metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Cyano­methyl-1,4-diazo­niabi­cyclo­[2.2.2]octane tetra­chloridocobaltate(II)

aOrdered Matter Science Research Center, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: yizhang1980@yahoo.com.cn

(Received 8 April 2012; accepted 18 April 2012; online 25 April 2012)

In the title salt, (C8H15N3)[CoCl4], the four chloride anions coordinate the CoII ion in a distorted tetra­hedral geometry. In the crystal, N—H⋯Cl hydrogen bonds link cations and anions into chains running along the c axis. The crystal packing is further stabilized by weak C—H⋯Cl and C—H⋯N inter­actions.

Related literature

Crystal structures of related Cu and Cd analogs were reported by Wei (2010[Wei, B. (2010). Acta Cryst. E66, m1625.]) and Zhang & Zhu (2012[Zhang, Y. & Zhu, B. H. (2012). Acta Cryst. E68, submitted [PV2531].]), respectively. For ferroelectric properties of 1,4-diaza­bicyclo­[2.2.2]octane deriv­atives, see: Zhang et al. (2009[Zhang, W., Ye, H.-Y. & Xiong, R.-G. (2009). Coord. Chem. Rev. 253, 2980-2997.], 2010[Zhang, W., Ye, H. Y., Cai, H. L., Ge, J. Z., Xiong, R. G. & Huang, S. D. (2010). J. Am. Chem. Soc. 132, 7300-7302.]).

[Scheme 1]

Experimental

Crystal data
  • (C8H15N3)[CoCl4]

  • Mr = 353.96

  • Monoclinic, P 21 /c

  • a = 8.3085 (17) Å

  • b = 13.604 (3) Å

  • c = 12.185 (2) Å

  • β = 93.78 (3)°

  • V = 1374.3 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.00 mm−1

  • T = 298 K

  • 0.36 × 0.32 × 0.28 mm

Data collection
  • Rigaku Mercury70 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.491, Tmax = 0.571

  • 13757 measured reflections

  • 3152 independent reflections

  • 2724 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.135

  • S = 0.98

  • 3152 reflections

  • 149 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H10⋯Cl3i 0.86 (5) 2.52 (5) 3.236 (3) 140 (4)
N2—H10⋯Cl2ii 0.86 (5) 2.65 (5) 3.225 (3) 125 (4)
C3—H3B⋯Cl1iii 0.97 2.74 3.647 (4) 156
C7—H7A⋯Cl2iii 0.97 2.58 3.492 (4) 156
C2—H2A⋯Cl3iv 0.97 2.73 3.543 (4) 142
C3—H3A⋯N3v 0.97 2.58 2.983 (4) 105
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x, -y+2, -z; (iii) -x+1, -y+2, -z; (iv) [x, -y+{\script{5\over 2}}, z+{\script{1\over 2}}]; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SCXmini Benchtop Crystallography System Software (Rigaku, 2006[Rigaku (2006). SCXmini Benchtop Crystallography System Software. Rigaku Americas Corporation, The Woodlands, Texas, USA.]); cell refinement: SCXmini Benchtop Crystallography System Software; data reduction: SCXmini Benchtop Crystallography System Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, (I), has been obtained in the framework of a systematic investigation of dielectric-ferroelectric materials containing 1,4-diazabicyclo[2.2.2]octane (DABCO) (Zhang, Ye et al., 2009; Zhang, Ye et al., 2010). The asymmetric unit of (I) (Fig. 1) contains one cation, (C8H15N3)2+, and one anion, (CoCl4)2-. All bond lengths and angles are normal and correspond to those observed in isostructural Cu (Wei, 2010) and Cd (Zhang & Zhu, 2012) analogs. The Co centers are coordinated by four Cl atoms with very similar distances in the range of2.2749 (12) to 2.2910 (12) Å. The Cl—Co—Cl bond angles are between 103.21 (4) and 113.85 (5) ° which shows that the coordination polyhedron can be described as a slightly distorted tetrahedron. The ammonium groups of the organic cations are engaged in bifurcated hydrogen bonds to chlorine atoms of two (CoCl4)2- anions. These weak N—H···Cl interactions cause the formation of a one-dimensional chain along the [0 0 1] (Fig. 2). The crystal packing is further stabilized by the weak intermolecular C—H···Cl and C—H···N interactions (Table 2).

Related literature top

Crystal structures of related Cu and Cd analogs were reported by Wei (2010) and Zhang & Zhu (2012), respectively. For ferroelectric properties of 1,4-diazabicyclo[2.2.2]octane derivatives, see: Zhang et al. (2009, 2010).

Experimental top

Chloroacetonitrile(0.1 mol, 7.55 g) was added to a CH3CN (25 ml) solution of 1,4-Diaza-bicyclo[2.2.2]octane (DABCO) (0.1 mol, 11.2 g) with stirring for 1 h at room temperature. 1-(cyanomethyl)-4-aza-1-azonia-bicyclo[2.2.2]octane chloride quickly formed as white solid was filtered, washed with acetonitrile and dried (yield: 80%). CoCl2.6H2O (0.01 mol, 2.38 g) and 1 g 36% HCl were dissolved in H2O (20 ml) and 1-(cyanomethyl)-4-aza-1-azonia-bicyclo[2.2.2]octane chloride (0.01 mol, 1.875 g) in H2O (20 ml) was added. The resulting solution was stirred until a clear solution was obtained. After slow evaporation of the solvent, blue block crystals of the title compound suitable for X-ray analysis were obtained in about 60% yield.The title compound has no dielectric disuniform from 80 K to 373 K, (m.p. > 373 K).

Refinement top

N-bound atom H1 was located on a difference map and isotropically refined. C-bound H atoms were geometrically positioned (C—H 0.97 Å) and refined as riding, with Uiso(H) =1.2 Ueq(C).

Computing details top

Data collection: SCXmini Benchtop Crystallography System Software (Rigaku, 2006); cell refinement: SCXmini Benchtop Crystallography System Software (Rigaku, 2006); data reduction: SCXmini Benchtop Crystallography System Software (Rigaku, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A portion of the crystal packing viewed along the a axis. Dotted lines indicate N—H···Cl hydrogen bonds.
1-Cyanomethyl-1,4-diazoniabicyclo[2.2.2]octane tetrachloridocobaltate(II) top
Crystal data top
(C8H15N3)[CoCl4]F(000) = 716
Mr = 353.96Dx = 1.711 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2622 reflections
a = 8.3085 (17) Åθ = 3.1–27.5°
b = 13.604 (3) ŵ = 2.00 mm1
c = 12.185 (2) ÅT = 298 K
β = 93.78 (3)°Block, blue
V = 1374.3 (5) Å30.36 × 0.32 × 0.28 mm
Z = 4
Data collection top
Rigaku Mercury70 CCD
diffractometer
3152 independent reflections
Radiation source: fine-focus sealed tube2724 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = 1010
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1717
Tmin = 0.491, Tmax = 0.571l = 1515
13757 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.069P)2 + 4.1266P]
where P = (Fo2 + 2Fc2)/3
3152 reflections(Δ/σ)max = 0.001
149 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
(C8H15N3)[CoCl4]V = 1374.3 (5) Å3
Mr = 353.96Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.3085 (17) ŵ = 2.00 mm1
b = 13.604 (3) ÅT = 298 K
c = 12.185 (2) Å0.36 × 0.32 × 0.28 mm
β = 93.78 (3)°
Data collection top
Rigaku Mercury70 CCD
diffractometer
3152 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2724 reflections with I > 2σ(I)
Tmin = 0.491, Tmax = 0.571Rint = 0.057
13757 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.58 e Å3
3152 reflectionsΔρmin = 0.52 e Å3
149 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.22754 (6)1.23132 (4)0.01115 (4)0.02235 (17)
Cl20.22305 (12)1.24111 (8)0.19820 (7)0.0304 (2)
Cl30.19972 (12)1.39179 (7)0.04142 (8)0.0276 (2)
Cl40.00899 (12)1.14672 (8)0.04230 (8)0.0321 (2)
Cl10.46675 (12)1.16243 (8)0.04912 (8)0.0325 (2)
N20.1021 (4)0.8570 (2)0.3083 (3)0.0232 (7)
C80.5802 (5)1.0508 (3)0.2980 (4)0.0295 (9)
N10.3699 (3)0.9263 (2)0.2626 (2)0.0179 (6)
C70.5319 (5)0.9636 (3)0.2328 (3)0.0254 (8)
H7A0.61200.91230.24580.031*
H7B0.52700.98010.15520.031*
C20.3635 (5)0.9171 (4)0.3857 (3)0.0304 (9)
H2A0.36990.98170.41920.037*
H2B0.45450.87860.41540.037*
C60.0766 (5)0.9545 (3)0.2549 (4)0.0328 (9)
H6A0.03311.00040.30620.039*
H6B0.00000.94850.19160.039*
C50.1811 (5)0.7878 (3)0.2331 (3)0.0284 (9)
H5A0.11730.78310.16370.034*
H5B0.18830.72280.26570.034*
C40.2072 (5)0.8675 (3)0.4119 (3)0.0275 (8)
H4A0.22970.80330.44390.033*
H4B0.15260.90660.46460.033*
C10.2367 (5)0.9922 (4)0.2188 (4)0.0395 (11)
H1A0.23440.99390.13910.047*
H1B0.25531.05850.24600.047*
N30.6229 (5)1.1147 (3)0.3508 (3)0.0417 (10)
C30.3479 (5)0.8252 (3)0.2136 (4)0.0338 (10)
H3A0.42830.78090.24720.041*
H3B0.36200.82770.13530.041*
H100.009 (6)0.840 (4)0.329 (4)0.032 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0229 (3)0.0220 (3)0.0222 (3)0.0000 (2)0.00147 (19)0.00076 (19)
Cl20.0287 (5)0.0414 (6)0.0211 (4)0.0016 (4)0.0011 (3)0.0027 (4)
Cl30.0320 (5)0.0209 (5)0.0305 (5)0.0024 (4)0.0066 (4)0.0011 (4)
Cl40.0302 (5)0.0298 (5)0.0366 (5)0.0057 (4)0.0045 (4)0.0038 (4)
Cl10.0283 (5)0.0377 (6)0.0312 (5)0.0063 (4)0.0012 (4)0.0073 (4)
N20.0190 (15)0.0256 (17)0.0257 (15)0.0021 (13)0.0063 (12)0.0035 (13)
C80.027 (2)0.023 (2)0.038 (2)0.0038 (17)0.0002 (16)0.0084 (17)
N10.0182 (14)0.0165 (15)0.0190 (14)0.0004 (12)0.0023 (11)0.0008 (11)
C70.0220 (18)0.026 (2)0.0294 (19)0.0053 (15)0.0074 (15)0.0016 (15)
C20.0255 (19)0.047 (3)0.0185 (17)0.0080 (18)0.0007 (14)0.0004 (17)
C60.025 (2)0.031 (2)0.043 (2)0.0093 (17)0.0031 (17)0.0025 (18)
C50.0262 (19)0.026 (2)0.034 (2)0.0063 (16)0.0053 (16)0.0129 (16)
C40.030 (2)0.035 (2)0.0182 (16)0.0063 (17)0.0057 (15)0.0023 (15)
C10.028 (2)0.031 (2)0.059 (3)0.0022 (18)0.005 (2)0.020 (2)
N30.052 (2)0.028 (2)0.044 (2)0.0136 (18)0.0076 (18)0.0070 (17)
C30.034 (2)0.026 (2)0.044 (2)0.0080 (17)0.0192 (19)0.0181 (18)
Geometric parameters (Å, º) top
Co1—Cl12.2749 (12)C2—C41.516 (5)
Co1—Cl42.2808 (12)C2—H2A0.9700
Co1—Cl22.2809 (11)C2—H2B0.9700
Co1—Cl32.2910 (12)C6—C11.518 (6)
N2—C61.487 (5)C6—H6A0.9700
N2—C41.493 (5)C6—H6B0.9700
N2—C51.496 (5)C5—C31.510 (6)
N2—H100.86 (5)C5—H5A0.9700
C8—N31.125 (6)C5—H5B0.9700
C8—C71.469 (6)C4—H4A0.9700
N1—C11.495 (5)C4—H4B0.9700
N1—C71.505 (4)C1—H1A0.9700
N1—C31.506 (5)C1—H1B0.9700
N1—C21.510 (5)C3—H3A0.9700
C7—H7A0.9700C3—H3B0.9700
C7—H7B0.9700
Cl1—Co1—Cl4113.26 (5)N2—C6—C1109.0 (3)
Cl1—Co1—Cl2107.64 (5)N2—C6—H6A109.9
Cl4—Co1—Cl2110.73 (5)C1—C6—H6A109.9
Cl1—Co1—Cl3113.85 (5)N2—C6—H6B109.9
Cl4—Co1—Cl3107.70 (4)C1—C6—H6B109.9
Cl2—Co1—Cl3103.21 (4)H6A—C6—H6B108.3
C6—N2—C4110.1 (3)N2—C5—C3109.2 (3)
C6—N2—C5110.4 (3)N2—C5—H5A109.8
C4—N2—C5108.9 (3)C3—C5—H5A109.8
C6—N2—H10105 (3)N2—C5—H5B109.8
C4—N2—H10106 (3)C3—C5—H5B109.8
C5—N2—H10116 (3)H5A—C5—H5B108.3
N3—C8—C7176.4 (5)N2—C4—C2109.0 (3)
C1—N1—C7111.4 (3)N2—C4—H4A109.9
C1—N1—C3109.8 (3)C2—C4—H4A109.9
C7—N1—C3107.4 (3)N2—C4—H4B109.9
C1—N1—C2109.3 (3)C2—C4—H4B109.9
C7—N1—C2111.0 (3)H4A—C4—H4B108.3
C3—N1—C2107.8 (3)N1—C1—C6109.7 (3)
C8—C7—N1111.0 (3)N1—C1—H1A109.7
C8—C7—H7A109.4C6—C1—H1A109.7
N1—C7—H7A109.4N1—C1—H1B109.7
C8—C7—H7B109.4C6—C1—H1B109.7
N1—C7—H7B109.4H1A—C1—H1B108.2
H7A—C7—H7B108.0N1—C3—C5109.5 (3)
N1—C2—C4109.5 (3)N1—C3—H3A109.8
N1—C2—H2A109.8C5—C3—H3A109.8
C4—C2—H2A109.8N1—C3—H3B109.8
N1—C2—H2B109.8C5—C3—H3B109.8
C4—C2—H2B109.8H3A—C3—H3B108.2
H2A—C2—H2B108.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H10···Cl3i0.86 (5)2.52 (5)3.236 (3)140 (4)
N2—H10···Cl2ii0.86 (5)2.65 (5)3.225 (3)125 (4)
C3—H3B···Cl1iii0.972.743.647 (4)156
C7—H7A···Cl2iii0.972.583.492 (4)156
C2—H2A···Cl3iv0.972.733.543 (4)142
C3—H3A···N3v0.972.582.983 (4)105
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+2, z; (iii) x+1, y+2, z; (iv) x, y+5/2, z+1/2; (v) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula(C8H15N3)[CoCl4]
Mr353.96
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)8.3085 (17), 13.604 (3), 12.185 (2)
β (°) 93.78 (3)
V3)1374.3 (5)
Z4
Radiation typeMo Kα
µ (mm1)2.00
Crystal size (mm)0.36 × 0.32 × 0.28
Data collection
DiffractometerRigaku Mercury70 CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.491, 0.571
No. of measured, independent and
observed [I > 2σ(I)] reflections
13757, 3152, 2724
Rint0.057
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.135, 0.98
No. of reflections3152
No. of parameters149
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.58, 0.52

Computer programs: SCXmini Benchtop Crystallography System Software (Rigaku, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H10···Cl3i0.86 (5)2.52 (5)3.236 (3)140 (4)
N2—H10···Cl2ii0.86 (5)2.65 (5)3.225 (3)125 (4)
C3—H3B···Cl1iii0.972.743.647 (4)155.7
C7—H7A···Cl2iii0.972.583.492 (4)155.9
C2—H2A···Cl3iv0.972.733.543 (4)141.8
C3—H3A···N3v0.972.582.983 (4)105.1
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+2, z; (iii) x+1, y+2, z; (iv) x, y+5/2, z+1/2; (v) x+1, y1/2, z+1/2.
 

Acknowledgements

This work was supported by the Start-up Projects for Postdoctoral Research Funds (grant No. 1112000064), the Major Postdoctoral Research Funds (grant No. 3212000602) of Southeast University and Jiangsu Planned Projects for Postdoctoral Research Funds (grant No. 1101010B).

References

First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2006). SCXmini Benchtop Crystallography System Software. Rigaku Americas Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWei, B. (2010). Acta Cryst. E66, m1625.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, W., Ye, H. Y., Cai, H. L., Ge, J. Z., Xiong, R. G. & Huang, S. D. (2010). J. Am. Chem. Soc. 132, 7300–7302.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhang, W., Ye, H.-Y. & Xiong, R.-G. (2009). Coord. Chem. Rev. 253, 2980–2997.  Web of Science CrossRef CAS Google Scholar
First citationZhang, Y. & Zhu, B. H. (2012). Acta Cryst. E68, submitted [PV2531].  CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds