metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis(1-phenyl-1H-imidazole-κN3)bis­­(thio­cyanato-κN)nickel(II)

aCollege of Mechanical Engineering, Qingdao Technological University, Qingdao 266033, People's Republic of China, and bKey Laboratory of Advanced Materials, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
*Correspondence e-mail: zsmei163@163.com

(Received 20 March 2012; accepted 9 April 2012; online 18 April 2012)

The title compound, [Ni(NCS)2(C9H8N2)4], crystallizes with two independent half-mol­ecules in the asymmetric unit and the NiII ions situated on centres of symmetry. In both independent mol­ecules, the NiII ion displays a compressed octa­hedral environment formed by four N atoms from the 1-phenyl-1H-imidazole ligands, which define the equatorial plane, with a mean Ni—N distance of 2.119 (11) Å, and two axial N atoms from two NCS anions, with a mean Ni—N distance of 2.079 (7) Å. The crystal packing exhibits weak inter­molecular S⋯S contacts of 3.411 (2) Å.

Related literature

For the crystal structures of related Ni complexes, see: Liu et al. (2005[Liu, F.-Q., Jian, F.-F., Liu, G.-Y., Lu, L.-D., Yang, X.-J. & Wang, X. (2005). Acta Cryst. E61, m1568-m1570.], 2006[Liu, F.-Q., Chen, H.-N., Li, R.-X., Liu, G.-Y. & Li, W.-H. (2006). Acta Cryst. E62, m2457-m2458.]); Pang et al. (2007[Pang, S.-J., Su, J. & Lin, Q. (2007). Acta Cryst. E63, m2369.]); Zheng & Jin (2012[Zheng, S.-M. & Jin, Y.-L. (2012). Acta Cryst. E68, m188-m189.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(NCS)2(C9H8N2)4]

  • Mr = 751.57

  • Triclinic, [P \overline 1]

  • a = 9.9418 (5) Å

  • b = 12.8955 (6) Å

  • c = 16.7076 (8) Å

  • α = 68.239 (1)°

  • β = 77.563 (1)°

  • γ = 67.561 (1)°

  • V = 1831.91 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.69 mm−1

  • T = 293 K

  • 0.32 × 0.31 × 0.19 mm

Data collection
  • Rigaku R-AXIS Spider diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.920, Tmax = 0.936

  • 15208 measured reflections

  • 6791 independent reflections

  • 4333 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.236

  • S = 1.12

  • 6791 reflections

  • 464 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.76 e Å−3

  • Δρmin = −1.30 e Å−3

Data collection: RAPID-AUTO (Rigaku, 2004[Rigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, (I), has been obtained in a study of the conditions of the formation of thiocyanate-containing complexes with imidazole derivatives, and to investigate the influence of steric properties on the stoichiometry as well as on the stoichiometry of the resulting species.

The asymmetric unit of (I) two independent half-molecules (Fig. 1). Each Ni atom displays an octahedral coordination geometry, with six N atoms from two thiocyanate anions and four 1-phenyl-1H-imidazole ligands. The equatorial plane of the complex is formed by four Ni—N(1-phenyl-1H-imadazole) bonds with lengths from 2.105 (4) to 2.127 (3) Å, and the axial positions are occupied by two N-bonded NCS groups [Ni—N(NCS) = 2.077 (4) or 2.083 (4) Å]. These values agree well with those observed in the related [Ni(NCS)2(1-methyl-1H-imidazole)4] (Liu et al., 2005), [Ni(NCS)2(1-ethyl-1H-imidazole)4] (Liu et al., 2006), [Ni(NCS)2(1-vinyl-1H-imidazole)4] (Pang et al., 2007) and [Ni(NCS)2(1-allyl-1H-imidazole)4] (Zheng et al., 2012). The values of the bond angles around nickel atoms are close to those expected for a regular octahedral geometry, the N—Ni—N angles range from 87.85 (13) to 92.15 (13) °, and the thiocyanate ligands are almost linear. Weak S···S intermolecular contacts of 3.411 (9) Å contribute to the crystal packing stability.

Related literature top

For the crystal structures of related Ni complexes, see: Liu et al. (2005, 2006); Pang et al. (2007); Zheng & Jin (2012).

Experimental top

The title compound was prepared by the reaction of 1-phenyl-1H-imidazole (2.88 g, 20 mmol) with NiSO4.6H2O(1.31 g, 5 mmol) and potassium thiocyanate (0.98 g, 10 mmol) by means of hydrothermal synthesis in stainless-steel reactor with Teflon liner at 393 K for 24 h. Analysis, calculated for C38H32NiN10S2: C 60.73, H 4.29, N 18.64%; found: C 60.25, H 4.33, N 18.97%. Single crystals suitable for X-ray measurements were obtained by recrystallization from methanol at room temperature.

Refinement top

H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and allowed to ride on their parent atoms with Uiso(H) = 1.2 times Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO (Rigaku, 2004); data reduction: RAPID-AUTO (Rigaku, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Two independent molecules of the title compound shown in (a) and (b), respectively, with 30% probability displacement ellipsoids and the atom-numbering scheme [symmetry codes: (A) -x+1, -y+2, -z; (B) -x+1, -y+1, -z+1]. H atoms were omitted for clarity.
Tetrakis(1-phenyl-1H-imidazole-κN3)bis(thiocyanato- κN)nickel(II) top
Crystal data top
[Ni(NCS)2(C9H8N2)4]Z = 2
Mr = 751.57F(000) = 780
Triclinic, P1Dx = 1.362 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.9418 (5) ÅCell parameters from 9858 reflections
b = 12.8955 (6) Åθ = 6.1–55.0°
c = 16.7076 (8) ŵ = 0.69 mm1
α = 68.239 (1)°T = 293 K
β = 77.563 (1)°Prism, blue
γ = 67.561 (1)°0.32 × 0.31 × 0.19 mm
V = 1831.91 (15) Å3
Data collection top
Rigaku R-AXIS Spider
diffractometer
4333 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.040
Graphite monochromatorθmax = 25.5°, θmin = 3.1°
ω scansh = 1212
Absorption correction: multi-scan
(ABSCOR; Higashi 1995)
k = 1515
Tmin = 0.920, Tmax = 0.936l = 1820
15208 measured reflections13 standard reflections every 0 reflections
6791 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.062H-atom parameters constrained
wR(F2) = 0.236 w = 1/[σ2(Fo2) + (0.1432P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
6791 reflectionsΔρmax = 0.76 e Å3
464 parametersΔρmin = 1.30 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.021 (3)
Crystal data top
[Ni(NCS)2(C9H8N2)4]γ = 67.561 (1)°
Mr = 751.57V = 1831.91 (15) Å3
Triclinic, P1Z = 2
a = 9.9418 (5) ÅMo Kα radiation
b = 12.8955 (6) ŵ = 0.69 mm1
c = 16.7076 (8) ÅT = 293 K
α = 68.239 (1)°0.32 × 0.31 × 0.19 mm
β = 77.563 (1)°
Data collection top
Rigaku R-AXIS Spider
diffractometer
4333 reflections with I > 2σ(I)
Absorption correction: multi-scan
(ABSCOR; Higashi 1995)
Rint = 0.040
Tmin = 0.920, Tmax = 0.93613 standard reflections every 0 reflections
15208 measured reflections intensity decay: none
6791 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0621 restraint
wR(F2) = 0.236H-atom parameters constrained
S = 1.12Δρmax = 0.76 e Å3
6791 reflectionsΔρmin = 1.30 e Å3
464 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50001.00000.00000.0460 (3)
Ni20.50000.50000.50000.0442 (3)
S10.8088 (2)1.22650 (17)0.03145 (11)0.0977 (6)
S20.87351 (15)0.13307 (12)0.50231 (9)0.0697 (4)
N10.4373 (4)0.9940 (3)0.1310 (2)0.0517 (9)
N20.4097 (4)1.0315 (3)0.2539 (2)0.0535 (9)
N30.6640 (4)0.8340 (3)0.0386 (2)0.0508 (9)
N40.7766 (4)0.6440 (3)0.0980 (2)0.0522 (9)
N50.6440 (4)1.0865 (3)0.0098 (2)0.0570 (10)
N60.5835 (4)0.4575 (3)0.6195 (2)0.0492 (9)
N70.6477 (4)0.4845 (3)0.7270 (2)0.0540 (9)
N80.6775 (4)0.5613 (3)0.4368 (2)0.0507 (9)
N90.8088 (4)0.6767 (3)0.3655 (2)0.0495 (9)
N100.6266 (5)0.3303 (4)0.4961 (2)0.0553 (10)
C10.4741 (5)1.0472 (4)0.1730 (3)0.0550 (11)
H1A0.53741.09070.14910.066*
C20.3436 (6)0.9417 (5)0.1898 (3)0.0744 (16)
H2A0.29870.89710.17940.089*
C30.3259 (6)0.9637 (5)0.2642 (3)0.0745 (17)
H3A0.26760.93790.31360.089*
C40.4229 (6)1.0767 (5)0.3165 (3)0.0627 (13)
C50.3001 (8)1.1162 (6)0.3697 (4)0.095 (2)
H5A0.20991.11470.36400.114*
C60.3158 (11)1.1579 (8)0.4311 (5)0.126 (3)
H6A0.23511.18400.46760.151*
C70.4482 (11)1.1613 (7)0.4391 (4)0.118 (3)
H7A0.45701.18890.48120.141*
C80.5664 (9)1.1243 (7)0.3858 (4)0.103 (2)
H8A0.65581.12810.39040.124*
C90.5537 (7)1.0815 (5)0.3253 (3)0.0757 (16)
H9A0.63551.05520.28940.091*
C100.6488 (5)0.7313 (4)0.0890 (3)0.0524 (11)
H10B0.55980.72150.11480.063*
C110.8119 (5)0.8081 (4)0.0162 (3)0.0625 (13)
H11A0.85670.86320.01860.075*
C120.8822 (6)0.6921 (5)0.0516 (3)0.0724 (15)
H12A0.98210.65250.04580.087*
C130.8040 (5)0.5196 (4)0.1461 (3)0.0528 (11)
C140.8320 (7)0.4408 (5)0.1039 (3)0.0716 (15)
H14A0.83090.46660.04410.086*
C150.8622 (8)0.3215 (5)0.1504 (4)0.0853 (18)
H15A0.88260.26680.12180.102*
C160.8620 (7)0.2846 (5)0.2382 (4)0.0805 (17)
H16A0.88060.20480.26970.097*
C170.8346 (9)0.3640 (6)0.2797 (4)0.099 (2)
H17A0.83690.33790.33950.118*
C180.8030 (7)0.4844 (5)0.2339 (3)0.0816 (17)
H18A0.78190.53920.26240.098*
C190.7123 (5)1.1451 (4)0.0195 (3)0.0485 (10)
C200.5666 (5)0.5328 (4)0.6586 (3)0.0565 (11)
H20A0.50540.61120.64130.068*
C210.6809 (7)0.3545 (4)0.6643 (3)0.0770 (17)
H21A0.71480.28420.65120.092*
C220.7211 (8)0.3695 (5)0.7305 (4)0.0835 (18)
H22A0.78610.31260.77060.100*
C230.6531 (5)0.5427 (4)0.7834 (3)0.0541 (11)
C240.5387 (8)0.5762 (7)0.8382 (5)0.108 (3)
H24A0.45330.56140.84020.130*
C250.5473 (11)0.6321 (8)0.8911 (6)0.130 (3)
H25A0.46610.65670.92780.155*
C260.6694 (10)0.6526 (5)0.8918 (4)0.095 (2)
H26A0.67320.68940.92930.114*
C270.7844 (9)0.6199 (7)0.8385 (6)0.115 (3)
H27A0.86910.63430.83870.138*
C280.7810 (6)0.5645 (6)0.7823 (5)0.100 (2)
H28A0.86200.54240.74470.120*
C290.6730 (5)0.6682 (4)0.3860 (3)0.0504 (10)
H29A0.58800.72990.36670.061*
C300.8223 (5)0.4988 (4)0.4487 (3)0.0607 (12)
H30A0.85870.41950.48170.073*
C310.9041 (5)0.5680 (4)0.4060 (3)0.0622 (13)
H31A1.00490.54660.40420.075*
C320.8492 (5)0.7790 (4)0.3110 (3)0.0526 (11)
C330.8203 (6)0.8273 (5)0.2259 (3)0.0689 (14)
H33A0.77090.79710.20360.083*
C340.8659 (7)0.9215 (5)0.1737 (3)0.0780 (16)
H34A0.84900.95410.11550.094*
C350.9360 (6)0.9674 (5)0.2076 (4)0.0743 (15)
H35A0.96521.03170.17230.089*
C360.9633 (6)0.9190 (5)0.2931 (4)0.0701 (14)
H36A1.01090.95030.31570.084*
C370.9201 (5)0.8239 (4)0.3453 (3)0.0618 (13)
H37A0.93870.79040.40330.074*
C380.7300 (5)0.2473 (4)0.4992 (3)0.0470 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0536 (5)0.0521 (5)0.0406 (4)0.0285 (4)0.0077 (3)0.0106 (3)
Ni20.0490 (5)0.0441 (5)0.0425 (4)0.0171 (4)0.0099 (3)0.0122 (3)
S10.1249 (14)0.1269 (14)0.0865 (11)0.0974 (13)0.0025 (9)0.0295 (10)
S20.0680 (9)0.0588 (8)0.0662 (8)0.0021 (7)0.0129 (6)0.0180 (6)
N10.060 (2)0.061 (2)0.0417 (19)0.031 (2)0.0054 (16)0.0134 (17)
N20.063 (2)0.064 (2)0.0433 (19)0.032 (2)0.0016 (16)0.0180 (17)
N30.060 (2)0.061 (2)0.0445 (19)0.031 (2)0.0075 (16)0.0173 (17)
N40.052 (2)0.054 (2)0.052 (2)0.023 (2)0.0026 (16)0.0127 (17)
N50.065 (2)0.063 (2)0.051 (2)0.032 (2)0.0123 (18)0.0110 (18)
N60.057 (2)0.051 (2)0.0442 (19)0.0210 (19)0.0116 (16)0.0129 (16)
N70.062 (2)0.060 (2)0.047 (2)0.021 (2)0.0144 (17)0.0183 (17)
N80.051 (2)0.054 (2)0.049 (2)0.0219 (19)0.0078 (16)0.0129 (17)
N90.053 (2)0.053 (2)0.0446 (19)0.0215 (19)0.0103 (16)0.0103 (16)
N100.064 (3)0.058 (2)0.048 (2)0.024 (2)0.0115 (18)0.0146 (18)
C10.062 (3)0.064 (3)0.045 (2)0.032 (3)0.005 (2)0.014 (2)
C20.095 (4)0.102 (4)0.051 (3)0.071 (4)0.005 (3)0.018 (3)
C30.101 (4)0.108 (4)0.044 (3)0.073 (4)0.010 (3)0.026 (3)
C40.083 (4)0.071 (3)0.044 (2)0.040 (3)0.002 (2)0.015 (2)
C50.105 (5)0.129 (6)0.080 (4)0.061 (5)0.027 (4)0.063 (4)
C60.174 (8)0.153 (7)0.095 (5)0.084 (7)0.052 (5)0.093 (5)
C70.206 (10)0.133 (6)0.068 (4)0.108 (7)0.005 (5)0.046 (4)
C80.145 (7)0.136 (6)0.072 (4)0.090 (6)0.012 (4)0.035 (4)
C90.092 (4)0.092 (4)0.062 (3)0.044 (4)0.011 (3)0.028 (3)
C100.051 (3)0.055 (3)0.051 (2)0.021 (2)0.0046 (19)0.013 (2)
C110.061 (3)0.062 (3)0.065 (3)0.034 (3)0.006 (2)0.013 (2)
C120.053 (3)0.065 (3)0.086 (4)0.026 (3)0.006 (3)0.010 (3)
C130.058 (3)0.052 (3)0.049 (2)0.023 (2)0.001 (2)0.014 (2)
C140.103 (4)0.062 (3)0.056 (3)0.027 (3)0.020 (3)0.018 (2)
C150.127 (6)0.062 (3)0.082 (4)0.034 (4)0.018 (4)0.032 (3)
C160.102 (5)0.055 (3)0.075 (4)0.033 (3)0.002 (3)0.008 (3)
C170.150 (7)0.081 (4)0.049 (3)0.041 (4)0.009 (3)0.009 (3)
C180.128 (5)0.068 (3)0.046 (3)0.038 (4)0.002 (3)0.015 (2)
C190.055 (3)0.060 (3)0.041 (2)0.031 (2)0.0056 (18)0.0147 (19)
C200.062 (3)0.058 (3)0.053 (3)0.014 (2)0.019 (2)0.019 (2)
C210.121 (5)0.045 (3)0.070 (3)0.004 (3)0.062 (3)0.019 (2)
C220.125 (5)0.052 (3)0.074 (3)0.013 (3)0.053 (3)0.014 (3)
C230.067 (3)0.057 (3)0.047 (2)0.021 (2)0.016 (2)0.019 (2)
C240.107 (5)0.155 (7)0.117 (5)0.070 (5)0.039 (4)0.103 (5)
C250.147 (8)0.172 (9)0.115 (6)0.071 (7)0.032 (6)0.101 (6)
C260.143 (7)0.074 (4)0.078 (4)0.012 (4)0.048 (4)0.040 (3)
C270.094 (5)0.142 (7)0.159 (7)0.036 (5)0.030 (5)0.096 (6)
C280.078 (4)0.145 (6)0.126 (5)0.046 (4)0.004 (4)0.093 (5)
C290.051 (3)0.054 (3)0.049 (2)0.021 (2)0.0088 (19)0.013 (2)
C300.057 (3)0.058 (3)0.063 (3)0.023 (3)0.015 (2)0.006 (2)
C310.050 (3)0.064 (3)0.068 (3)0.020 (3)0.014 (2)0.009 (2)
C320.052 (3)0.058 (3)0.049 (2)0.026 (2)0.0067 (19)0.010 (2)
C330.089 (4)0.070 (3)0.057 (3)0.038 (3)0.020 (3)0.012 (3)
C340.104 (4)0.076 (4)0.053 (3)0.041 (4)0.013 (3)0.003 (3)
C350.079 (4)0.066 (3)0.070 (3)0.035 (3)0.002 (3)0.005 (3)
C360.064 (3)0.067 (3)0.089 (4)0.035 (3)0.013 (3)0.019 (3)
C370.062 (3)0.074 (3)0.054 (3)0.032 (3)0.012 (2)0.013 (2)
C380.053 (3)0.046 (2)0.044 (2)0.018 (2)0.0114 (19)0.0108 (19)
Geometric parameters (Å, º) top
Ni1—N5i2.074 (4)C8—C91.366 (8)
Ni1—N52.074 (4)C8—H8A0.9300
Ni1—N3i2.103 (4)C9—H9A0.9300
Ni1—N32.103 (4)C10—H10B0.9300
Ni1—N12.123 (3)C11—C121.342 (7)
Ni1—N1i2.123 (3)C11—H11A0.9300
Ni2—N102.084 (4)C12—H12A0.9300
Ni2—N10ii2.084 (4)C13—C141.356 (6)
Ni2—N8ii2.121 (3)C13—C181.364 (6)
Ni2—N82.121 (3)C14—C151.386 (7)
Ni2—N62.129 (3)C14—H14A0.9300
Ni2—N6ii2.129 (3)C15—C161.364 (8)
S1—C191.611 (4)C15—H15A0.9300
S2—C381.605 (5)C16—C171.355 (8)
N1—C11.326 (6)C16—H16A0.9300
N1—C21.372 (5)C17—C181.394 (8)
N2—C11.343 (5)C17—H17A0.9300
N2—C31.368 (6)C18—H18A0.9300
N2—C41.421 (6)C20—H20A0.9300
N3—C101.326 (5)C21—C221.354 (7)
N3—C111.376 (6)C21—H21A0.9300
N4—C101.330 (6)C22—H22A0.9300
N4—C121.371 (5)C23—C241.337 (7)
N4—C131.448 (5)C23—C281.3989 (10)
N5—C191.145 (5)C24—C251.364 (9)
N6—C201.301 (6)C24—H24A0.9300
N6—C211.362 (6)C25—C261.340 (11)
N7—C201.354 (6)C25—H25A0.9300
N7—C221.365 (7)C26—C271.323 (10)
N7—C231.424 (5)C26—H26A0.9300
N8—C291.314 (5)C27—C281.386 (9)
N8—C301.371 (6)C27—H27A0.9300
N9—C291.356 (5)C28—H28A0.9300
N9—C311.371 (6)C29—H29A0.9300
N9—C321.444 (5)C30—C311.341 (6)
N10—C381.161 (6)C30—H30A0.9300
C1—H1A0.9300C31—H31A0.9300
C2—C31.335 (7)C32—C331.370 (6)
C2—H2A0.9300C32—C371.376 (6)
C3—H3A0.9300C33—C341.380 (7)
C4—C91.367 (8)C33—H33A0.9300
C4—C51.390 (8)C34—C351.375 (8)
C5—C61.380 (9)C34—H34A0.9300
C5—H5A0.9300C35—C361.371 (7)
C6—C71.370 (11)C35—H35A0.9300
C6—H6A0.9300C36—C371.378 (6)
C7—C81.356 (11)C36—H36A0.9300
C7—H7A0.9300C37—H37A0.9300
N5i—Ni1—N5180.0 (2)N3—C10—N4111.6 (4)
N5i—Ni1—N3i91.27 (14)N3—C10—H10B124.2
N5—Ni1—N3i88.73 (14)N4—C10—H10B124.2
N5i—Ni1—N388.73 (14)C12—C11—N3110.4 (4)
N5—Ni1—N391.27 (14)C12—C11—H11A124.8
N3i—Ni1—N3180.000 (1)N3—C11—H11A124.8
N5i—Ni1—N189.50 (13)C11—C12—N4105.9 (5)
N5—Ni1—N190.50 (13)C11—C12—H12A127.0
N3i—Ni1—N189.34 (14)N4—C12—H12A127.0
N3—Ni1—N190.66 (14)C14—C13—C18121.4 (5)
N5i—Ni1—N1i90.50 (13)C14—C13—N4120.1 (4)
N5—Ni1—N1i89.50 (14)C18—C13—N4118.4 (4)
N3i—Ni1—N1i90.66 (14)C13—C14—C15119.6 (5)
N3—Ni1—N1i89.34 (14)C13—C14—H14A120.2
N1—Ni1—N1i180.0C15—C14—H14A120.2
N10—Ni2—N10ii180.000 (1)C16—C15—C14119.8 (5)
N10—Ni2—N8ii89.92 (14)C16—C15—H15A120.1
N10ii—Ni2—N8ii90.08 (14)C14—C15—H15A120.1
N10—Ni2—N890.08 (14)C17—C16—C15120.1 (5)
N10ii—Ni2—N889.92 (14)C17—C16—H16A120.0
N8ii—Ni2—N8180.0 (2)C15—C16—H16A120.0
N10—Ni2—N688.95 (14)C16—C17—C18120.8 (5)
N10ii—Ni2—N691.05 (14)C16—C17—H17A119.6
N8ii—Ni2—N692.21 (13)C18—C17—H17A119.6
N8—Ni2—N687.79 (13)C13—C18—C17118.3 (5)
N10—Ni2—N6ii91.05 (14)C13—C18—H18A120.9
N10ii—Ni2—N6ii88.95 (14)C17—C18—H18A120.9
N8ii—Ni2—N6ii87.79 (13)N5—C19—S1179.0 (4)
N8—Ni2—N6ii92.21 (13)N6—C20—N7112.7 (4)
N6—Ni2—N6ii180.000 (1)N6—C20—H20A123.7
C1—N1—C2104.0 (4)N7—C20—H20A123.7
C1—N1—Ni1127.0 (3)C22—C21—N6110.0 (5)
C2—N1—Ni1128.9 (3)C22—C21—H21A125.0
C1—N2—C3105.9 (4)N6—C21—H21A125.0
C1—N2—C4127.7 (4)C21—C22—N7106.6 (5)
C3—N2—C4126.4 (4)C21—C22—H22A126.7
C10—N3—C11104.6 (4)N7—C22—H22A126.7
C10—N3—Ni1128.1 (3)C24—C23—C28118.9 (5)
C11—N3—Ni1127.2 (3)C24—C23—N7121.5 (4)
C10—N4—C12107.5 (4)C28—C23—N7119.6 (4)
C10—N4—C13127.9 (3)C23—C24—C25120.0 (7)
C12—N4—C13124.6 (4)C23—C24—H24A120.0
C19—N5—Ni1172.7 (4)C25—C24—H24A120.0
C20—N6—C21105.2 (4)C26—C25—C24122.0 (7)
C20—N6—Ni2125.4 (3)C26—C25—H25A119.0
C21—N6—Ni2128.8 (3)C24—C25—H25A119.0
C20—N7—C22105.6 (4)C27—C26—C25119.3 (6)
C20—N7—C23126.6 (4)C27—C26—H26A120.4
C22—N7—C23127.8 (4)C25—C26—H26A120.4
C29—N8—C30105.6 (3)C26—C27—C28121.2 (6)
C29—N8—Ni2128.2 (3)C26—C27—H27A119.4
C30—N8—Ni2126.0 (3)C28—C27—H27A119.4
C29—N9—C31107.0 (3)C27—C28—C23118.6 (6)
C29—N9—C32127.7 (4)C27—C28—H28A120.7
C31—N9—C32125.4 (4)C23—C28—H28A120.7
C38—N10—Ni2158.1 (3)N8—C29—N9111.0 (4)
N1—C1—N2112.5 (4)N8—C29—H29A124.5
N1—C1—H1A123.8N9—C29—H29A124.5
N2—C1—H1A123.8C31—C30—N8110.4 (4)
C3—C2—N1110.6 (4)C31—C30—H30A124.8
C3—C2—H2A124.7N8—C30—H30A124.8
N1—C2—H2A124.7C30—C31—N9106.1 (4)
C2—C3—N2107.0 (4)C30—C31—H31A127.0
C2—C3—H3A126.5N9—C31—H31A127.0
N2—C3—H3A126.5C33—C32—C37121.2 (4)
C9—C4—C5119.8 (5)C33—C32—N9119.7 (4)
C9—C4—N2121.1 (5)C37—C32—N9119.1 (4)
C5—C4—N2119.1 (5)C32—C33—C34118.9 (5)
C6—C5—C4118.2 (7)C32—C33—H33A120.5
C6—C5—H5A120.9C34—C33—H33A120.5
C4—C5—H5A120.9C35—C34—C33120.2 (5)
C7—C6—C5121.1 (7)C35—C34—H34A119.9
C7—C6—H6A119.5C33—C34—H34A119.9
C5—C6—H6A119.5C36—C35—C34120.4 (5)
C8—C7—C6120.1 (6)C36—C35—H35A119.8
C8—C7—H7A120.0C34—C35—H35A119.8
C6—C7—H7A120.0C35—C36—C37119.8 (5)
C7—C8—C9119.8 (7)C35—C36—H36A120.1
C7—C8—H8A120.1C37—C36—H36A120.1
C9—C8—H8A120.1C32—C37—C36119.4 (4)
C8—C9—C4121.1 (6)C32—C37—H37A120.3
C8—C9—H9A119.5C36—C37—H37A120.3
C4—C9—H9A119.5N10—C38—S2179.3 (4)
N5i—Ni1—N1—C1171.8 (4)C7—C8—C9—C41.0 (11)
N5—Ni1—N1—C18.2 (4)C5—C4—C9—C80.2 (9)
N3i—Ni1—N1—C180.5 (4)N2—C4—C9—C8179.6 (5)
N3—Ni1—N1—C199.5 (4)C11—N3—C10—N40.9 (5)
N1i—Ni1—N1—C1131 (100)Ni1—N3—C10—N4178.6 (3)
N5i—Ni1—N1—C23.7 (5)C12—N4—C10—N30.6 (5)
N5—Ni1—N1—C2176.3 (5)C13—N4—C10—N3178.5 (4)
N3i—Ni1—N1—C295.0 (4)C10—N3—C11—C120.9 (6)
N3—Ni1—N1—C285.0 (4)Ni1—N3—C11—C12178.6 (4)
N1i—Ni1—N1—C253 (100)N3—C11—C12—N40.6 (6)
N5i—Ni1—N3—C1029.2 (4)C10—N4—C12—C110.0 (6)
N5—Ni1—N3—C10150.8 (4)C13—N4—C12—C11179.1 (4)
N3i—Ni1—N3—C10123 (100)C10—N4—C13—C14103.0 (6)
N1—Ni1—N3—C1060.3 (4)C12—N4—C13—C1475.9 (6)
N1i—Ni1—N3—C10119.7 (4)C10—N4—C13—C1878.0 (6)
N5i—Ni1—N3—C11150.2 (4)C12—N4—C13—C18103.2 (6)
N5—Ni1—N3—C1129.8 (4)C18—C13—C14—C150.9 (9)
N3i—Ni1—N3—C1156 (100)N4—C13—C14—C15178.1 (5)
N1—Ni1—N3—C11120.3 (4)C13—C14—C15—C160.8 (10)
N1i—Ni1—N3—C1159.7 (4)C14—C15—C16—C171.1 (10)
N5i—Ni1—N5—C1962 (100)C15—C16—C17—C181.5 (11)
N3i—Ni1—N5—C1911 (3)C14—C13—C18—C171.3 (9)
N3—Ni1—N5—C19169 (3)N4—C13—C18—C17177.8 (6)
N1—Ni1—N5—C19101 (3)C16—C17—C18—C131.6 (11)
N1i—Ni1—N5—C1979 (3)Ni1—N5—C19—S1128 (27)
N10—Ni2—N6—C20169.4 (4)C21—N6—C20—N70.2 (6)
N10ii—Ni2—N6—C2010.6 (4)Ni2—N6—C20—N7171.5 (3)
N8ii—Ni2—N6—C20100.7 (4)C22—N7—C20—N60.0 (6)
N8—Ni2—N6—C2079.3 (4)C23—N7—C20—N6179.5 (4)
N6ii—Ni2—N6—C2085 (100)C20—N6—C21—C220.2 (7)
N10—Ni2—N6—C210.1 (4)Ni2—N6—C21—C22171.1 (4)
N10ii—Ni2—N6—C21179.9 (4)N6—C21—C22—N70.2 (7)
N8ii—Ni2—N6—C2190.0 (4)C20—N7—C22—C210.1 (6)
N8—Ni2—N6—C2190.0 (4)C23—N7—C22—C21179.7 (5)
N6ii—Ni2—N6—C2185 (100)C20—N7—C23—C2468.8 (7)
N10—Ni2—N8—C29151.5 (4)C22—N7—C23—C24110.7 (7)
N10ii—Ni2—N8—C2928.5 (4)C20—N7—C23—C28111.8 (6)
N8ii—Ni2—N8—C29117 (100)C22—N7—C23—C2868.8 (7)
N6—Ni2—N8—C29119.6 (4)C28—C23—C24—C250.8 (12)
N6ii—Ni2—N8—C2960.4 (4)N7—C23—C24—C25179.8 (7)
N10—Ni2—N8—C3036.2 (4)C23—C24—C25—C261.6 (15)
N10ii—Ni2—N8—C30143.8 (4)C24—C25—C26—C271.3 (15)
N8ii—Ni2—N8—C3056 (100)C25—C26—C27—C280.2 (13)
N6—Ni2—N8—C3052.8 (4)C26—C27—C28—C230.6 (13)
N6ii—Ni2—N8—C30127.2 (4)C24—C23—C28—C270.3 (11)
N10ii—Ni2—N10—C3819 (100)N7—C23—C28—C27179.2 (6)
N8ii—Ni2—N10—C38142.1 (9)C30—N8—C29—N90.4 (5)
N8—Ni2—N10—C3837.9 (9)Ni2—N8—C29—N9173.2 (3)
N6—Ni2—N10—C3849.9 (9)C31—N9—C29—N80.1 (5)
N6ii—Ni2—N10—C38130.1 (9)C32—N9—C29—N8179.6 (4)
C2—N1—C1—N20.0 (6)C29—N8—C30—C310.6 (6)
Ni1—N1—C1—N2176.4 (3)Ni2—N8—C30—C31173.2 (3)
C3—N2—C1—N10.1 (6)N8—C30—C31—N90.5 (6)
C4—N2—C1—N1179.2 (5)C29—N9—C31—C300.3 (5)
C1—N1—C2—C30.1 (7)C32—N9—C31—C30179.3 (4)
Ni1—N1—C2—C3176.2 (4)C29—N9—C32—C3361.3 (7)
N1—C2—C3—N20.1 (7)C31—N9—C32—C33118.1 (6)
C1—N2—C3—C20.1 (6)C29—N9—C32—C37120.6 (5)
C4—N2—C3—C2179.3 (5)C31—N9—C32—C3760.0 (7)
C1—N2—C4—C939.1 (8)C37—C32—C33—C341.1 (8)
C3—N2—C4—C9142.0 (6)N9—C32—C33—C34176.9 (5)
C1—N2—C4—C5141.2 (6)C32—C33—C34—C351.5 (9)
C3—N2—C4—C537.8 (8)C33—C34—C35—C360.9 (10)
C9—C4—C5—C60.9 (10)C34—C35—C36—C370.0 (9)
N2—C4—C5—C6178.8 (6)C33—C32—C37—C360.2 (8)
C4—C5—C6—C70.6 (12)N9—C32—C37—C36177.8 (5)
C5—C6—C7—C80.6 (14)C35—C36—C37—C320.3 (8)
C6—C7—C8—C91.3 (13)Ni2—N10—C38—S287 (40)
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ni(NCS)2(C9H8N2)4]
Mr751.57
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.9418 (5), 12.8955 (6), 16.7076 (8)
α, β, γ (°)68.239 (1), 77.563 (1), 67.561 (1)
V3)1831.91 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.69
Crystal size (mm)0.32 × 0.31 × 0.19
Data collection
DiffractometerRigaku R-AXIS Spider
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi 1995)
Tmin, Tmax0.920, 0.936
No. of measured, independent and
observed [I > 2σ(I)] reflections
15208, 6791, 4333
Rint0.040
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.236, 1.12
No. of reflections6791
No. of parameters464
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.76, 1.30

Computer programs: RAPID-AUTO (Rigaku, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the NSF of China (grant No. 20871072), the NSF of Shandong Province (grant No. 2009ZRA02071) and the Scientific Development Plan of Universities in Shandong Province (grant No. J09LB53).

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLiu, F.-Q., Chen, H.-N., Li, R.-X., Liu, G.-Y. & Li, W.-H. (2006). Acta Cryst. E62, m2457–m2458.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, F.-Q., Jian, F.-F., Liu, G.-Y., Lu, L.-D., Yang, X.-J. & Wang, X. (2005). Acta Cryst. E61, m1568–m1570.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPang, S.-J., Su, J. & Lin, Q. (2007). Acta Cryst. E63, m2369.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZheng, S.-M. & Jin, Y.-L. (2012). Acta Cryst. E68, m188–m189.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds