metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[bis­­(3-acetyl­pyridine-κN)cadmium]-di-μ-seleno­cyanato-κ2N:Se;κ2Se:N]

aInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth-Strasse 2, 24118 Kiel, Germany
*Correspondence e-mail: jwerner@ac.uni-kiel.de

(Received 23 April 2012; accepted 24 April 2012; online 28 April 2012)

In the crystal structure of the title compound, [Cd(NCSe)2(C7H7NO)2]n, the Cd2+ cation is coordinated by two 3-acetyl­pyridine ligands and four μ-1,3-bridging seleno­cyanate anions within a slightly distorted CdN4Se2 octa­hedron. The asymmetric units consists of one Cd2+ cation, which is situated on a center of inversion, as well as one seleno­cyanate anion and one 3-acetyl­pyridine ligand in general positions. The metal cations are μ-1,3-bridged via the seleno­cyanate anions into chains along the a axis.

Related literature

For general background information including details on thermal decomposition reactions and magnetic properties of the precursor and μ-1,3 bridging compounds, see: Näther & Greve (2003[Näther, C. & Greve, J. (2003). J. Solid State Chem., 176, 259-265.]); Boeckmann & Näther (2010[Boeckmann, J. & Näther, C. (2010). Dalton Trans. 39, 11019-11026.], 2011[Boeckmann, J. & Näther, C. (2011). Chem. Commun. 47, 7104-7106.]); Wöhlert et al. (2011[Wöhlert, S., Boeckmann, J., Wriedt, M. & Näther, C. (2011). Angew. Chem. Int. Ed. 50, 6920-6923.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(NCSe)2(C7H7NO)2]

  • Mr = 564.63

  • Monoclinic, P 21 /c

  • a = 5.9447 (3) Å

  • b = 18.7233 (10) Å

  • c = 8.7548 (5) Å

  • β = 94.020 (4)°

  • V = 972.05 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.88 mm−1

  • T = 293 K

  • 0.16 × 0.07 × 0.02 mm

Data collection
  • Stoe IPDS-2 diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.667, Tmax = 0.902

  • 17180 measured reflections

  • 2458 independent reflections

  • 2256 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.061

  • S = 1.13

  • 2458 reflections

  • 117 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.47 e Å−3

Data collection: X-AREA (Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 2011[Brandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010)[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.].

Supporting information


Comment top

The title compound was prepared within a project on the synthesis and the magnetic properties of paramagnetic transition metal thio- and selenocyanato coordination polymers in which the metal cations are µ-1,3 bridged by the anionic ligands (Näther & Greve, 2003, Boeckmann & Näther, 2010, 2011 and Wöhlert et al., 2011). In this context, also the corresponding compounds based on diamagnetic cadmium are of interest, because they are structural analogs of the paramagnetic compounds. In the course of systematic investigations crystals of the title compound were prepared and characterized by single crystal X-ray diffraction.

In the crystal structure of the title compound, the cadmium(II) cations each are coordinated by two nitrogen atoms of two terminal N-bonded 3-acetylpyridine and two nitrogen and two selenium atoms of µ-1,3 bridging selenocyanato anions (Fig. 1). The coordination polyhedron of the Cd cations can be described as a slightly distorted octahedra with the Cd cation located on a centre of inversion.

The Cd2+ cations are µ-1,3 bridged by selenocyanato anions into chains, which elongate in the direction of the crystallographic a axis (Fig. 2). The Cd···Cd intrachain distance amounts to 5.9447 (3) Å and the shortest interchain Cd···Cd distance amounts to 8.7548 (5) Å. It must be noted that according to a search in the CCDC database (ConQuest Ver.1.14.2012) (Allen, 2002) coordination compounds based on metal selenocyanates and 3-acetylpyridine are unknown.

Related literature top

For general background information including details on thermal decomposition reactions and magnetic properties of the precurser and µ-1,3 bridging compounds, see: Näther & Greve (2003); Boeckmann & Näther (2010, 2011); Wöhlert et al. (2011). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

Potassium selenocyanate and 3-acetylpyridine were purchased from Alfa Aesar, Cd(NO3)2.4H2O were obtained from Merck. The title compound was prepared by the reaction of 77.1 mg Cd(NO3)2.4H2O (0.25 mmol), 64.8 mg KSeCN (0.45 mmol) and 109 µL 3-acetylpyridine (1.00 mmol) in 1.5 mL H2O at RT in a closed 3 ml snap cap vial. After several days colourless needles of the title compound were obtained.

Refinement top

H atoms were positioned with idealized geometry (methyl H atoms allowed to rotate but not to tip) and were refined isotropically with Uiso(H) = 1.2 Ueq(C) for aromatic H atoms (1.5 for methyl H atoms) using a riding model with C—H = 0.93 Å (aromatic) and with C—H = 0.96 Å (methyl).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA (Stoe & Cie, 2008); data reduction: X-AREA (Stoe & Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008) and DIAMOND (Brandenburg, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. : Crystal structure of the title compound with labelling and displacement ellipsoids drawn at the 50% probability level. Symmetry code: i = -x,-y+1,-z, ii = x-1, y, z, iii = -x+1, -y+1, -z
[Figure 2] Fig. 2. : Crystal structure of the title compound with view of the chains that elongate in the direction of the crystallographic a axis.
catena-Poly[[bis(3-acetylpyridine-κN)cadmium]-di-µ- selenocyanato-κ2N:Se;κ2Se:N] top
Crystal data top
[Cd(NCSe)2(C7H7NO)2]F(000) = 540
Mr = 564.63Dx = 1.929 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 17180 reflections
a = 5.9447 (3) Åθ = 2.2–28.6°
b = 18.7233 (10) ŵ = 4.88 mm1
c = 8.7548 (5) ÅT = 293 K
β = 94.020 (4)°Needle, colourless
V = 972.05 (9) Å30.16 × 0.07 × 0.02 mm
Z = 2
Data collection top
Stoe IPDS-2
diffractometer
2458 independent reflections
Radiation source: fine-focus sealed tube2256 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ω scansθmax = 28.6°, θmin = 2.2°
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
h = 77
Tmin = 0.667, Tmax = 0.902k = 2525
17180 measured reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.061 w = 1/[σ2(Fo2) + (0.0164P)2 + 1.1235P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max = 0.001
2458 reflectionsΔρmax = 0.47 e Å3
117 parametersΔρmin = 0.47 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0074 (5)
Crystal data top
[Cd(NCSe)2(C7H7NO)2]V = 972.05 (9) Å3
Mr = 564.63Z = 2
Monoclinic, P21/cMo Kα radiation
a = 5.9447 (3) ŵ = 4.88 mm1
b = 18.7233 (10) ÅT = 293 K
c = 8.7548 (5) Å0.16 × 0.07 × 0.02 mm
β = 94.020 (4)°
Data collection top
Stoe IPDS-2
diffractometer
2458 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
2256 reflections with I > 2σ(I)
Tmin = 0.667, Tmax = 0.902Rint = 0.045
17180 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.061H-atom parameters constrained
S = 1.13Δρmax = 0.47 e Å3
2458 reflectionsΔρmin = 0.47 e Å3
117 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.00000.50000.00000.03766 (9)
N10.3333 (4)0.44388 (15)0.0928 (3)0.0478 (6)
C10.5139 (4)0.43756 (15)0.1480 (3)0.0377 (6)
Se10.79466 (5)0.429324 (18)0.23721 (4)0.04545 (11)
N110.0930 (4)0.60142 (13)0.1566 (3)0.0422 (5)
O110.5790 (6)0.72219 (18)0.5227 (4)0.1005 (13)
C110.2729 (5)0.60423 (17)0.2585 (3)0.0430 (6)
H110.36040.56330.27360.052*
C120.3348 (5)0.66449 (16)0.3420 (4)0.0442 (7)
C130.2032 (6)0.72501 (18)0.3206 (5)0.0592 (9)
H130.24020.76660.37460.071*
C140.0168 (7)0.72283 (19)0.2183 (5)0.0675 (11)
H140.07570.76260.20340.081*
C150.0302 (6)0.66083 (17)0.1387 (4)0.0533 (8)
H150.15480.66020.06830.064*
C160.5372 (6)0.6672 (2)0.4547 (4)0.0570 (9)
C170.6815 (6)0.6032 (2)0.4794 (4)0.0632 (10)
H17A0.80700.61440.55030.095*
H17B0.73600.58840.38370.095*
H17C0.59510.56530.52020.095*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02405 (13)0.04299 (16)0.04447 (17)0.00160 (10)0.00794 (10)0.00268 (12)
N10.0285 (11)0.0554 (15)0.0583 (17)0.0002 (10)0.0059 (11)0.0068 (12)
C10.0305 (13)0.0398 (14)0.0425 (15)0.0013 (10)0.0002 (11)0.0028 (11)
Se10.02761 (14)0.0576 (2)0.04962 (19)0.00067 (12)0.00791 (11)0.01084 (14)
N110.0365 (12)0.0447 (13)0.0439 (14)0.0023 (10)0.0074 (10)0.0003 (10)
O110.088 (2)0.082 (2)0.123 (3)0.0018 (18)0.053 (2)0.043 (2)
C110.0372 (14)0.0447 (15)0.0457 (16)0.0003 (12)0.0075 (12)0.0022 (12)
C120.0418 (15)0.0442 (15)0.0453 (16)0.0047 (12)0.0064 (12)0.0030 (12)
C130.067 (2)0.0412 (17)0.066 (2)0.0009 (15)0.0177 (18)0.0074 (15)
C140.074 (2)0.0444 (18)0.079 (3)0.0125 (17)0.029 (2)0.0031 (17)
C150.0510 (18)0.0498 (18)0.056 (2)0.0003 (14)0.0182 (15)0.0033 (14)
C160.0466 (18)0.061 (2)0.062 (2)0.0043 (15)0.0136 (15)0.0132 (16)
C170.0481 (19)0.080 (3)0.058 (2)0.0041 (18)0.0163 (16)0.0063 (19)
Geometric parameters (Å, º) top
Cd1—N1i2.337 (2)C11—H110.9300
Cd1—N12.337 (2)C12—C131.382 (5)
Cd1—N112.384 (2)C12—C161.502 (4)
Cd1—N11i2.384 (2)C13—C141.376 (5)
Cd1—Se1ii2.8124 (3)C13—H130.9300
Cd1—Se1iii2.8124 (3)C14—C151.373 (5)
N1—C11.152 (4)C14—H140.9300
C1—Se11.799 (3)C15—H150.9300
Se1—Cd1iv2.8124 (3)C16—C171.481 (5)
N11—C151.335 (4)C17—H17A0.9600
N11—C111.345 (3)C17—H17B0.9600
O11—C161.206 (4)C17—H17C0.9600
C11—C121.380 (4)
N1i—Cd1—N1180.00 (12)C12—C11—H11118.2
N1i—Cd1—N1189.92 (9)C11—C12—C13118.1 (3)
N1—Cd1—N1190.08 (9)C11—C12—C16123.2 (3)
N1i—Cd1—N11i90.08 (9)C13—C12—C16118.7 (3)
N1—Cd1—N11i89.92 (9)C14—C13—C12119.1 (3)
N11—Cd1—N11i180.0C14—C13—H13120.5
N1i—Cd1—Se1ii86.16 (7)C12—C13—H13120.5
N1—Cd1—Se1ii93.84 (7)C15—C14—C13118.8 (3)
N11—Cd1—Se1ii87.41 (6)C15—C14—H14120.6
N11i—Cd1—Se1ii92.59 (6)C13—C14—H14120.6
N1i—Cd1—Se1iii93.84 (7)N11—C15—C14123.7 (3)
N1—Cd1—Se1iii86.16 (7)N11—C15—H15118.2
N11—Cd1—Se1iii92.59 (6)C14—C15—H15118.2
N11i—Cd1—Se1iii87.41 (6)O11—C16—C17121.4 (3)
Se1ii—Cd1—Se1iii180.0O11—C16—C12118.8 (3)
C1—N1—Cd1159.1 (3)C17—C16—C12119.8 (3)
N1—C1—Se1178.7 (3)C16—C17—H17A109.5
C1—Se1—Cd1iv94.39 (9)C16—C17—H17B109.5
C15—N11—C11116.7 (3)H17A—C17—H17B109.5
C15—N11—Cd1119.5 (2)C16—C17—H17C109.5
C11—N11—Cd1123.7 (2)H17A—C17—H17C109.5
N11—C11—C12123.6 (3)H17B—C17—H17C109.5
N11—C11—H11118.2
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) x1, y, z; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cd(NCSe)2(C7H7NO)2]
Mr564.63
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)5.9447 (3), 18.7233 (10), 8.7548 (5)
β (°) 94.020 (4)
V3)972.05 (9)
Z2
Radiation typeMo Kα
µ (mm1)4.88
Crystal size (mm)0.16 × 0.07 × 0.02
Data collection
DiffractometerStoe IPDS2
diffractometer
Absorption correctionNumerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
Tmin, Tmax0.667, 0.902
No. of measured, independent and
observed [I > 2σ(I)] reflections
17180, 2458, 2256
Rint0.045
(sin θ/λ)max1)0.674
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.061, 1.13
No. of reflections2458
No. of parameters117
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.47

Computer programs: X-AREA (Stoe & Cie, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 2008) and DIAMOND (Brandenburg, 2011), publCIF (Westrip, 2010).

 

Acknowledgements

We gratefully acknowledge financial support by the DFG (project No. NA 720/3–1) and the State of Schleswig–Holstein. We thank Professor Dr Wolfgang Bensch for access to his experimental facilities.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBoeckmann, J. & Näther, C. (2010). Dalton Trans. 39, 11019-11026.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBoeckmann, J. & Näther, C. (2011). Chem. Commun. 47, 7104–7106.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationNäther, C. & Greve, J. (2003). J. Solid State Chem., 176, 259–265.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWöhlert, S., Boeckmann, J., Wriedt, M. & Näther, C. (2011). Angew. Chem. Int. Ed. 50, 6920-6923.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds