metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-methyl­piperidinium) penta­chlorido­anti­monate(III)

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: xqchem@yahoo.com.cn

(Received 31 March 2012; accepted 18 April 2012; online 25 April 2012)

The asymmetric unit of the title compound, (C6H14N)2[SbCl5], contains one cation and half of the anion on a special position (specifically, the SbIII ion and three chloride anions are situated on a mirror plane). In the [SbCl5]2− unit, the SbIII ion is coordinated by five chloride anions [Sb—Cl = 2.3721 (11)–2.6656 (12) Å] in a distorted square-pyramidal geometry. However, one chloride anion from a neighbouring [SbCl5]2− unit provides a short Sb⋯Cl contact of 3.3600 (12) Å and completes the Sb coordination environment up to an elongated octa­hedron. In the crystal, N—H⋯Cl hydrogen bonds link cations and anions into columns propagating along [100].

Related literature

For the crystal structure of bis­(4-benzyl­piperidinium) penta­chloridoanti­monate(III), see: Marsh (1995[Marsh, R. E. (1995). Acta Cryst. B51, 897-907.]). For background to ferroelectric metal-organic frameworks, see: Fu et al. (2009[Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994-997.]); Ye et al. (2006[Ye, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc. 128, 6554-6555.]); Zhang et al. (2008[Zhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468-10469.], 2010[Zhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Am. Chem. Soc. 132, 7300-7302.]).

[Scheme 1]

Experimental

Crystal data
  • (C6H14N)2[SbCl5]

  • Mr = 499.36

  • Orthorhombic, P n m a

  • a = 7.5995 (15) Å

  • b = 23.165 (5) Å

  • c = 11.453 (2) Å

  • V = 2016.2 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.03 mm−1

  • T = 293 K

  • 0.28 × 0.25 × 0.21 mm

Data collection
  • Rigaku Mercury70 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.421, Tmax = 0.558

  • 19754 measured reflections

  • 2361 independent reflections

  • 1938 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.065

  • S = 1.08

  • 2361 reflections

  • 98 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1D⋯Cl3i 0.90 2.40 3.226 (3) 153
N1—H1E⋯Cl1ii 0.90 2.48 3.373 (3) 173
Symmetry codes: (i) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: SCXmini Benchtop Crystallography System Software (Rigaku, 2006[Rigaku (2006). SCXmini Benchtop Crystallography System Software. Rigaku Americas Corporation, The Woodlands, Texas, USA.]); cell refinement: SCXmini Benchtop Crystallography System Software; data reduction: SCXmini Benchtop Crystallography System Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a contribution to a search for new ferroelectric materials (Fu et al., 2009; Ye et al., 2006; Zhang et al., 2008; Zhang et al., 2010), we have synthesized the title compound, (I). Herewith we present its crystal structure.

The asymmetric unit of (I), 2(C6H14N)+[SbCl5]2-, contains one cation and one-half of the anion in a special position (Fig. 1). The Sb1 atoms coordinated in a slightly distorted square-pyramidal geometry by five Cl atoms and distance of the top Cl2 and Sb1 is 2.3721 (11) Å much shorter than the mean values of other Sb—Cl[2.636 (11) Å]. The bond angles around the Sb1 are in the range 84.93 (2)–91.454 (19)° and correspond to those observed in the related compound 2(C12H18N)+[SbCl5]2- (Marsh, 1995).

In the crystal structure, intermolecular N—H···Cl hydrogen bonds (Table 1) link cations and anions into columns propagated in [100] (Fig. 2). In the title compound, no dielectric anomalies were observed in the range from 190 K to its melting point, which is more than 357 K.

Related literature top

For the crystal structure of bis(4-benzylpiperidinium) pentachloridoantimonate(III), see: Marsh (1995). For background to ferroelectric metal-organic frameworks, see: Fu et al. (2009); Ye et al. (2006); Zhang et al. (2008, 2010).

Experimental top

The mixture of SbCl3(1.1 g, 5 mmol) and 2-methypiperidine (1.05 g, 10 mmol) in hydrochloric acid solution was stirred for several minutes at room temperature. Colourless crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of the solution at room temperature over 2 weeks.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H = 0.93–0.98 Å and N—H = 0.90 Å, and with Uiso(H) = 1.2–1.5 Uiso(C, N).

Computing details top

Data collection: SCXmini Benchtop Crystallography System Software (Rigaku, 2006); cell refinement: SCXmini Benchtop Crystallography System Software (Rigaku, 2006); data reduction: SCXmini Benchtop Crystallography System Software (Rigaku, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the (I), with the displacement ellipsoids drawn at the 30% probability level [symmetry code: (A) x, 0.5 - y, z].
[Figure 2] Fig. 2. A portion of the packing diagram with hydrogen bonds shown as dashed lines.
Bis(2-methylpiperidinium) pentachloridoantimonate(III) top
Crystal data top
(C6H14N)2[SbCl5]F(000) = 1000
Mr = 499.36Dx = 1.645 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 2361 reflections
a = 7.5995 (15) Åθ = 2.2–27.5°
b = 23.165 (5) ŵ = 2.03 mm1
c = 11.453 (2) ÅT = 293 K
V = 2016.2 (7) Å3Block, colourless
Z = 40.28 × 0.25 × 0.21 mm
Data collection top
Rigaku Mercury70 CCD
diffractometer
2361 independent reflections
Radiation source: fine-focus sealed tube1938 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 99
Tmin = 0.421, Tmax = 0.558k = 3030
19754 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0181P)2 + 1.8699P]
where P = (Fo2 + 2Fc2)/3
2361 reflections(Δ/σ)max = 0.001
98 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
(C6H14N)2[SbCl5]V = 2016.2 (7) Å3
Mr = 499.36Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 7.5995 (15) ŵ = 2.03 mm1
b = 23.165 (5) ÅT = 293 K
c = 11.453 (2) Å0.28 × 0.25 × 0.21 mm
Data collection top
Rigaku Mercury70 CCD
diffractometer
2361 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1938 reflections with I > 2σ(I)
Tmin = 0.421, Tmax = 0.558Rint = 0.061
19754 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 1.08Δρmax = 0.58 e Å3
2361 reflectionsΔρmin = 0.52 e Å3
98 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8199 (5)0.1245 (2)0.1957 (3)0.0703 (12)
H1A0.78170.16310.21290.105*
H1B0.78410.09910.25750.105*
H1C0.94570.12380.18870.105*
C20.7387 (5)0.10494 (17)0.0830 (3)0.0554 (10)
H20.61060.10810.09000.066*
C30.7834 (6)0.04338 (18)0.0511 (4)0.0750 (13)
H3A0.73470.01770.10980.090*
H3B0.91030.03880.05190.090*
C40.7143 (7)0.0260 (2)0.0672 (4)0.0866 (15)
H4A0.75360.01280.08550.104*
H4B0.58660.02590.06590.104*
C50.7785 (6)0.06724 (18)0.1599 (4)0.0707 (12)
H5A0.72840.05660.23480.085*
H5B0.90550.06470.16610.085*
C60.7275 (5)0.12723 (16)0.1310 (3)0.0552 (10)
H6A0.77410.15340.18950.066*
H6B0.60020.13060.13140.066*
N10.7977 (4)0.14369 (12)0.0122 (3)0.0499 (7)
H1D0.76320.17990.00440.060*
H1E0.91600.14350.01470.060*
Cl10.73805 (11)0.13613 (4)0.45405 (8)0.0508 (2)
Cl20.58634 (15)0.25000.61136 (10)0.0463 (3)
Cl31.05345 (15)0.25000.57047 (11)0.0489 (3)
Cl40.48085 (16)0.25000.31467 (11)0.0529 (3)
Sb10.76256 (3)0.25000.44041 (2)0.03097 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.070 (3)0.095 (3)0.046 (2)0.005 (2)0.001 (2)0.007 (2)
C20.047 (2)0.065 (2)0.054 (2)0.0012 (18)0.0107 (18)0.0133 (18)
C30.090 (3)0.048 (2)0.088 (3)0.004 (2)0.006 (3)0.017 (2)
C40.111 (4)0.051 (3)0.098 (4)0.014 (3)0.008 (3)0.005 (3)
C50.077 (3)0.071 (3)0.064 (3)0.007 (2)0.003 (2)0.012 (2)
C60.065 (2)0.051 (2)0.050 (2)0.0070 (19)0.0054 (19)0.0070 (17)
N10.0522 (17)0.0429 (17)0.0547 (18)0.0026 (14)0.0054 (15)0.0050 (14)
Cl10.0496 (5)0.0453 (5)0.0576 (5)0.0051 (4)0.0006 (4)0.0039 (4)
Cl20.0521 (7)0.0532 (7)0.0336 (6)0.0000.0144 (5)0.000
Cl30.0438 (6)0.0535 (7)0.0493 (7)0.0000.0117 (6)0.000
Cl40.0481 (7)0.0584 (8)0.0523 (7)0.0000.0189 (6)0.000
Sb10.02942 (15)0.03721 (16)0.02627 (14)0.0000.00072 (12)0.000
Geometric parameters (Å, º) top
C1—C21.500 (5)C5—C61.480 (5)
C1—H1A0.9600C5—H5A0.9700
C1—H1B0.9600C5—H5B0.9700
C1—H1C0.9600C6—N11.511 (5)
C2—N11.481 (4)C6—H6A0.9700
C2—C31.511 (6)C6—H6B0.9700
C2—H20.9800N1—H1D0.9000
C3—C41.509 (6)N1—H1E0.9000
C3—H3A0.9700Cl1—Sb12.6491 (10)
C3—H3B0.9700Cl2—Sb12.3721 (11)
C4—C51.510 (6)Cl3—Sb12.6656 (12)
C4—H4A0.9700Cl4—Sb12.5802 (12)
C4—H4B0.9700Sb1—Cl1i2.6491 (10)
C2—C1—H1A109.5C4—C5—H5A109.5
C2—C1—H1B109.5C6—C5—H5B109.5
H1A—C1—H1B109.5C4—C5—H5B109.5
C2—C1—H1C109.5H5A—C5—H5B108.1
H1A—C1—H1C109.5C5—C6—N1110.3 (3)
H1B—C1—H1C109.5C5—C6—H6A109.6
N1—C2—C1109.0 (3)N1—C6—H6A109.6
N1—C2—C3109.0 (3)C5—C6—H6B109.6
C1—C2—C3113.6 (3)N1—C6—H6B109.6
N1—C2—H2108.4H6A—C6—H6B108.1
C1—C2—H2108.4C2—N1—C6113.8 (3)
C3—C2—H2108.4C2—N1—H1D108.8
C4—C3—C2113.0 (4)C6—N1—H1D108.8
C4—C3—H3A109.0C2—N1—H1E108.8
C2—C3—H3A109.0C6—N1—H1E108.8
C4—C3—H3B109.0H1D—N1—H1E107.7
C2—C3—H3B109.0Cl2—Sb1—Cl489.56 (5)
H3A—C3—H3B107.8Cl2—Sb1—Cl184.93 (2)
C3—C4—C5110.5 (4)Cl4—Sb1—Cl188.54 (2)
C3—C4—H4A109.6Cl2—Sb1—Cl1i84.93 (2)
C5—C4—H4A109.6Cl4—Sb1—Cl1i88.542 (19)
C3—C4—H4B109.6Cl1—Sb1—Cl1i169.47 (4)
C5—C4—H4B109.6Cl2—Sb1—Cl390.40 (4)
H4A—C4—H4B108.1Cl4—Sb1—Cl3179.96 (4)
C6—C5—C4110.6 (4)Cl1—Sb1—Cl391.454 (19)
C6—C5—H5A109.5Cl1i—Sb1—Cl391.454 (19)
N1—C2—C3—C453.2 (5)C4—C5—C6—N156.7 (5)
C1—C2—C3—C4175.0 (4)C1—C2—N1—C6178.6 (3)
C2—C3—C4—C555.2 (6)C3—C2—N1—C654.0 (4)
C3—C4—C5—C656.5 (5)C5—C6—N1—C257.2 (4)
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1D···Cl3ii0.902.403.226 (3)153
N1—H1E···Cl1iii0.902.483.373 (3)173
Symmetry codes: (ii) x1/2, y, z+1/2; (iii) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formula(C6H14N)2[SbCl5]
Mr499.36
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)293
a, b, c (Å)7.5995 (15), 23.165 (5), 11.453 (2)
V3)2016.2 (7)
Z4
Radiation typeMo Kα
µ (mm1)2.03
Crystal size (mm)0.28 × 0.25 × 0.21
Data collection
DiffractometerRigaku Mercury70 CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.421, 0.558
No. of measured, independent and
observed [I > 2σ(I)] reflections
19754, 2361, 1938
Rint0.061
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.065, 1.08
No. of reflections2361
No. of parameters98
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.52

Computer programs: SCXmini Benchtop Crystallography System Software (Rigaku, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1D···Cl3i0.902.403.226 (3)153.1
N1—H1E···Cl1ii0.902.483.373 (3)172.6
Symmetry codes: (i) x1/2, y, z+1/2; (ii) x+1/2, y, z+1/2.
 

Acknowledgements

This work was supported by Southeast University.

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997.  Web of Science CSD CrossRef CAS Google Scholar
First citationMarsh, R. E. (1995). Acta Cryst. B51, 897–907.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2006). SCXmini Benchtop Crystallography System Software. Rigaku Americas Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc. 128, 6554–6555.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468–10469.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Am. Chem. Soc. 132, 7300–7302.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds