organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1519-o1520

(2E)-2-[(2-Hy­dr­oxy-4-meth­­oxy­phen­yl)(phen­yl)methyl­­idene]-N-phenyl­hydrazinecarboxamide di­methyl­formamide monosolvate

aDepartment of Applied Chemistry, Cochin University of Science and Technology, Kochi 682 022, India, and bDepartment of Chemistry, Faculty of Science, Eastern University, Sri Lanka, Chenkalady, Sri Lanka
*Correspondence e-mail: eesans@yahoo.com

(Received 8 March 2012; accepted 19 April 2012; online 25 April 2012)

The title compound, C21H19N3O3·C3H7NO, adopts an E conformation with respect to the azomethine bond and crystallizes in the amide form. The dihedral angle between the rings lined to the C=N bond is 88.60 (12)°. The dimethyl­formamide solvent mol­ecule is disordered over two orientations with site occupancies of 0.684 (3) and 0.316 (3). The two N atoms of the hydrazinecarboxamide group are involved in inter­molecular N—H⋯O hydrogen bonds in which the dimethyl­formamide O atom acts as acceptor. The structure also features ππ inter­actions, with a centroid–centroid distance of 3.6561 (13) Å. Classical and non-classical intra­molecular O—H⋯N and C—H⋯O hydrogen bonds are also present.

Related literature

For applications of hydrazinecarboxamide and its derivatives, see: Afrasiabi et al. (2005[Afrasiabi, Z., Sinn, E., Lin, W., Ma, Y., Campana, C. & Padhye, S. (2005). J. Inorg. Biochem. 99, 1526-1531.]); Alam et al. (2010[Alam, O., Mullick, P., Verma, S. P., Gilani, S. J., Khan, S. A., Siddiqui, N. & Ahsan, W. (2010). Eur. J. Med. Chem. 45, 2467-2472.]). For related structures, see: Siji et al. (2010[Siji, V. L., Sudarsanakumar, M. R. & Suma, S. (2010). Polyhedron, 29, 2035-2040.]); Reena & Kurup (2010[Reena, T. A. & Kurup, M. R. P. (2010). J. Chem. Crystallogr. 40, 927-932.]); Sithambaresan & Kurup (2011[Sithambaresan, M. & Kurup, M. R. P. (2011). Acta Cryst. E67, o2972.]). For standard bond-length data, see: March (1992[March, J. (1992). Advanced Organic Chemistry, Reactions, Mechanisms and Structure, 4th ed. New York: Wiley.]); Kala et al. (2007[Kala, U. L., Suma, S., Kurup, M. R. P., Suja, K. & Rohith, P. J. (2007). Polyhedron, 26, 1427-1435.]). For the synthesis, see: Sreekanth et al. (2004[Sreekanth, A., Kala, U. L., Nayar, C. R. & Kurup, M. R. P. (2004). Polyhedron, 23, 41-47.]).

[Scheme 1]

Experimental

Crystal data
  • C21H19N3O3·C3H7NO

  • Mr = 434.49

  • Monoclinic, P 21 /c

  • a = 13.1155 (7) Å

  • b = 16.9619 (11) Å

  • c = 10.7399 (5) Å

  • β = 105.509 (3)°

  • V = 2302.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.35 × 0.30 × 0.25 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SADABS, APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.970, Tmax = 0.978

  • 17400 measured reflections

  • 4061 independent reflections

  • 2875 reflections with I > 2σ(I)

  • Rint = 0.069

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.158

  • S = 1.02

  • 4061 reflections

  • 311 parameters

  • 10 restraints

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.89 1.78 2.5655 (18) 147
N2—H2′⋯O4A 0.87 2.19 2.941 (12) 145
N2—H2′⋯O4B 0.87 2.22 2.96 (3) 143
N3—H3′⋯O4A 0.85 2.00 2.830 (7) 165
N3—H3′⋯O4B 0.85 2.07 2.882 (18) 161
C24A—H24C⋯O3i 0.96 2.62 3.400 (4) 139
C23B—H23E⋯O3i 0.96 2.31 3.157 (13) 147
C23B—H23F⋯O1i 0.96 2.59 3.473 (13) 153
Symmetry code: (i) x, y, z-1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). SADABS, APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). SADABS, APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). SADABS, APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Semicarbazones are compounds with versatile structural features (Siji et al., 2010) and exhibit a wide range of bioactivities including anticancer (Afrasiabi et al., 2005) and antiviral properties. Some of them are found to exhibit anticonvulsant activity with less neurotoxicity (Alam et al., 2010).

The compound crystallizes in monoclinic P21/c space group. The molecule exists in the E configuration with respect to C7=N1 bond (Sithambaresan and Kurup, 2011) which is confirmed by the torsion angle of -179.56 (15)° of N2—N1—C7—C6 moiety (Fig. 1). The torsion angle value of -3.9 (3)° corresponding to N1—N2—C8—O3 moiety supports the cis configuration of the O3 atom with respect to the nitrogen atom N1. Also the torsion angles of -1.6 (3)° and -1.2 (3)° for O1—C1—C6—C7 and C1—C6—C7—N1 moieties respectively confirm the cis configuration of phenolic oxygen O1 and azomethine nitrogen N1 and it favors intramolecular hydrogen bonding between N1 and H attached to O1.

The C7–N1 bond distance [1.290 (2) Å] is in conformity with a formal C=N bond [1.28 Å] (March, 1992) confirming the azomethine bond formation. The existence of semicarbazone in the amido form in the solid state is confirmed by the observed bond length of 1.210 (2) Å for C8–O3 bond which is identical to a formal C=O bond length [1.21 Å] (Kala et al., 2007). The N1–N2 and N2–C8 bond distances of 1.364 (2) Å and 1.377 (2) Å respectively are greater than that for a double bond and less than that for a single bond which indicate appreciable delocalization of π-electron density over the semicarbazone chain (Reena & Kurup, 2010). Rings Cg1ii (comprising atoms C1—C6) and Cg2iii (comprising atoms C9—C14) make a dihedral angle of 14.43 (12)° with each other while rings Cg1ii and Cg3iv (comprising atoms C15—C20) are twisted away from each other by a dihedral angle of 88.60 (12)° [symmetry codes: (ii)1 - x,1 - y,1 - z; (iii)1 + x,3/2 - y,1/2 + z; (iv)x,3/2 - y,1/2 + z]. The dimethylformamide solvent molecule is disordered with site occupancies of 0.684 (3) and 0.316 (3).

Fig. 2 shows the packing diagram of the title compound along c axis. The nitrogen atoms, N2 and N3 of the hydrazine carboxamide moiety form classical intermolecular hydrogen bonds N2–H2'···O4i and N3–H3'···O4i respectively in which oxygen atom of the solvent dimethylformamide functions as acceptor and two non classical intramolecular hydrogen bonding interactions also found in the molecule and the DMFsolvent (Table 1). A prominent π···π interaction is observed with a centroid-centroid distance of 3.6561 (13) Å between the Cg1ii rings of two molecules. Other short ring interactions are weak as they correspond to a distance greater than 4 Å. Two types of C–H···π interactions with H···π distances of 3.3114 and 3.3197 Å are also present in the crystal system.

Related literature top

For applications of hydrazinecarboxamide and its derivatives, see: Afrasiabi et al. (2005); Alam et al. (2010). For related structures, see: Siji et al. (2010); Reena & Kurup (2010); Sithambaresan & Kurup (2011). For standard bond-length data, see: March (1992); Kala et al. (2007). For the synthesis, see: Sreekanth et al. (2004).

Experimental top

The title compound was prepared by adapting a reported procedure (Sreekanth et al., 2004). To a warm methanolic solution of N-phenylsemicarbazide (0.302 g, 2 mmol), a methanolic solution of 2-hydroxy-4-methoxybenzophenone (0.456 g, 2 mmol) was added and the resulting solution was refluxed for 2 h after adding a drop of conc. HCl. On cooling the solution colorless crystals were separated out. Single crystals suitable for X-ray diffraction studies were obtained by slow evaporation of its solution in a 1:1 mixture of methanol and DMF.

Refinement top

All H atoms on C were placed in calculated positions, guided by difference maps, with C–H bond distances 0.93–0.97 Å. H atoms were assigned as Uiso=1.2Ueq (1.5 for Me). N2–H2', N3–H3' and O1–H1 H atoms were located from difference maps and restrained using DFIX instructions. All the C, N and O atoms of the dimethylformamide molecule are disordered over two sites A and B with relative occupancies of 0.637 (4) and 0.363 (4) respectively..

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the disordered DMF solvent molecule.
[Figure 2] Fig. 2. A view of the unit cell along c axis.
(2E)-2-[(2-Hydroxy-4-methoxyphenyl)(phenyl)methylidene]-N- phenylhydrazinecarboxamide dimethylformamide monosolvate top
Crystal data top
C21H19N3O3·C3H7NOF(000) = 920
Mr = 434.49Dx = 1.254 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5896 reflections
a = 13.1155 (7) Åθ = 2.4–28.2°
b = 16.9619 (11) ŵ = 0.09 mm1
c = 10.7399 (5) ÅT = 296 K
β = 105.509 (3)°Block, colourless
V = 2302.2 (2) Å30.35 × 0.30 × 0.25 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4061 independent reflections
Radiation source: fine-focus sealed tube2875 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
ω and ϕ scanθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1515
Tmin = 0.970, Tmax = 0.978k = 1920
17400 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0824P)2 + 0.2581P]
where P = (Fo2 + 2Fc2)/3
4061 reflections(Δ/σ)max < 0.001
311 parametersΔρmax = 0.18 e Å3
10 restraintsΔρmin = 0.19 e Å3
Crystal data top
C21H19N3O3·C3H7NOV = 2302.2 (2) Å3
Mr = 434.49Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.1155 (7) ŵ = 0.09 mm1
b = 16.9619 (11) ÅT = 296 K
c = 10.7399 (5) Å0.35 × 0.30 × 0.25 mm
β = 105.509 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4061 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2875 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.978Rint = 0.069
17400 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05210 restraints
wR(F2) = 0.158H-atom parameters constrained
S = 1.02Δρmax = 0.18 e Å3
4061 reflectionsΔρmin = 0.19 e Å3
311 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.84998 (10)0.61778 (8)1.04160 (12)0.0666 (4)
H10.79740.61910.97000.100*
O21.21655 (11)0.59166 (9)1.18461 (13)0.0740 (4)
O30.57307 (11)0.63119 (10)0.84928 (12)0.0826 (5)
N10.75944 (12)0.61397 (9)0.79832 (14)0.0588 (4)
N20.66741 (12)0.61639 (10)0.70205 (14)0.0655 (5)
H2'0.67000.61870.62220.079*
N30.48988 (12)0.63420 (11)0.63350 (14)0.0663 (5)
H3'0.50400.63040.56100.080*
C10.94202 (14)0.60977 (10)1.00767 (16)0.0520 (4)
C21.03416 (15)0.60499 (11)1.10594 (16)0.0581 (5)
H21.03110.60741.19140.070*
C31.13084 (14)0.59664 (11)1.07944 (17)0.0559 (4)
C41.13607 (15)0.59357 (12)0.95264 (17)0.0609 (5)
H41.20090.58810.93380.073*
C51.04372 (14)0.59881 (11)0.85454 (17)0.0575 (5)
H51.04790.59710.76950.069*
C60.94474 (13)0.60652 (10)0.87711 (15)0.0496 (4)
C70.84867 (14)0.60951 (10)0.76958 (16)0.0509 (4)
C80.57499 (15)0.62767 (12)0.73737 (17)0.0590 (5)
C90.38600 (14)0.65561 (11)0.63201 (16)0.0561 (5)
C100.35631 (16)0.68054 (13)0.73941 (19)0.0705 (6)
H100.40590.68340.81940.085*
C110.25230 (18)0.70127 (14)0.7270 (2)0.0804 (6)
H110.23240.71760.79980.097*
C120.17775 (17)0.69846 (14)0.6102 (2)0.0794 (6)
H120.10800.71280.60360.095*
C130.20729 (17)0.67438 (15)0.5040 (2)0.0811 (6)
H130.15760.67240.42400.097*
C140.31036 (16)0.65306 (14)0.51496 (19)0.0722 (6)
H140.32950.63650.44180.087*
C150.85612 (14)0.60722 (11)0.63283 (16)0.0527 (4)
C160.85331 (16)0.53656 (13)0.57021 (17)0.0710 (6)
H160.84570.48990.61240.085*
C170.86165 (18)0.53419 (16)0.4453 (2)0.0847 (7)
H170.86020.48610.40330.102*
C180.87206 (17)0.60280 (18)0.3829 (2)0.0831 (7)
H180.87800.60140.29860.100*
C190.87374 (19)0.67305 (17)0.4443 (2)0.0896 (7)
H190.88030.71960.40120.108*
C200.86589 (17)0.67617 (14)0.56947 (19)0.0748 (6)
H200.86720.72450.61090.090*
C211.31791 (17)0.58519 (18)1.1620 (2)0.0898 (7)
H21A1.32030.53881.11160.135*
H21B1.37080.58151.24310.135*
H21C1.33120.63091.11600.135*
O4A0.5772 (14)0.6210 (6)0.4203 (10)0.100 (2)0.684 (3)
N4A0.6036 (4)0.59304 (18)0.2263 (4)0.0615 (10)0.684 (3)
C22A0.5958 (2)0.5725 (2)0.3396 (3)0.0780 (9)0.684 (3)
H22A0.60430.51960.36270.094*0.684 (3)
C23A0.6011 (5)0.6733 (3)0.1866 (5)0.1115 (15)0.684 (3)
H23A0.57970.70590.24810.167*0.684 (3)
H23B0.55170.67910.10320.167*0.684 (3)
H23C0.67030.68880.18180.167*0.684 (3)
C24A0.6284 (3)0.5357 (2)0.1380 (4)0.0957 (11)0.684 (3)
H24A0.61880.48340.16720.144*0.684 (3)
H24B0.70050.54230.13560.144*0.684 (3)
H24C0.58220.54350.05300.144*0.684 (3)
O4B0.576 (3)0.5968 (15)0.421 (2)0.100 (2)0.316 (3)
N4B0.6081 (12)0.6247 (6)0.2322 (10)0.0615 (10)0.316 (3)
C22B0.5949 (5)0.6475 (5)0.3420 (6)0.0780 (9)0.316 (3)
H22B0.59900.70080.36330.094*0.316 (3)
C23B0.6333 (13)0.6804 (8)0.1434 (12)0.1115 (15)0.316 (3)
H23D0.62410.73310.17120.167*0.316 (3)
H23E0.58720.67200.05860.167*0.316 (3)
H23F0.70540.67310.14130.167*0.316 (3)
C24B0.5982 (9)0.5433 (6)0.1957 (9)0.0957 (11)0.316 (3)
H24D0.56070.51570.24780.144*0.316 (3)
H24E0.66730.52070.20850.144*0.316 (3)
H24F0.55990.53900.10620.144*0.316 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0586 (8)0.0987 (11)0.0499 (7)0.0052 (6)0.0275 (6)0.0003 (6)
O20.0609 (8)0.1036 (11)0.0558 (8)0.0070 (7)0.0124 (6)0.0008 (7)
O30.0688 (9)0.1380 (14)0.0465 (8)0.0131 (8)0.0250 (6)0.0061 (7)
N10.0527 (9)0.0780 (11)0.0483 (8)0.0002 (7)0.0181 (7)0.0024 (7)
N20.0509 (9)0.1028 (13)0.0464 (8)0.0032 (8)0.0191 (7)0.0020 (7)
N30.0544 (9)0.1032 (13)0.0464 (8)0.0042 (8)0.0224 (7)0.0056 (8)
C10.0570 (10)0.0564 (11)0.0489 (9)0.0002 (8)0.0249 (8)0.0001 (7)
C20.0648 (12)0.0707 (12)0.0426 (9)0.0019 (9)0.0208 (8)0.0010 (8)
C30.0565 (11)0.0599 (11)0.0506 (10)0.0009 (8)0.0132 (8)0.0013 (8)
C40.0533 (11)0.0763 (13)0.0577 (11)0.0004 (9)0.0230 (9)0.0020 (9)
C50.0578 (11)0.0731 (13)0.0466 (9)0.0014 (9)0.0224 (8)0.0018 (8)
C60.0557 (10)0.0525 (10)0.0446 (9)0.0014 (8)0.0204 (8)0.0013 (7)
C70.0552 (10)0.0554 (10)0.0468 (9)0.0004 (8)0.0216 (8)0.0019 (7)
C80.0562 (11)0.0774 (13)0.0483 (10)0.0011 (9)0.0224 (8)0.0005 (8)
C90.0541 (10)0.0655 (12)0.0545 (10)0.0016 (8)0.0245 (8)0.0001 (8)
C100.0660 (12)0.0894 (15)0.0636 (12)0.0022 (10)0.0301 (10)0.0071 (10)
C110.0787 (15)0.0872 (16)0.0902 (15)0.0045 (12)0.0481 (13)0.0083 (12)
C120.0601 (13)0.0776 (15)0.1070 (18)0.0068 (11)0.0335 (13)0.0089 (12)
C130.0610 (13)0.0981 (18)0.0811 (14)0.0040 (11)0.0138 (11)0.0091 (12)
C140.0657 (13)0.0950 (16)0.0576 (11)0.0047 (11)0.0197 (10)0.0009 (10)
C150.0483 (9)0.0676 (12)0.0453 (9)0.0019 (8)0.0180 (7)0.0003 (8)
C160.0888 (15)0.0769 (14)0.0508 (10)0.0136 (11)0.0248 (10)0.0000 (9)
C170.0972 (17)0.1058 (19)0.0559 (12)0.0201 (14)0.0286 (11)0.0127 (12)
C180.0656 (13)0.142 (2)0.0486 (11)0.0003 (13)0.0267 (10)0.0035 (13)
C190.0954 (17)0.113 (2)0.0636 (13)0.0207 (14)0.0274 (12)0.0217 (13)
C200.0877 (15)0.0799 (15)0.0613 (12)0.0139 (11)0.0276 (10)0.0036 (10)
C210.0567 (13)0.134 (2)0.0743 (14)0.0100 (13)0.0106 (10)0.0093 (13)
O4A0.0932 (13)0.156 (7)0.0592 (9)0.019 (6)0.0347 (9)0.010 (3)
N4A0.0719 (13)0.064 (3)0.0525 (11)0.004 (3)0.0242 (10)0.004 (2)
C22A0.0719 (17)0.115 (3)0.0520 (14)0.0056 (19)0.0260 (13)0.0029 (17)
C23A0.146 (5)0.099 (3)0.099 (4)0.018 (3)0.048 (3)0.018 (3)
C24A0.122 (3)0.103 (3)0.073 (2)0.008 (2)0.045 (2)0.022 (2)
O4B0.0932 (13)0.156 (7)0.0592 (9)0.019 (6)0.0347 (9)0.010 (3)
N4B0.0719 (13)0.064 (3)0.0525 (11)0.004 (3)0.0242 (10)0.004 (2)
C22B0.0719 (17)0.115 (3)0.0520 (14)0.0056 (19)0.0260 (13)0.0029 (17)
C23B0.146 (5)0.099 (3)0.099 (4)0.018 (3)0.048 (3)0.018 (3)
C24B0.122 (3)0.103 (3)0.073 (2)0.008 (2)0.045 (2)0.022 (2)
Geometric parameters (Å, º) top
O1—C11.3579 (19)C15—C201.376 (3)
O1—H10.8851C16—C171.376 (3)
O2—C31.367 (2)C16—H160.9300
O2—C211.418 (2)C17—C181.368 (3)
O3—C81.210 (2)C17—H170.9300
N1—C71.290 (2)C18—C191.359 (4)
N1—N21.364 (2)C18—H180.9300
N2—C81.377 (2)C19—C201.376 (3)
N2—H2'0.8683C19—H190.9300
N3—C81.355 (2)C20—H200.9300
N3—C91.406 (2)C21—H21A0.9600
N3—H3'0.8495C21—H21B0.9600
C1—C21.378 (3)C21—H21C0.9600
C1—C61.413 (2)O4A—C22A1.265 (10)
C2—C31.379 (2)N4A—C22A1.295 (4)
C2—H20.9300N4A—C23A1.424 (6)
C3—C41.383 (2)N4A—C24A1.455 (5)
C4—C51.379 (3)C22A—H22A0.9300
C4—H40.9300C23A—H23A0.9600
C5—C61.389 (2)C23A—H23B0.9600
C5—H50.9300C23A—H23C0.9600
C6—C71.465 (2)C24A—H24A0.9600
C7—C151.498 (2)C24A—H24B0.9600
C9—C141.378 (3)C24A—H24C0.9600
C9—C101.379 (2)O4B—C22B1.274 (11)
C10—C111.380 (3)N4B—C22B1.295 (10)
C10—H100.9300N4B—C24B1.432 (10)
C11—C121.369 (3)N4B—C23B1.442 (11)
C11—H110.9300C22B—H22B0.9300
C12—C131.362 (3)C23B—H23D0.9600
C12—H120.9300C23B—H23E0.9600
C13—C141.374 (3)C23B—H23F0.9600
C13—H130.9300C24B—H24D0.9600
C14—H140.9300C24B—H24E0.9600
C15—C161.370 (3)C24B—H24F0.9600
C1—O1—H1108.1C9—C14—H14119.3
C3—O2—C21117.70 (15)C16—C15—C20119.64 (17)
C7—N1—N2119.74 (14)C16—C15—C7120.25 (16)
N1—N2—C8117.46 (14)C20—C15—C7120.11 (17)
N1—N2—H2'119.3C15—C16—C17120.4 (2)
C8—N2—H2'122.4C15—C16—H16119.8
C8—N3—C9127.79 (14)C17—C16—H16119.8
C8—N3—H3'114.5C18—C17—C16119.8 (2)
C9—N3—H3'117.2C18—C17—H17120.1
O1—C1—C2117.44 (14)C16—C17—H17120.1
O1—C1—C6122.02 (16)C19—C18—C17119.97 (19)
C2—C1—C6120.54 (15)C19—C18—H18120.0
C1—C2—C3120.95 (15)C17—C18—H18120.0
C1—C2—H2119.5C18—C19—C20120.8 (2)
C3—C2—H2119.5C18—C19—H19119.6
O2—C3—C2115.74 (15)C20—C19—H19119.6
O2—C3—C4124.42 (16)C15—C20—C19119.4 (2)
C2—C3—C4119.85 (17)C15—C20—H20120.3
C5—C4—C3119.02 (16)C19—C20—H20120.3
C5—C4—H4120.5O2—C21—H21A109.5
C3—C4—H4120.5O2—C21—H21B109.5
C4—C5—C6122.93 (15)H21A—C21—H21B109.5
C4—C5—H5118.5O2—C21—H21C109.5
C6—C5—H5118.5H21A—C21—H21C109.5
C5—C6—C1116.71 (16)H21B—C21—H21C109.5
C5—C6—C7120.84 (14)C22A—N4A—C23A122.5 (4)
C1—C6—C7122.44 (15)C22A—N4A—C24A121.3 (3)
N1—C7—C6117.22 (14)C23A—N4A—C24A115.8 (4)
N1—C7—C15122.50 (15)O4A—C22A—N4A123.1 (5)
C6—C7—C15120.28 (14)O4A—C22A—H22A118.4
O3—C8—N3125.60 (16)N4A—C22A—H22A118.4
O3—C8—N2122.28 (17)C22B—N4B—C24B120.9 (10)
N3—C8—N2112.12 (14)C22B—N4B—C23B121.1 (9)
C14—C9—C10118.51 (17)C24B—N4B—C23B118.0 (9)
C14—C9—N3117.47 (15)O4B—C22B—N4B119.8 (14)
C10—C9—N3124.01 (17)O4B—C22B—H22B120.1
C9—C10—C11119.4 (2)N4B—C22B—H22B120.1
C9—C10—H10120.3N4B—C23B—H23D109.5
C11—C10—H10120.3N4B—C23B—H23E109.5
C12—C11—C10121.66 (19)H23D—C23B—H23E109.5
C12—C11—H11119.2N4B—C23B—H23F109.5
C10—C11—H11119.2H23D—C23B—H23F109.5
C13—C12—C11118.96 (19)H23E—C23B—H23F109.5
C13—C12—H12120.5N4B—C24B—H24D109.5
C11—C12—H12120.5N4B—C24B—H24E109.5
C12—C13—C14120.1 (2)H24D—C24B—H24E109.5
C12—C13—H13120.0N4B—C24B—H24F109.5
C14—C13—H13120.0H24D—C24B—H24F109.5
C13—C14—C9121.45 (18)H24E—C24B—H24F109.5
C13—C14—H14119.3
C7—N1—N2—C8174.78 (16)C8—N3—C9—C14175.6 (2)
O1—C1—C2—C3179.87 (16)C8—N3—C9—C105.9 (3)
C6—C1—C2—C30.3 (3)C14—C9—C10—C110.7 (3)
C21—O2—C3—C2178.32 (18)N3—C9—C10—C11179.1 (2)
C21—O2—C3—C41.9 (3)C9—C10—C11—C120.6 (3)
C1—C2—C3—O2179.31 (16)C10—C11—C12—C130.2 (4)
C1—C2—C3—C40.5 (3)C11—C12—C13—C140.3 (4)
O2—C3—C4—C5179.65 (17)C12—C13—C14—C90.2 (4)
C2—C3—C4—C50.1 (3)C10—C9—C14—C130.3 (3)
C3—C4—C5—C60.5 (3)N3—C9—C14—C13178.8 (2)
C4—C5—C6—C10.7 (3)N1—C7—C15—C1689.3 (2)
C4—C5—C6—C7178.17 (17)C6—C7—C15—C1690.6 (2)
O1—C1—C6—C5179.55 (16)N1—C7—C15—C2090.7 (2)
C2—C1—C6—C50.3 (2)C6—C7—C15—C2089.4 (2)
O1—C1—C6—C71.6 (3)C20—C15—C16—C170.9 (3)
C2—C1—C6—C7178.53 (17)C7—C15—C16—C17179.07 (18)
N2—N1—C7—C6179.56 (15)C15—C16—C17—C180.5 (3)
N2—N1—C7—C150.3 (3)C16—C17—C18—C190.2 (4)
C5—C6—C7—N1177.65 (16)C17—C18—C19—C200.5 (4)
C1—C6—C7—N11.2 (2)C16—C15—C20—C190.6 (3)
C5—C6—C7—C152.2 (3)C7—C15—C20—C19179.34 (19)
C1—C6—C7—C15178.97 (15)C18—C19—C20—C150.1 (3)
C9—N3—C8—O38.5 (3)C23A—N4A—C22A—O4A5.7 (12)
C9—N3—C8—N2171.40 (18)C24A—N4A—C22A—O4A178.0 (10)
N1—N2—C8—O33.9 (3)C24B—N4B—C22B—O4B2 (3)
N1—N2—C8—N3175.94 (16)C23B—N4B—C22B—O4B178 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.891.782.5655 (18)147
N2—H2···O4A0.872.192.941 (12)145
N2—H2···O4B0.872.222.96 (3)143
N3—H3···O4A0.852.002.830 (7)165
N3—H3···O4B0.852.072.882 (18)161
C24A—H24C···O3i0.962.623.400 (4)139
C23B—H23E···O3i0.962.313.157 (13)147
C23B—H23F···O1i0.962.593.473 (13)153
Symmetry code: (i) x, y, z1.

Experimental details

Crystal data
Chemical formulaC21H19N3O3·C3H7NO
Mr434.49
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)13.1155 (7), 16.9619 (11), 10.7399 (5)
β (°) 105.509 (3)
V3)2302.2 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.35 × 0.30 × 0.25
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.970, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
17400, 4061, 2875
Rint0.069
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.158, 1.02
No. of reflections4061
No. of parameters311
No. of restraints10
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.19

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2010), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.891.782.5655 (18)146.8
N2—H2'···O4A0.872.192.941 (12)145.4
N2—H2'···O4B0.872.222.96 (3)143.1
N3—H3'···O4A0.852.002.830 (7)164.6
N3—H3'···O4B0.852.072.882 (18)161.0
C24A—H24C···O3i0.962.623.400 (4)138.5
C23B—H23E···O3i0.962.313.157 (13)146.5
C23B—H23F···O1i0.962.593.473 (13)153.0
Symmetry code: (i) x, y, z1.
 

Acknowledgements

CFA is grateful to the University Grants Commission, New Delhi, India, for the award of Teacher Fellowship. JMJ thanks the Council of Scientific and Industrial Research, New Delhi, India, for financial support in the form of a Senior Research Fellowship. The authors are grateful to the Sophisticated Analytical Instruments Facility, Cochin University of Science and Technology, Kochi-22, India, for providing the single-crystal X-ray diffraction data.

References

First citationAfrasiabi, Z., Sinn, E., Lin, W., Ma, Y., Campana, C. & Padhye, S. (2005). J. Inorg. Biochem. 99, 1526–1531.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationAlam, O., Mullick, P., Verma, S. P., Gilani, S. J., Khan, S. A., Siddiqui, N. & Ahsan, W. (2010). Eur. J. Med. Chem. 45, 2467–2472.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SADABS, APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKala, U. L., Suma, S., Kurup, M. R. P., Suja, K. & Rohith, P. J. (2007). Polyhedron, 26, 1427–1435.  Web of Science CSD CrossRef CAS Google Scholar
First citationMarch, J. (1992). Advanced Organic Chemistry, Reactions, Mechanisms and Structure, 4th ed. New York: Wiley.  Google Scholar
First citationReena, T. A. & Kurup, M. R. P. (2010). J. Chem. Crystallogr. 40, 927–932.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiji, V. L., Sudarsanakumar, M. R. & Suma, S. (2010). Polyhedron, 29, 2035–2040.  Web of Science CSD CrossRef CAS Google Scholar
First citationSithambaresan, M. & Kurup, M. R. P. (2011). Acta Cryst. E67, o2972.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSreekanth, A., Kala, U. L., Nayar, C. R. & Kurup, M. R. P. (2004). Polyhedron, 23, 41–47.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1519-o1520
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds