.369 (8)C30—C311.376 (7)
C10—C141.505 (8)C30—H300.9300
C11—C121.367 (8)C31—C321.374 (8)
C11—H110.9300C31—H310.9300
C12—C131.377 (7)C32—C331.372 (8)
C12—H120.9300C32—H320.9300
C13—H130.9300C33—C341.371 (7)
C14—H14A0.9600C33—H330.9300
C14—H14B0.9600C34—H340.9300
C14—H14C0.9600C35—O91.209 (6)
N1—S11.652 (4)C35—N31.378 (6)
N1—H1N0.849 (19)C35—C361.491 (7)
O1—S11.422 (4)C36—C371.377 (7)
O2—S11.435 (3)C36—C411.382 (7)
C15—C201.370 (7)C37—C381.394 (8)
C15—C161.379 (7)C37—H370.9300
C15—S21.756 (6)C38—C391.381 (10)
C16—C171.372 (8)C38—C421.502 (9)
C16—H160.9300C39—C401.355 (10)
C17—C181.370 (9)C39—H390.9300
C17—H170.9300C40—C411.378 (9)
C18—C191.363 (9)C40—H400.9300
C18—H180.9300C41—H410.9300
C19—C201.382 (8)C42—H42A0.9600
C19—H190.9300C42—H42B0.9600
C20—H200.9300C42—H42C0.9600
C21—O61.220 (5)N3—S31.638 (4)
C21—N21.375 (6)N3—H3N0.846 (19)
C21—C221.482 (7)O7—S31.437 (4)
C22—C271.382 (7)O8—S31.429 (4)
C22—C231.384 (6)
C2—C1—C6121.2 (5)C25—C24—C23118.2 (5)
C2—C1—S1119.9 (4)C25—C24—C28120.4 (6)
C6—C1—S1118.9 (4)C23—C24—C28121.4 (6)
C1—C2—C3119.0 (6)C26—C25—C24121.3 (6)
C1—C2—H2120.5C26—C25—H25119.4
C3—C2—H2120.5C24—C25—H25119.4
C4—C3—C2120.4 (6)C25—C26—C27119.9 (6)
C4—C3—H3119.8C25—C26—H26120.1
C2—C3—H3119.8C27—C26—H26120.1
C5—C4—C3119.8 (6)C26—C27—C22120.5 (6)
C5—C4—H4120.1C26—C27—H27119.7
C3—C4—H4120.1C22—C27—H27119.7
C4—C5—C6120.9 (6)C24—C28—H28A109.5
C4—C5—H5119.5C24—C28—H28B109.5
C6—C5—H5119.5H28A—C28—H28B109.5
C5—C6—C1118.7 (6)C24—C28—H28C109.5
C5—C6—H6120.7H28A—C28—H28C109.5
C1—C6—H6120.7H28B—C28—H28C109.5
O3—C7—N1121.3 (5)C21—N2—S2124.1 (3)
O3—C7—C8123.4 (5)C21—N2—H2N124 (3)
N1—C7—C8115.3 (5)S2—N2—H2N109 (3)
C13—C8—C9118.8 (5)O5—S2—O4121.1 (2)
C13—C8—C7122.2 (5)O5—S2—N2108.2 (2)
C9—C8—C7118.9 (5)O4—S2—N2103.4 (2)
C8—C9—C10121.6 (6)O5—S2—C15108.6 (3)
C8—C9—H9119.2O4—S2—C15109.2 (3)
C10—C9—H9119.2N2—S2—C15105.2 (2)
C11—C10—C9118.3 (6)C30—C29—C34121.5 (5)
C11—C10—C14120.9 (6)C30—C29—S3120.1 (4)
C9—C10—C14120.7 (6)C34—C29—S3118.3 (4)
C12—C11—C10121.0 (6)C29—C30—C31118.6 (5)
C12—C11—H11119.5C29—C30—H30120.7
C10—C11—H11119.5C31—C30—H30120.7
C11—C12—C13120.0 (6)C32—C31—C30120.8 (6)
C11—C12—H12120.0C32—C31—H31119.6
C13—C12—H12120.0C30—C31—H31119.6
C8—C13—C12120.2 (6)C33—C32—C31120.0 (6)
C8—C13—H13119.9C33—C32—H32120.0
C12—C13—H13119.9C31—C32—H32120.0
C10—C14—H14A109.5C34—C33—C32120.5 (6)
C10—C14—H14B109.5C34—C33—H33119.8
H14A—C14—H14B109.5C32—C33—H33119.8
C10—C14—H14C109.5C33—C34—C29118.6 (5)
H14A—C14—H14C109.5C33—C34—H34120.7
H14B—C14—H14C109.5C29—C34—H34120.7
C7—N1—S1124.4 (4)O9—C35—N3122.2 (5)
C7—N1—H1N125 (3)O9—C35—C36122.9 (5)
S1—N1—H1N111 (3)N3—C35—C36114.9 (5)
O1—S1—O2119.7 (2)C37—C36—C41120.1 (6)
O1—S1—N1104.7 (2)C37—C36—C35121.5 (5)
O2—S1—N1108.5 (2)C41—C36—C35118.4 (6)
O1—S1—C1109.0 (2)C36—C37—C38120.8 (6)
O2—S1—C1107.5 (2)C36—C37—H37119.6
N1—S1—C1106.7 (2)C38—C37—H37119.6
C20—C15—C16121.2 (6)C39—C38—C37117.3 (7)
C20—C15—S2120.2 (5)C39—C38—C42122.0 (7)
C16—C15—S2118.6 (5)C37—C38—C42120.8 (7)
C17—C16—C15119.1 (6)C40—C39—C38122.7 (7)
C17—C16—H16120.4C40—C39—H39118.7
C15—C16—H16120.4C38—C39—H39118.7
C18—C17—C16120.0 (7)C39—C40—C41119.7 (7)
C18—C17—H17120.0C39—C40—H40120.2
C16—C17—H17120.0C41—C40—H40120.2
C19—C18—C17120.7 (7)C40—C41—C36119.6 (7)
C19—C18—H18119.7C40—C41—H41120.2
C17—C18—H18119.7C36—C41—H41120.2
C18—C19—C20120.1 (7)C38—C42—H42A109.5
C18—C19—H19119.9C38—C42—H42B109.5
C20—C19—H19119.9H42A—C42—H42B109.5
C15—C20—C19118.9 (6)C38—C42—H42C109.5
C15—C20—H20120.6H42A—C42—H42C109.5
C19—C20—H20120.6H42B—C42—H42C109.5
O6—C21—N2121.4 (5)C35—N3—S3124.4 (4)
O6—C21—C22122.7 (5)C35—N3—H3N123 (3)
N2—C21—C22115.8 (4)S3—N3—H3N111 (3)
C27—C22—C23119.0 (5)O8—S3—O7119.9 (3)
C27—C22—C21117.0 (5)O8—S3—N3104.0 (2)
C23—C22—C21124.1 (4)O7—S3—N3107.8 (2)
C22—C23—C24121.2 (5)O8—S3—C29108.6 (2)
C22—C23—H23119.4O7—S3—C29107.7 (2)
C24—C23—H23119.4N3—S3—C29108.3 (2)
C6—C1—C2—C30.4 (9)C28—C24—C25—C26177.1 (6)
S1—C1—C2—C3179.4 (5)C24—C25—C26—C270.8 (11)
C1—C2—C3—C40.6 (11)C25—C26—C27—C221.1 (10)
C2—C3—C4—C50.6 (12)C23—C22—C27—C261.6 (9)
C3—C4—C5—C60.5 (12)C21—C22—C27—C26178.5 (5)
C4—C5—C6—C10.3 (10)O6—C21—N2—S23.6 (7)
C2—C1—C6—C50.3 (9)C22—C21—N2—S2175.3 (3)
S1—C1—C6—C5179.3 (5)C21—N2—S2—O551.1 (5)
O3—C7—C8—C13152.1 (6)C21—N2—S2—O4179.3 (4)
N1—C7—C8—C1328.9 (7)C21—N2—S2—C1564.8 (5)
O3—C7—C8—C925.4 (8)C20—C15—S2—O58.5 (6)
N1—C7—C8—C9153.6 (5)C16—C15—S2—O5170.1 (4)
C13—C8—C9—C100.3 (9)C20—C15—S2—O4142.5 (5)
C7—C8—C9—C10177.9 (5)C16—C15—S2—O436.2 (5)
C8—C9—C10—C111.9 (9)C20—C15—S2—N2107.2 (5)
C8—C9—C10—C14178.9 (6)C16—C15—S2—N274.2 (5)
C9—C10—C11—C121.9 (10)C34—C29—C30—C310.4 (8)
C14—C10—C11—C12178.9 (7)S3—C29—C30—C31177.9 (4)
C10—C11—C12—C130.3 (10)C29—C30—C31—C320.9 (8)
C9—C8—C13—C121.2 (8)C30—C31—C32—C330.5 (10)
C7—C8—C13—C12176.3 (5)C31—C32—C33—C340.4 (10)
C11—C12—C13—C81.3 (9)C32—C33—C34—C290.9 (9)
O3—C7—N1—S18.8 (8)C30—C29—C34—C330.4 (8)
C8—C7—N1—S1172.2 (4)S3—C29—C34—C33178.8 (5)
C7—N1—S1—O1173.1 (4)O9—C35—C36—C37147.1 (6)
C7—N1—S1—O244.2 (5)N3—C35—C36—C3732.8 (7)
C7—N1—S1—C171.4 (5)O9—C35—C36—C4132.2 (8)
C2—C1—S1—O1147.0 (5)N3—C35—C36—C41147.9 (5)
C6—C1—S1—O131.9 (5)C41—C36—C37—C380.1 (9)
C2—C1—S1—O215.9 (5)C35—C36—C37—C38179.5 (5)
C6—C1—S1—O2163.1 (4)C36—C37—C38—C390.3 (9)
C2—C1—S1—N1100.4 (5)C36—C37—C38—C42178.7 (6)
C6—C1—S1—N180.6 (5)C37—C38—C39—C400.1 (11)
C20—C15—C16—C170.7 (9)C42—C38—C39—C40178.8 (7)
S2—C15—C16—C17178.0 (5)C38—C39—C40—C410.4 (12)
C15—C16—C17—C180.2 (10)C39—C40—C41—C360.9 (11)
C16—C17—C18—C190.7 (12)C37—C36—C41—C400.7 (9)
C17—C18—C19—C200.4 (13)C35—C36—C41—C40179.9 (5)
C16—C15—C20—C190.9 (10)O9—C35—N3—S36.2 (8)
S2—C15—C20—C19177.7 (5)C36—C35—N3—S3173.7 (4)
C18—C19—C20—C150.4 (12)C35—N3—S3—O8179.9 (4)
O6—C21—C22—C2718.3 (7)C35—N3—S3—O751.8 (5)
N2—C21—C22—C27160.5 (5)C35—N3—S3—C2964.5 (5)
O6—C21—C22—C23161.6 (5)C30—C29—S3—O8144.2 (4)
N2—C21—C22—C2319.6 (7)C34—C29—S3—O834.2 (5)
C27—C22—C23—C240.3 (8)C30—C29—S3—O713.0 (5)
C21—C22—C23—C24179.9 (5)C34—C29—S3—O7165.4 (4)
C22—C23—C24—C251.5 (8)C30—C29—S3—N3103.4 (4)
C22—C23—C24—C28177.7 (5)C34—C29—S3—N378.2 (5)
C23—C24—C25—C262.1 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O7i0.85 (2)2.04 (2)2.864 (5)164 (5)
N2—H2N···O2ii0.86 (2)2.15 (3)2.920 (5)150 (5)
N3—H3N···O60.85 (2)2.05 (2)2.891 (5)172 (5)
Symmetry codes: (i) x1, y, z+1; (ii) x, y, z1.

Experimental details

Crystal data
Chemical formulaC14H13NO3S
Mr275.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.6028 (8), 35.100 (3), 10.4886 (8)
β (°) 100.920 (7)
V3)4194.2 (6)
Z12
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.46 × 0.30 × 0.04
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.900, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
15537, 7317, 4440
Rint0.045
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.097, 0.146, 1.29
No. of reflections7317
No. of parameters526
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.33

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O7i0.849 (19)2.04 (2)2.864 (5)164 (5)
N2—H2N···O2ii0.857 (19)2.15 (3)2.920 (5)150 (5)
N3—H3N···O60.846 (19)2.05 (2)2.891 (5)172 (5)
Symmetry codes: (i) x1, y, z+1; (ii) x, y, z1.
 

Acknowledgements

BTG thanks the University Grants Commission, Government of India, New Delhi, for a special grant under the UGC–BSR one-time grant to faculty.

References

First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o1975–o1976.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o2750.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Svoboda, I. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 779–790.  CAS Google Scholar
First citationJyothi, K. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 64–68.  CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUsha, K. M. & Gowda, B. T. (2006). J. Chem. Sci. 118, 351–359.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1327
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds