metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aqua­bis­­[3-(pyridin-4-yl)benzoato-κN]manganese(II)

aDepartment of Environmental and Municipal Engineering, North China University of Water Conservancy and Electric Power, Zhengzhou 450011, People's Republic of China
*Correspondence e-mail: gaoruqin@ncwu.edu.cn

(Received 31 March 2012; accepted 4 April 2012; online 13 April 2012)

In the title compound, [Mn(C12H8NO2)2(H2O)4], the Mn2+ ion lies on a twofold rotation axis and has a distorted N2O4 octa­hedral coordination geometry formed by four water O atoms in the equatorial plane and two apical pyridyl N atoms. A three-dimensional network is formed in the crystal structure by multiple O—H⋯O hydrogen bonds between the coordin­ating water molecules and the free carboxylate groups.

Related literature

For pyrid­yl–multicarboxyl­ate–metal frameworks, see: Huang et al. (2007[Huang, Y., Wu, B., Yuan, D., Xu, Y., Jiang, F. & Hong, M. (2007). Inorg. Chem. 46, 1171-1176.]). For 3-pyridin-4-yl­benzo­ate compounds, see: Wu et al. (2011[Wu, B. L., Wang, R. Y., Zhang, H. Y. & Hou, H. W. (2011). Inorg. Chim. Acta, 375, 2-10.]) For the isotypic Co complex, see: Wang & Li (2011[Wang, H.-R. & Li, G.-T. (2011). Acta Cryst. E67, m1743.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C12H8NO2)2(H2O)4]

  • Mr = 523.39

  • Monoclinic, C 2/c

  • a = 24.935 (3) Å

  • b = 7.1911 (6) Å

  • c = 13.9283 (16) Å

  • β = 112.199 (13)°

  • V = 2312.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.63 mm−1

  • T = 293 K

  • 0.24 × 0.20 × 0.16 mm

Data collection
  • Siemens SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.875, Tmax = 0.913

  • 4456 measured reflections

  • 2035 independent reflections

  • 1673 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.079

  • S = 1.05

  • 2035 reflections

  • 171 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O2i 0.86 (2) 1.91 (2) 2.732 (2) 160 (2)
O3—H3B⋯O1ii 0.80 (2) 1.92 (3) 2.715 (2) 175 (2)
O4—H4A⋯O1iii 0.86 (3) 1.86 (3) 2.728 (2) 176 (2)
O4—H4B⋯O2iv 0.84 (2) 1.92 (2) 2.726 (2) 161 (2)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2]; (ii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1994[Siemens (1994). SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Pyridyl-containing multi-carboxylic acids have been extensively investigated on the construction of various metal-organic frameworks (Huang et al., 2007). Pyridylbenzoate ligands which possess a pyridyl group and a benzoic acid group are typical unsymmetrical spacers. Very recently, a serial of coordination polymers of 3-pyridin-4-ylbenzoic acid (PBC) was synthesized and characterized (Wu, et al., 2011). Herein we report a new Mn(II) complex with (PBC), namely, [Mn(PBC)2(H2O)4] (1) which is isostructural with the complex [Co(PBC)2(H2O)4] (Wang & Li, 2011).

As showed in Fig. 1, (1) is a mononuclear complex with a twofold axis passing through the Mn(II) center along b axis and equally splitting the whole molecule. In (1) the Mn(II) center is ligated by four O of coordinated water molecules in the equatorial plane, and two PBC acting as monodentate ligands occupy the axial positions through their pyridyl nitrogen atoms coordinating to Mn(II). Thus the Mn(II) ion is in a six-coordinated octahedral geometry. The bond distances of Mn—O and Mn—N range from 2.1867 (16) to 2.2661 (16) Å, while the in-plane and axis-transition angles are 173.04 (6) and 175.06 (8) °, respectively, indicating a slight distortion of the octahedral coordination sphere around the Mn(II) center.

Further aggregation of the monomers (1) is formed by the multiple hydrogen-bonding between the coordinated water molecules (as donors) and the uncoordinated carboxylate groups (as acceptors) (Table 1). Hydrogen-bonding system among monomers (1) is rather complicated: each water molecule forms two O—H···O hydrogen bonds with carboxylate groups of neighbouring complex molecules, while every carboxylate group of PBC forms three hydrogen bonds. Consequently, every monomer acts as a novel six-connected supramolecular synthon to connect with six adjacent monomers. Notably, the hydrogen-bonding models of the carboxyl group of PBC play an important role in the formation of crystal structure of (1). For example, as shown in Fig. 2, the O1 atom of the carboxylate group of PBC in a hydrogen-bonding bridging mode ligates to two water molecules from two neighboring monomers, and as a result, monomers (1) are regularly arrayed in ab plane and linked into two-dimensional layers by strong hydrogen bonding (O3···O1, 2.715 (2) Å; O4···O1, 2.728 (2) Å). The layer structure is stabilized by forceful face-to-face π···π stacking interactions between adjacent benzoicate groups and pyridyl groups of PBC with a centroid to centroid distance of 3.62 (1) Å. Intriguingly, the benzoicate group and pyridyl group of PBC distort to 27.6 (0) ° to meet the formation of hydrogen bonding. The layers are further bound together to create the three-dimensional supramolecular architecture by hydrogen bonds between the O2 atom of the carboxylate group of PBC and two water molecules in the adjacent complex molecue. monomer.

Related literature top

For pyridyl–multicarboxylate–metal frameworks, see: Huang et al. (2007). For 3-pyridin-4-ylbenzoicate compounds, see: Wu et al. (2011) For the isotypic Co complex, see: Wang & Li (2011).

Experimental top

The title compound, (1), was prepared according to the following process. A mixture of MnCO3 (0.012 g, 0.1 mmol), PBC (0.040 g, 0.2 mmol) and deionized water (10 ml) was sealed into a 25 ml Teflon-lined stainless autoclave. The autoclave was heated at 160 °C for four days. As cooled to room temperature gradually, pale yellow needle crystals of (1) suitable for X-ray analysis were obtained in 64% yield (based on Mn).

Refinement top

All H atoms were located in a difference map. The coordinates of the water H atoms were refined with U(H) set to 1.2Ueq(O). H atoms bonded to C were refined as riding with C-H = 0.95Å and 1.2Ueq(C).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1994); data reduction: SAINT (Siemens, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of (1) with atom numbering scheme (30% probability ellipsoids for all non-hydrogen atoms). Symmetry code: (i) -x, y, -z + 3/2.
[Figure 2] Fig. 2. View of regular arrangement of monomers (1) directed by strong hydrogen bonding to form two-dimensional layers and face-to-face π···π stacking interactions between adjacent benzoicate and pyridyl groups of PBC. Symmetry codes: (i) -x, y, -z + 3/2; (ii) x - 1/2, y + 1/2, z; (iii) -x + 1/2, y + 1/2, -z + 3/2; (iv) -x + 1/2, y - 1/2, -z + 3/2; (v) x - 1/2, y - 1/2, z.
Tetraaquabis[3-(pyridin-4-yl)benzoato-κN]manganese(II) top
Crystal data top
[Mn(C12H8NO2)2(H2O)4]F(000) = 1084
Mr = 523.39Dx = 1.503 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1769 reflections
a = 24.935 (3) Åθ = 3.0–27.6°
b = 7.1911 (6) ŵ = 0.63 mm1
c = 13.9283 (16) ÅT = 293 K
β = 112.199 (13)°Needle, yellow
V = 2312.4 (4) Å30.24 × 0.20 × 0.16 mm
Z = 4
Data collection top
Siemens SMART CCD
diffractometer
2035 independent reflections
Radiation source: fine-focus sealed tube1673 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scanθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2929
Tmin = 0.875, Tmax = 0.913k = 58
4456 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0389P)2]
where P = (Fo2 + 2Fc2)/3
2035 reflections(Δ/σ)max < 0.001
171 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
[Mn(C12H8NO2)2(H2O)4]V = 2312.4 (4) Å3
Mr = 523.39Z = 4
Monoclinic, C2/cMo Kα radiation
a = 24.935 (3) ŵ = 0.63 mm1
b = 7.1911 (6) ÅT = 293 K
c = 13.9283 (16) Å0.24 × 0.20 × 0.16 mm
β = 112.199 (13)°
Data collection top
Siemens SMART CCD
diffractometer
2035 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1673 reflections with I > 2σ(I)
Tmin = 0.875, Tmax = 0.913Rint = 0.028
4456 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.19 e Å3
2035 reflectionsΔρmin = 0.20 e Å3
171 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.00000.30640 (6)0.75000.03055 (16)
O10.46120 (6)0.2912 (2)0.87784 (13)0.0494 (4)
O20.40494 (7)0.2263 (2)0.96408 (12)0.0557 (5)
O30.03234 (7)0.5054 (2)0.87792 (12)0.0434 (4)
O40.02832 (7)0.0811 (2)0.63641 (12)0.0414 (4)
N10.08789 (7)0.3200 (2)0.73735 (13)0.0343 (4)
C10.41251 (9)0.2746 (3)0.88379 (18)0.0373 (5)
C20.35888 (8)0.3161 (3)0.78874 (16)0.0307 (5)
C30.30485 (8)0.3071 (3)0.79533 (16)0.0304 (4)
H30.30240.27470.85970.036*
C40.25382 (8)0.3442 (3)0.71007 (15)0.0296 (5)
C50.25909 (9)0.3921 (3)0.61674 (16)0.0372 (5)
H50.22530.41820.55740.045*
C60.31246 (9)0.4019 (3)0.60960 (16)0.0422 (6)
H60.31510.43510.54550.051*
C70.36272 (9)0.3639 (3)0.69523 (17)0.0372 (5)
H70.39950.37070.68950.045*
C80.19674 (8)0.3344 (3)0.71925 (15)0.0294 (5)
C90.19034 (9)0.3677 (3)0.81302 (16)0.0368 (5)
H90.22330.39670.87320.044*
C100.13683 (9)0.3587 (3)0.81876 (17)0.0384 (5)
H100.13410.38120.88400.046*
C110.09364 (9)0.2880 (3)0.64725 (17)0.0362 (5)
H110.05980.25970.58840.043*
C120.14589 (9)0.2939 (3)0.63492 (16)0.0364 (5)
H120.14730.27030.56880.044*
H3A0.0499 (10)0.451 (3)0.9365 (18)0.055*
H4A0.0072 (10)0.013 (3)0.6343 (18)0.055*
H3B0.0120 (11)0.588 (3)0.8818 (18)0.055*
H4B0.0448 (10)0.126 (3)0.5770 (19)0.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0213 (3)0.0359 (3)0.0354 (3)0.0000.0119 (2)0.000
O10.0229 (8)0.0438 (9)0.0791 (12)0.0003 (7)0.0165 (8)0.0015 (8)
O20.0358 (9)0.0824 (12)0.0427 (9)0.0011 (8)0.0076 (8)0.0058 (9)
O30.0351 (10)0.0453 (10)0.0458 (10)0.0083 (7)0.0107 (8)0.0068 (8)
O40.0409 (10)0.0388 (9)0.0435 (9)0.0052 (7)0.0147 (8)0.0010 (7)
N10.0263 (9)0.0370 (10)0.0409 (10)0.0025 (8)0.0139 (8)0.0045 (8)
C10.0272 (12)0.0313 (11)0.0493 (13)0.0015 (10)0.0098 (10)0.0065 (10)
C20.0238 (11)0.0273 (10)0.0420 (12)0.0025 (9)0.0136 (9)0.0063 (9)
C30.0271 (11)0.0300 (10)0.0365 (11)0.0015 (9)0.0149 (9)0.0028 (9)
C40.0254 (11)0.0277 (11)0.0388 (11)0.0013 (9)0.0157 (9)0.0013 (9)
C50.0293 (12)0.0440 (12)0.0368 (12)0.0019 (10)0.0110 (10)0.0020 (10)
C60.0404 (14)0.0547 (14)0.0383 (12)0.0023 (12)0.0227 (11)0.0028 (11)
C70.0294 (12)0.0384 (12)0.0508 (13)0.0050 (10)0.0229 (11)0.0056 (10)
C80.0248 (11)0.0276 (11)0.0373 (11)0.0021 (9)0.0134 (9)0.0050 (9)
C90.0255 (11)0.0453 (12)0.0387 (12)0.0006 (10)0.0110 (10)0.0005 (10)
C100.0287 (12)0.0524 (13)0.0366 (11)0.0023 (10)0.0152 (10)0.0000 (10)
C110.0241 (11)0.0423 (12)0.0398 (12)0.0009 (10)0.0094 (9)0.0006 (10)
C120.0295 (12)0.0443 (12)0.0377 (11)0.0001 (10)0.0154 (10)0.0011 (10)
Geometric parameters (Å, º) top
Mn1—O42.1867 (16)C3—C41.400 (3)
Mn1—O4i2.1867 (16)C3—H30.9500
Mn1—O32.1878 (16)C4—C51.398 (3)
Mn1—O3i2.1878 (16)C4—C81.478 (3)
Mn1—N12.2661 (16)C5—C61.373 (3)
Mn1—N1i2.2661 (16)C5—H50.9500
O1—C11.253 (2)C6—C71.392 (3)
O2—C11.252 (3)C6—H60.9500
O3—H3A0.86 (2)C7—H70.9500
O3—H3B0.80 (2)C8—C91.395 (3)
O4—H4A0.86 (3)C8—C121.395 (3)
O4—H4B0.84 (2)C9—C101.368 (3)
N1—C111.336 (3)C9—H90.9500
N1—C101.344 (3)C10—H100.9500
C1—C21.514 (3)C11—C121.378 (3)
C2—C71.385 (3)C11—H110.9500
C2—C31.386 (3)C12—H120.9500
O4—Mn1—O4i84.40 (9)C2—C3—C4121.98 (18)
O4—Mn1—O3173.04 (6)C2—C3—H3119.0
O4i—Mn1—O388.64 (6)C4—C3—H3119.0
O4—Mn1—O3i88.64 (6)C5—C4—C3117.47 (18)
O4i—Mn1—O3i173.04 (6)C5—C4—C8121.60 (18)
O3—Mn1—O3i98.31 (10)C3—C4—C8120.92 (18)
O4—Mn1—N191.89 (6)C6—C5—C4120.93 (19)
O4i—Mn1—N191.76 (6)C6—C5—H5119.5
O3—Mn1—N188.02 (6)C4—C5—H5119.5
O3i—Mn1—N188.75 (6)C5—C6—C7120.74 (19)
O4—Mn1—N1i91.76 (6)C5—C6—H6119.6
O4i—Mn1—N1i91.89 (6)C7—C6—H6119.6
O3—Mn1—N1i88.75 (6)C2—C7—C6119.66 (19)
O3i—Mn1—N1i88.02 (6)C2—C7—H7120.2
N1—Mn1—N1i175.06 (8)C6—C7—H7120.2
Mn1—O3—H3A112.0 (16)C9—C8—C12115.78 (18)
Mn1—O3—H3B119.7 (18)C9—C8—C4121.83 (18)
H3A—O3—H3B113 (2)C12—C8—C4122.39 (18)
Mn1—O4—H4A124.7 (16)C10—C9—C8120.39 (19)
Mn1—O4—H4B109.7 (17)C10—C9—H9119.8
H4A—O4—H4B110 (2)C8—C9—H9119.8
C11—N1—C10116.28 (18)N1—C10—C9123.71 (19)
C11—N1—Mn1121.06 (14)N1—C10—H10118.1
C10—N1—Mn1122.66 (14)C9—C10—H10118.1
O2—C1—O1124.2 (2)N1—C11—C12123.65 (19)
O2—C1—C2117.03 (19)N1—C11—H11118.2
O1—C1—C2118.8 (2)C12—C11—H11118.2
C7—C2—C3119.22 (19)C11—C12—C8120.20 (19)
C7—C2—C1121.28 (19)C11—C12—H12119.9
C3—C2—C1119.50 (18)C8—C12—H12119.9
Symmetry code: (i) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O2ii0.86 (2)1.91 (2)2.732 (2)160 (2)
O3—H3B···O1iii0.80 (2)1.92 (3)2.715 (2)175 (2)
O4—H4A···O1iv0.86 (3)1.86 (3)2.728 (2)176 (2)
O4—H4B···O2v0.84 (2)1.92 (2)2.726 (2)161 (2)
Symmetry codes: (ii) x+1/2, y+1/2, z+2; (iii) x1/2, y+1/2, z; (iv) x+1/2, y1/2, z+3/2; (v) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Mn(C12H8NO2)2(H2O)4]
Mr523.39
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)24.935 (3), 7.1911 (6), 13.9283 (16)
β (°) 112.199 (13)
V3)2312.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.63
Crystal size (mm)0.24 × 0.20 × 0.16
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.875, 0.913
No. of measured, independent and
observed [I > 2σ(I)] reflections
4456, 2035, 1673
Rint0.028
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.079, 1.05
No. of reflections2035
No. of parameters171
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.20

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1994), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O2i0.86 (2)1.91 (2)2.732 (2)160 (2)
O3—H3B···O1ii0.80 (2)1.92 (3)2.715 (2)175 (2)
O4—H4A···O1iii0.86 (3)1.86 (3)2.728 (2)176 (2)
O4—H4B···O2iv0.84 (2)1.92 (2)2.726 (2)161 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+2; (ii) x1/2, y+1/2, z; (iii) x+1/2, y1/2, z+3/2; (iv) x1/2, y+1/2, z1/2.
 

Acknowledgements

This work was supported by the Natural Science Foundation of China.

References

First citationHuang, Y., Wu, B., Yuan, D., Xu, Y., Jiang, F. & Hong, M. (2007). Inorg. Chem. 46, 1171–1176.  Web of Science CSD CrossRef PubMed CAS
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSiemens (1994). SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
First citationSiemens (1996). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
First citationWang, H.-R. & Li, G.-T. (2011). Acta Cryst. E67, m1743.  Web of Science CSD CrossRef IUCr Journals
First citationWu, B. L., Wang, R. Y., Zhang, H. Y. & Hou, H. W. (2011). Inorg. Chim. Acta, 375, 2–10.  Web of Science CSD CrossRef CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds