metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2,2′-bi­pyridine-κ2N,N′)tris­­(nitrato-κ2O,O′)erbium(III)

aCollege of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, People's Republic of China
*Correspondence e-mail: Yanghua7687@163.com

(Received 16 March 2012; accepted 31 March 2012; online 13 April 2012)

The asymmetric unit of the title compound, [Er(NO3)3(C10H8N2)2], contains one-half mol­ecule situated on a twofold rotation axis. The ErIII ion is in a tenfold coordination by six O atoms from three NO3 anions and four N atoms from two 2,2′-bipyridine ligands in a distorted bicapped dodeca­hedral geometry. In the crystal, weak C—H⋯O hydrogen bonds hold the mol­ecules together.

Related literature

For the crystal structures of related erbium complexes with 2,2′-bipyridine, see: Lu et al. (1995[Lu, W. M., Cheng, Y. Q., Dong, N., Gu, J. M. & Chen, C. G. (1995). J. Coord. Chem. 35, 51-59.]); Su et al. (1996[Su, C. Y., Tang, N., Tan, M. Y. & Yu, K. B. (1996). Polyhedron, 15, 233-239.]); Staveren et al. (2000[Staveren, D. R. V., Hasnoot, J. G., Lanfredi, A. M. M., Menzer, S., Nieuwenhuizen, P. J., Spek, A. L., Ugozzoli, F. & Reedijk, J. (2000). Inorg. Chim. Acta, 307, 81-87.]); Roh et al. (2005[Roh, S. G., Nah, M. K., Oh, J. B., Baek, N. S., Park, K. M. & Kim, H. (2005). Polyhedron, 24, 137-142.]); Estrader et al. (2006[Estrader, M., Ribas, J., Tangoulis, V., Solans, X., Font-Bardia, M., Maestro, M. & Diaz, C. (2006). Inorg. Chem. 45, 8239-8250.]); Ren et al. (2006[Ren, Y. X., Chen, S. P., Xie, G., Gao, S. L. & Shi, Q. Z. (2006). Inorg. Chim. Acta, 359, 2047-2052.]). For potential applications of related complexes, see: Huskowska et al. (2002[Huskowska, E., Turowska-Tyrk, I., Legendziewicz, J. & Riehl, J. P. (2002). New J. Chem. 26, 1461-1467.]); Li et al. (2007[Li, X., Zhang, T. T., Zhang, Z. Y. & Ju, Y. L. (2007). J. Coord. Chem. 60, 2721-2729.]); Puntus et al. (2009[Puntus, L. N., Lyssenko, K. A., Pekareva, I. S. & Bunzli, J. G. (2009). J. Phys. Chem. B, 113, 9265-9277.]).

[Scheme 1]

Experimental

Crystal data
  • [Er(NO3)3(C10H8N2)2]

  • Mr = 665.66

  • Orthorhombic, P b c n

  • a = 16.5762 (4) Å

  • b = 9.1158 (2) Å

  • c = 15.0288 (4) Å

  • V = 2270.93 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.76 mm−1

  • T = 296 K

  • 0.25 × 0.23 × 0.18 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.453, Tmax = 0.551

  • 11877 measured reflections

  • 2859 independent reflections

  • 2127 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.018

  • wR(F2) = 0.051

  • S = 1.06

  • 2859 reflections

  • 169 parameters

  • 8 restraints

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −1.07 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O6i 0.93 2.45 3.325 (6) 157
C7—H7⋯O4ii 0.93 2.49 3.274 (6) 142
Symmetry codes: (i) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The synthesis and characterization of lanthanide complexes supported by N,O-chelating ligands and 2,2'-bipyridine have attracted continuous interest, due to the potential application of these compounds in magnetic, electronic and luminescent devices (Puntus et al., 2009). Particularly, it was found that the coordination of 2,2'-bipyridine to the metal centers of the complexes could effectively tune the structures and properties of the resulting complexes (Li et al., 2007; Huskowska et al., 2002). Several erbium complexes with 2,2'-bipyridine have been reported (Staveren et al., 2000; Su et al., 1996; Lu et al., 1995; Estrader et al., 2006; Ren et al., 2006; Roh et al., 2005). In our attempts to synthesize the ErIII complex supported by salicylaldehyde thiosemicarbazone and 2,2'-bipyridine, we obtained the title compound (I).

In (I) (Fig. 1), each NO3- anion chelates to the metal center in a bidentate fashion. The central ErIII ion adopts distorted bicapped dodecahedron geometry. The weak intermolecular C—H···O hydrogen bonds (Table 1) held the molecules together (Fig. 2).

Related literature top

For the crystal structures of related erbium complexes with 2,2'-bipyridine, see: Lu et al. (1995); Su et al. (1996); Staveren et al. (2000); Roh et al. (2005); Estrader et al. (2006); Ren et al. (2006). For potential applications of related complexes, see: Huskowska et al. (2002); Li et al. (2007); Puntus et al. (2009).

Experimental top

A mixture of Er(NO3)3.6H2O (0.0460 g, 0.1 mmol), 2,2'-bipyridine (0.0312 g, 0.2 mmol), salicylaldehyde thiosemicarbazone (0.0195 g, 0.1 mmol) and C2H5OH (3 ml) was sealed in a 6 ml Pyrex-tube. The tube was heated at 70 oC for 3 days under autogenous pressure. Cooling of the resultant solution to room temperature gave light pink crystals. The crystals were collected by filtration, washed with C2H5OH (2 ml) and dried in air.

Refinement top

H atoms were placed in calculated positions with C—H = 0.93 (aromatic and pyrrole) and refined in riding mode, with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids [symmetry code: (A) -x, y, -z + 1/2)]. The H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A portion of the crystal packing viewed down the c-axis. Hydrogen bonds are shown as dashed lines.
Bis(2,2'-bipyridine-κ2N,N')tris(nitrato- κ2O,O')erbium(III) top
Crystal data top
[Er(NO3)3(C10H8N2)2]F(000) = 1300
Mr = 665.66Dx = 1.947 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 5852 reflections
a = 16.5762 (4) Åθ = 2.6–26.5°
b = 9.1158 (2) ŵ = 3.76 mm1
c = 15.0288 (4) ÅT = 296 K
V = 2270.93 (10) Å3Block, pink
Z = 40.25 × 0.23 × 0.18 mm
Data collection top
Bruker SMART CCD
diffractometer
2859 independent reflections
Radiation source: fine-focus sealed tube2127 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ϕ scans and ω scansθmax = 28.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 2222
Tmin = 0.453, Tmax = 0.551k = 127
11877 measured reflectionsl = 2015
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.051H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0189P)2 + 3.3713P]
where P = (Fo2 + 2Fc2)/3
2859 reflections(Δ/σ)max = 0.010
169 parametersΔρmax = 0.51 e Å3
8 restraintsΔρmin = 1.07 e Å3
Crystal data top
[Er(NO3)3(C10H8N2)2]V = 2270.93 (10) Å3
Mr = 665.66Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 16.5762 (4) ŵ = 3.76 mm1
b = 9.1158 (2) ÅT = 296 K
c = 15.0288 (4) Å0.25 × 0.23 × 0.18 mm
Data collection top
Bruker SMART CCD
diffractometer
2859 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2127 reflections with I > 2σ(I)
Tmin = 0.453, Tmax = 0.551Rint = 0.016
11877 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0188 restraints
wR(F2) = 0.051H-atom parameters constrained
S = 1.06Δρmax = 0.51 e Å3
2859 reflectionsΔρmin = 1.07 e Å3
169 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Er10.00000.59232 (2)0.25000.02279 (8)
O10.00001.0374 (6)0.25000.0790 (13)
O20.0381 (2)0.8323 (4)0.3082 (3)0.0487 (8)
O40.1240 (3)0.7247 (6)0.4738 (3)0.0789 (15)
O50.01985 (19)0.6182 (4)0.4172 (2)0.0391 (8)
O60.11602 (17)0.6865 (4)0.3319 (2)0.0393 (7)
N10.00000.9058 (6)0.25000.0535 (12)
N20.0876 (2)0.6777 (5)0.4101 (3)0.0411 (9)
N40.12765 (19)0.5175 (4)0.3252 (2)0.0305 (8)
N50.0672 (2)0.3730 (4)0.1854 (2)0.0295 (7)
C10.1431 (2)0.3387 (5)0.2090 (3)0.0320 (9)
C20.0322 (3)0.2940 (5)0.1210 (3)0.0386 (10)
H20.02030.31750.10440.046*
C30.0699 (3)0.1800 (6)0.0783 (4)0.0487 (12)
H30.04350.12770.03380.058*
C40.1470 (4)0.1449 (7)0.1025 (4)0.0591 (15)
H40.17380.06760.07500.071*
C50.1845 (3)0.2258 (6)0.1683 (4)0.0495 (13)
H50.23720.20430.18510.059*
C60.2890 (3)0.5056 (6)0.3713 (4)0.0508 (13)
H60.34360.50420.38520.061*
C70.2369 (3)0.5918 (6)0.4189 (4)0.0466 (13)
H70.25490.64680.46710.056*
C80.1569 (3)0.5945 (5)0.3933 (3)0.0401 (11)
H80.12150.65340.42540.048*
C90.2597 (3)0.4212 (6)0.3027 (4)0.0430 (12)
H90.29410.35990.27090.052*
C100.1788 (2)0.4283 (5)0.2813 (3)0.0312 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Er10.01451 (11)0.02538 (13)0.02849 (13)0.0000.00210 (10)0.000
O10.130 (4)0.030 (2)0.077 (3)0.0000.029 (2)0.000
O20.0448 (19)0.0446 (19)0.057 (2)0.0123 (16)0.0024 (16)0.0140 (16)
O40.061 (3)0.131 (4)0.045 (2)0.038 (3)0.012 (2)0.023 (3)
O50.0302 (15)0.0477 (19)0.0395 (18)0.0095 (13)0.0062 (13)0.0049 (15)
O60.0268 (15)0.052 (2)0.0386 (18)0.0071 (14)0.0040 (13)0.0030 (15)
N10.068 (4)0.027 (2)0.066 (3)0.0000.027 (2)0.000
N20.0324 (19)0.052 (2)0.039 (2)0.0068 (18)0.0021 (17)0.0051 (19)
N40.0216 (15)0.0360 (19)0.034 (2)0.0031 (14)0.0041 (14)0.0003 (16)
N50.0270 (17)0.0315 (18)0.0299 (18)0.0010 (14)0.0023 (14)0.0008 (15)
C10.029 (2)0.034 (2)0.033 (2)0.0056 (17)0.0025 (18)0.0036 (19)
C20.038 (2)0.040 (2)0.037 (2)0.000 (2)0.001 (2)0.002 (2)
C30.062 (3)0.044 (3)0.040 (3)0.002 (2)0.001 (2)0.011 (2)
C40.071 (4)0.053 (3)0.053 (4)0.022 (3)0.007 (3)0.014 (3)
C50.042 (3)0.056 (3)0.051 (3)0.020 (2)0.005 (2)0.003 (3)
C60.024 (2)0.065 (3)0.064 (4)0.004 (2)0.013 (2)0.009 (3)
C70.036 (3)0.052 (3)0.051 (3)0.001 (2)0.019 (2)0.002 (2)
C80.029 (2)0.049 (3)0.042 (3)0.0061 (19)0.0081 (19)0.008 (2)
C90.025 (2)0.051 (3)0.053 (3)0.0123 (19)0.002 (2)0.004 (2)
C100.0232 (19)0.036 (2)0.034 (2)0.0068 (16)0.0002 (17)0.0059 (18)
Geometric parameters (Å, º) top
Er1—O2i2.439 (3)N5—C11.345 (5)
Er1—O22.439 (3)C1—C51.380 (6)
Er1—O62.439 (3)C1—C101.482 (7)
Er1—O6i2.439 (3)C2—C31.372 (7)
Er1—N52.486 (3)C2—H20.9300
Er1—N5i2.486 (3)C3—C41.367 (8)
Er1—N4i2.494 (3)C3—H30.9300
Er1—N42.494 (3)C4—C51.382 (8)
Er1—O5i2.544 (3)C4—H40.9300
Er1—O52.544 (3)C5—H50.9300
O1—N11.199 (8)C6—C71.369 (8)
O2—N11.270 (5)C6—C91.375 (8)
O4—N21.210 (5)C6—H60.9300
O5—N21.251 (5)C7—C81.381 (6)
O6—N21.270 (5)C7—H70.9300
N1—O2i1.270 (5)C8—H80.9300
N4—C81.333 (6)C9—C101.381 (6)
N4—C101.347 (5)C9—H90.9300
N5—C21.339 (6)
O2i—Er1—O252.50 (19)N2—O5—Er194.2 (3)
O2i—Er1—O670.17 (12)N2—O6—Er198.8 (2)
O2—Er1—O673.01 (12)O1—N1—O2i121.9 (3)
O2i—Er1—O6i73.01 (12)O1—N1—O2121.9 (3)
O2—Er1—O6i70.17 (12)O2i—N1—O2116.2 (5)
O6—Er1—O6i138.78 (17)O4—N2—O5122.3 (4)
O2i—Er1—N5134.21 (13)O4—N2—O6121.7 (4)
O2—Er1—N5138.18 (12)O5—N2—O6116.0 (4)
O6—Er1—N5146.44 (11)C8—N4—C10117.7 (4)
O6i—Er1—N574.51 (11)C8—N4—Er1120.8 (3)
O2i—Er1—N5i138.18 (12)C10—N4—Er1118.5 (3)
O2—Er1—N5i134.21 (13)C2—N5—C1118.1 (4)
O6—Er1—N5i74.51 (12)C2—N5—Er1121.4 (3)
O6i—Er1—N5i146.44 (11)C1—N5—Er1120.2 (3)
N5—Er1—N5i72.93 (16)N5—C1—C5121.5 (4)
O2i—Er1—N4i82.13 (12)N5—C1—C10116.0 (4)
O2—Er1—N4i128.87 (12)C5—C1—C10122.5 (4)
O6—Er1—N4i69.87 (11)N5—C2—C3123.3 (5)
O6i—Er1—N4i122.46 (11)N5—C2—H2118.4
N5—Er1—N4i89.02 (11)C3—C2—H2118.4
N5i—Er1—N4i64.99 (12)C4—C3—C2118.6 (5)
O2i—Er1—N4128.87 (12)C4—C3—H3120.7
O2—Er1—N482.13 (12)C2—C3—H3120.7
O6—Er1—N4122.46 (11)C3—C4—C5119.1 (5)
O6i—Er1—N469.87 (11)C3—C4—H4120.4
N5—Er1—N464.99 (12)C5—C4—H4120.4
N5i—Er1—N489.02 (11)C1—C5—C4119.4 (5)
N4i—Er1—N4148.26 (17)C1—C5—H5120.3
O2i—Er1—O5i66.21 (12)C4—C5—H5120.3
O2—Er1—O5i103.72 (12)C7—C6—C9119.4 (4)
O6—Er1—O5i124.56 (10)C7—C6—H6120.3
O6i—Er1—O5i50.76 (10)C9—C6—H6120.3
N5—Er1—O5i68.33 (11)C6—C7—C8118.1 (5)
N5i—Er1—O5i121.21 (11)C6—C7—H7121.0
N4i—Er1—O5i71.80 (11)C8—C7—H7121.0
N4—Er1—O5i111.28 (11)N4—C8—C7123.6 (5)
O2i—Er1—O5103.72 (12)N4—C8—H8118.2
O2—Er1—O566.21 (12)C7—C8—H8118.2
O6—Er1—O550.76 (10)C6—C9—C10119.4 (5)
O6i—Er1—O5124.56 (10)C6—C9—H9120.3
N5—Er1—O5121.21 (11)C10—C9—H9120.3
N5i—Er1—O568.33 (11)N4—C10—C9121.7 (5)
N4i—Er1—O5111.28 (11)N4—C10—C1116.1 (4)
N4—Er1—O571.80 (11)C9—C10—C1122.2 (4)
O5i—Er1—O5169.37 (15)
O2i—Er1—O2—N10.001 (1)O5i—Er1—N4—C1033.6 (3)
O6—Er1—O2—N177.72 (18)O5—Er1—N4—C10157.2 (3)
O6i—Er1—O2—N183.41 (19)N1—Er1—N4—C10124.0 (3)
N5—Er1—O2—N1117.4 (2)O2i—Er1—N5—C265.7 (4)
N5i—Er1—O2—N1124.34 (19)O2—Er1—N5—C2144.9 (3)
N4i—Er1—O2—N132.8 (3)O6—Er1—N5—C261.9 (4)
N4—Er1—O2—N1154.8 (2)O6i—Er1—N5—C2111.8 (4)
O5i—Er1—O2—N144.7 (2)N5i—Er1—N5—C276.4 (3)
O5—Er1—O2—N1131.7 (2)N4i—Er1—N5—C212.3 (3)
O2i—Er1—O5—N246.4 (3)N4—Er1—N5—C2173.5 (4)
O2—Er1—O5—N283.9 (3)O5i—Er1—N5—C258.4 (3)
O6—Er1—O5—N23.1 (2)O5—Er1—N5—C2126.8 (3)
O6i—Er1—O5—N2125.0 (3)N1—Er1—N5—C2103.6 (3)
N5—Er1—O5—N2142.8 (3)O2i—Er1—N5—C1108.3 (3)
N5i—Er1—O5—N290.4 (3)O2—Er1—N5—C129.1 (4)
N4i—Er1—O5—N240.4 (3)O6—Er1—N5—C1124.1 (3)
N4—Er1—O5—N2173.2 (3)O6i—Er1—N5—C162.2 (3)
O5i—Er1—O5—N264.6 (3)N5i—Er1—N5—C1109.6 (4)
O2i—Er1—O6—N2125.3 (3)N4i—Er1—N5—C1173.7 (3)
O2—Er1—O6—N269.8 (3)N4—Er1—N5—C112.5 (3)
O6i—Er1—O6—N297.3 (3)O5i—Er1—N5—C1115.6 (3)
N5—Er1—O6—N291.9 (3)O5—Er1—N5—C159.2 (3)
N5i—Er1—O6—N277.5 (3)N1—Er1—N5—C170.4 (4)
N4i—Er1—O6—N2146.1 (3)C2—N5—C1—C50.2 (7)
N4—Er1—O6—N21.1 (3)Er1—N5—C1—C5174.0 (4)
O5i—Er1—O6—N2165.0 (3)C2—N5—C1—C10179.3 (4)
O5—Er1—O6—N23.1 (2)Er1—N5—C1—C106.5 (5)
Er1—O2—N1—O1180.000 (1)C1—N5—C2—C30.1 (7)
Er1—O2—N1—O2i0.001 (1)Er1—N5—C2—C3174.3 (4)
Er1—O5—N2—O4174.6 (5)N5—C2—C3—C40.0 (8)
Er1—O5—N2—O65.1 (4)C2—C3—C4—C50.5 (9)
Er1—O6—N2—O4174.4 (5)N5—C1—C5—C40.7 (8)
Er1—O6—N2—O55.4 (4)C10—C1—C5—C4178.8 (5)
O2i—Er1—N4—C850.6 (4)C3—C4—C5—C10.9 (9)
O2—Er1—N4—C824.8 (4)C9—C6—C7—C82.5 (8)
O6—Er1—N4—C839.2 (4)C10—N4—C8—C72.5 (7)
O6i—Er1—N4—C896.5 (4)Er1—N4—C8—C7157.8 (4)
N5—Er1—N4—C8178.3 (4)C6—C7—C8—N40.3 (8)
N5i—Er1—N4—C8110.1 (4)C7—C6—C9—C102.0 (8)
N4i—Er1—N4—C8143.9 (4)C8—N4—C10—C93.1 (7)
O5i—Er1—N4—C8126.5 (3)Er1—N4—C10—C9157.7 (4)
O5—Er1—N4—C842.6 (3)C8—N4—C10—C1176.9 (4)
N1—Er1—N4—C836.1 (4)Er1—N4—C10—C122.3 (5)
O2i—Er1—N4—C10109.6 (3)C6—C9—C10—N40.9 (8)
O2—Er1—N4—C10135.3 (3)C6—C9—C10—C1179.1 (5)
O6—Er1—N4—C10160.6 (3)N5—C1—C10—N410.4 (6)
O6i—Er1—N4—C1063.6 (3)C5—C1—C10—N4169.1 (4)
N5—Er1—N4—C1018.2 (3)N5—C1—C10—C9169.6 (4)
N5i—Er1—N4—C1089.7 (3)C5—C1—C10—C911.0 (7)
N4i—Er1—N4—C1056.0 (3)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O6ii0.932.453.325 (6)157
C7—H7···O4iii0.932.493.274 (6)142
Symmetry codes: (ii) x+1/2, y1/2, z+1/2; (iii) x+1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formula[Er(NO3)3(C10H8N2)2]
Mr665.66
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)296
a, b, c (Å)16.5762 (4), 9.1158 (2), 15.0288 (4)
V3)2270.93 (10)
Z4
Radiation typeMo Kα
µ (mm1)3.76
Crystal size (mm)0.25 × 0.23 × 0.18
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.453, 0.551
No. of measured, independent and
observed [I > 2σ(I)] reflections
11877, 2859, 2127
Rint0.016
(sin θ/λ)max1)0.672
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.051, 1.06
No. of reflections2859
No. of parameters169
No. of restraints8
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 1.07

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O6i0.932.453.325 (6)156.6
C7—H7···O4ii0.932.493.274 (6)142.2
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+3/2, z+1.
 

Acknowledgements

The author appreciates financial support from Yanan University (grant No. YD2011–20) and the Science and Technology Bureau of Yanan City (grant No. kn2009–16).

References

First citationBruker (2000). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEstrader, M., Ribas, J., Tangoulis, V., Solans, X., Font-Bardia, M., Maestro, M. & Diaz, C. (2006). Inorg. Chem. 45, 8239–8250.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHuskowska, E., Turowska-Tyrk, I., Legendziewicz, J. & Riehl, J. P. (2002). New J. Chem. 26, 1461–1467.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, X., Zhang, T. T., Zhang, Z. Y. & Ju, Y. L. (2007). J. Coord. Chem. 60, 2721–2729.  Web of Science CSD CrossRef CAS Google Scholar
First citationLu, W. M., Cheng, Y. Q., Dong, N., Gu, J. M. & Chen, C. G. (1995). J. Coord. Chem. 35, 51–59.  Google Scholar
First citationPuntus, L. N., Lyssenko, K. A., Pekareva, I. S. & Bunzli, J. G. (2009). J. Phys. Chem. B, 113, 9265–9277.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRen, Y. X., Chen, S. P., Xie, G., Gao, S. L. & Shi, Q. Z. (2006). Inorg. Chim. Acta, 359, 2047–2052.  Web of Science CSD CrossRef CAS Google Scholar
First citationRoh, S. G., Nah, M. K., Oh, J. B., Baek, N. S., Park, K. M. & Kim, H. (2005). Polyhedron, 24, 137–142.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStaveren, D. R. V., Hasnoot, J. G., Lanfredi, A. M. M., Menzer, S., Nieuwenhuizen, P. J., Spek, A. L., Ugozzoli, F. & Reedijk, J. (2000). Inorg. Chim. Acta, 307, 81–87.  Google Scholar
First citationSu, C. Y., Tang, N., Tan, M. Y. & Yu, K. B. (1996). Polyhedron, 15, 233–239.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds