organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1316-o1317

N-(2,4-Di­methyl­phen­yl)-2,2-di­phenyl­acetamide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and cDepartment of Chemistry, P.A. College of Engineering, Nadupadavu, Montepadavu, PO, Mangalore 574 153, India
*Correspondence e-mail: hkfun@usm.my

(Received 14 March 2012; accepted 31 March 2012; online 6 April 2012)

The asymmetric unit of the title compound, C22H21NO, consists of two crystallographically independent mol­ecules (A and B). Each mol­ecule contains two benzene rings and one dimethyl­benzene ring. The dihedral angle between the two benzene rings is 87.75 (16)° in mol­ecule A and 89.25 (16)° in mol­ecule B. In mol­ecule A, the dimethyl­benzene ring forms dihedral angles of 89.65 (8) and 42.98 (11)° with the two benzene rings, whereas the corresponding angles are equal to 63.15 (7) and 58.67 (10)° in mol­ecule B. An intra­molecular C—H⋯O hydrogen bond generates an S(6) ring motif in each mol­ecule. In the crystal, mol­ecules are linked by bifurcated (N,C)—H⋯O hydrogen bonds, generating R21(6) ring motifs and forming infinite chains along the a axis. The crystal is further stabilized by C—H⋯π and ππ inter­actions with centroid–centroid distances of 3.8543 (18) and 3.930 (2) Å.

Related literature

For the structural similarity of N-substituted 2-aryl­acetamides to the lateral chain of natural benzyl­penicillin, see: Mijin & Marinkovic (2006[Mijin, D. & Marinkovic, A. (2006). Synth. Commun. 36, 193-198.]); Mijin et al. (2008[Mijin, D. Z., Prascevic, M. & Petrovic, S. D. (2008). J. Serb. Chem. Soc. 73, 945-950.]). For the coordination abilities of amides, see: Wu et al. (2008[Wu, W.-N., Cheng, F.-X., Yan, L. & Tang, N. (2008). J. Coord. Chem. 61, 2207-2215.], 2010[Wu, W.-N., Wang, Y., Zhang, A.-Y., Zhao, R.-Q. & Wang, Q.-F. (2010). Acta Cryst. E66, m288.]). For related structures, see: Praveen et al. (2011a[Praveen, A. S., Jasinski, J. P., Golen, J. A., Narayana, B. & Yathirajan, H. S. (2011a). Acta Cryst. E67, o1826.],b[Praveen, A. S., Jasinski, J. P., Golen, J. A., Yathirajan, H. S. & Narayana, B. (2011b). Acta Cryst. E67, o2602-o2603.],c[Praveen, A. S., Jasinski, J. P., Golen, J. A., Narayana, B. & Yathirajan, H. S. (2011c). Acta Cryst. E67, o2604.]); Fun et al. (2011a[Fun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011a). Acta Cryst. E67, o2926-o2927.],b[Fun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011b). Acta Cryst. E67, o2941-o2942.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For reference bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C22H21NO

  • Mr = 315.40

  • Triclinic, [P \overline 1]

  • a = 9.5520 (9) Å

  • b = 10.2011 (10) Å

  • c = 17.9656 (17) Å

  • α = 91.030 (2)°

  • β = 98.957 (2)°

  • γ = 90.377 (2)°

  • V = 1728.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 100 K

  • 0.41 × 0.19 × 0.17 mm

Data collection
  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.970, Tmax = 0.987

  • 30869 measured reflections

  • 7858 independent reflections

  • 6570 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.085

  • wR(F2) = 0.261

  • S = 1.14

  • 7858 reflections

  • 445 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg4 and Cg5 are the centroids of the C1A–C6A, C1B–C6B and C8B–C13B rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1NA⋯O1Bi 0.88 (4) 2.13 (4) 2.980 (3) 163 (3)
N1B—H1NB⋯O1A 0.86 (5) 2.18 (5) 3.012 (3) 162 (3)
C7A—H7AA⋯O1Bi 1.00 2.32 3.258 (4) 155
C9A—H9AA⋯O1A 0.95 2.48 3.110 (4) 123
C7B—H7BA⋯O1A 1.00 2.27 3.225 (4) 160
C13B—H13B⋯O1B 0.95 2.46 3.087 (4) 124
C3A—H3AACg5ii 0.95 2.89 3.754 (4) 151
C4A—H4AACg4 0.95 2.84 3.539 (4) 131
C13A—H13ACg4i 0.95 2.68 3.561 (3) 154
C9B—H9BACg1 0.95 2.62 3.546 (3) 167
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

N-Substituted 2-arylacetamides are very interesting compounds because of their structural similarity to the lateral chain of natural benzylpenicillin (Mijin & Marinkovic, 2006; Mijin et al., 2008). Amides are also used as ligands due to their excellent coordination abilities (Wu et al., 2008, 2010). Crystal structures of some acetamide derivatives viz., N-(4-chloro-1,3-benzothiazol-2-yl)-2-(3-methylphenyl)acetamide monohydrate, N-(3-chloro-4-fluorophenyl)-2,2-diphenylacetamide and N-(3-chloro-4-fluorophenyl)-2-(naphthalen-1-yl)acetamide (Praveen et al., 2011a,b,c) have been reported. In continuation of our work on synthesis of amides (Fun et al., 2011a,b), we report herein the crystal structure of the title compound (I).

The asymmetric unit of the title compound consists of two crystallographically independent molecules (A and B) as shown in Fig. 1. Each molecule contains two benzene rings (C1–C6 & C8–C13) and one dimethylbenzene ring (C15–C22) [maximum deviation = 0.0185 (27) Å at atom C19A in molecule A and 0.0155 (21) Å at atom C21B in molecule B]. The dihedral angle between the two benzene rings is 87.75 (16)° in molecule A and 89.25 (16)° in molecule B. In molecule A, the dimethylbenzene ring forms dihedral angles of 89.65 (8) and 42.98 (11)° with the two benzene rings (C1–C6 and C8–C13 respectively), whereas the corresponding angles are equal to 63.15 (7) and 58.67 (10)° in molecule B. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to related structures (Fun et al., 2011a,b). Intramolecular C9A—H9AA···O1A hydrogen bond (Table 1) generates an S(6) ring motif (Fig. 1; Bernstein et al., 1995) in molecule A, whereas the same ring motif is generated by C13B—H13B···O1B hydrogen bonds in molecule B.

In the crystal, molecules are linked by intermolecular bifurcated N1A—H1NA···O1B, N1B—H1NB···O1A, C7A—H7AA···O1B and C7B—H7BA···O1A hydrogen bonds (Table 1), generating R21(6) ring motifs and forming infinite chains along the a axis. The crystal is further stabilized by C—H···π interactions, involving Cg1, Cg4 and Cg5 which are the centroids of C1A–C6A, C1B–C6B and C8B–C13B rings, respectively. ππ interactions are also observed with Cg3···Cg3 and Cg6···Cg6 distances of 3.8543 (18) Å[symmetry code: –X,-Y,-Z] and 3.930 (2) Å[symmetry code: 1-X,1-Y,-Z], where Cg3 and Cg6 are the centroids of C15A–C20A and C15B–C20B, respectively.

Related literature top

For the structural similarity of N-substituted 2-arylacetamides to the lateral chain of natural benzylpenicillin, see: Mijin & Marinkovic (2006); Mijin et al. (2008). For the coordination abilities of amides, see: Wu et al. (2008, 2010). For related structures, see: Praveen et al. (2011a,b,c); Fun et al. (2011a,b). For hydrogen-bond motifs, see: Bernstein et al. (1995). For reference bond lengths, see: Allen et al. (1987).

Experimental top

Diphenylacetic acid (0.212 g, 1 mmol), 2,4-dimethylaniline (0.1 ml, 1 mmol) and 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (1.0 g, 0.01 mol) were dissolved in dichloromethane (20 ml). The mixture was stirred in the presence of triethylamine at 273 K for about 3 h. The contents were poured into 100 ml of ice-cold aqueous hydrochloric acid with stirring which was then extracted thrice with dichloromethane. Organic layer was washed with saturated NaHCO3 solution and brine solution, dried and concentrated under reduced pressure to give the title compound (I). Single crystals were grown from methylene chloride and ethanol (1:1) mixture by the slow evaporation method (M.P.: 430–432 K).

Refinement top

Atom H1NA and H1NB were located from difference fourier map and refined freely [N—H = 0.88 (4) and 0.86 (5) Å]. The remaining H atoms were positioned geometrically [C—H = 0.95, 0.98 and 1.00 Å] and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl group. Three outliers (-3 1 3), (4 - 1 6) and (1 - 1 13) were omitted.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels with 50% probability displacement ellipsoids. Intramolecular hydrogen bonds are shown by dashed lines.
[Figure 2] Fig. 2. The crystal packing of the title compound. The dashed lines represent the hydrogen bonds.
N-(2,4-Dimethylphenyl)-2,2-diphenylacetamide top
Crystal data top
C22H21NOZ = 4
Mr = 315.40F(000) = 672
Triclinic, P1Dx = 1.212 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5520 (9) ÅCell parameters from 9946 reflections
b = 10.2011 (10) Åθ = 2.3–32.3°
c = 17.9656 (17) ŵ = 0.07 mm1
α = 91.030 (2)°T = 100 K
β = 98.957 (2)°Block, colourless
γ = 90.377 (2)°0.41 × 0.19 × 0.17 mm
V = 1728.9 (3) Å3
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
7858 independent reflections
Radiation source: fine-focus sealed tube6570 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1212
Tmin = 0.970, Tmax = 0.987k = 1313
30869 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.085Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.261H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.097P)2 + 5.029P]
where P = (Fo2 + 2Fc2)/3
7858 reflections(Δ/σ)max < 0.001
445 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C22H21NOγ = 90.377 (2)°
Mr = 315.40V = 1728.9 (3) Å3
Triclinic, P1Z = 4
a = 9.5520 (9) ÅMo Kα radiation
b = 10.2011 (10) ŵ = 0.07 mm1
c = 17.9656 (17) ÅT = 100 K
α = 91.030 (2)°0.41 × 0.19 × 0.17 mm
β = 98.957 (2)°
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
7858 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
6570 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.987Rint = 0.040
30869 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0850 restraints
wR(F2) = 0.261H atoms treated by a mixture of independent and constrained refinement
S = 1.14Δρmax = 0.61 e Å3
7858 reflectionsΔρmin = 0.42 e Å3
445 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.2422 (2)0.2899 (2)0.22082 (12)0.0202 (5)
N1A0.0206 (3)0.2282 (3)0.16612 (14)0.0173 (5)
C1A0.0812 (3)0.1366 (3)0.3930 (2)0.0233 (6)
H1AA0.00620.09950.36920.028*
C2A0.1554 (4)0.0785 (3)0.4571 (2)0.0281 (7)
H2AA0.11710.00320.47720.034*
C3A0.2845 (4)0.1301 (3)0.49134 (18)0.0255 (7)
H3AA0.33440.09020.53490.031*
C4A0.3407 (4)0.2397 (3)0.46204 (18)0.0226 (6)
H4AA0.43010.27430.48480.027*
C5A0.2655 (3)0.2991 (3)0.39907 (17)0.0190 (6)
H5AA0.30330.37530.37960.023*
C6A0.1347 (3)0.2479 (3)0.36411 (16)0.0163 (6)
C7A0.0518 (3)0.3118 (3)0.29485 (16)0.0159 (6)
H7AA0.04670.27490.28780.019*
C8A0.0405 (3)0.4598 (3)0.30493 (16)0.0166 (6)
C9A0.1067 (4)0.5504 (3)0.26542 (19)0.0271 (7)
H9AA0.16580.52090.23070.033*
C10A0.0877 (4)0.6843 (4)0.2758 (2)0.0321 (8)
H10A0.13400.74540.24840.039*
C11A0.0020 (4)0.7286 (3)0.3260 (2)0.0273 (7)
H11A0.01260.81990.33230.033*
C12A0.0624 (4)0.6392 (3)0.3667 (2)0.0289 (7)
H12A0.11920.66940.40240.035*
C13A0.0448 (3)0.5061 (3)0.35622 (19)0.0238 (7)
H13A0.09110.44550.38400.029*
C14A0.1152 (3)0.2754 (3)0.22425 (16)0.0153 (5)
C15A0.0619 (3)0.1939 (3)0.09481 (16)0.0173 (6)
C16A0.0185 (3)0.2723 (3)0.03354 (17)0.0218 (6)
H16A0.03840.34690.03890.026*
C17A0.0588 (3)0.2413 (3)0.03656 (18)0.0247 (7)
H17A0.02940.29540.07850.030*
C18A0.1409 (3)0.1327 (3)0.04488 (17)0.0224 (6)
C19A0.1815 (3)0.0544 (3)0.01743 (18)0.0215 (6)
H19A0.23650.02130.01150.026*
C20A0.1447 (3)0.0825 (3)0.08783 (17)0.0188 (6)
C21A0.1879 (4)0.0999 (4)0.11911 (19)0.0303 (8)
H21A0.12060.13630.16020.045*
H21B0.19120.00440.12570.045*
H21C0.28230.13750.11980.045*
C22A0.1939 (4)0.0053 (3)0.15325 (19)0.0258 (7)
H22A0.20830.09410.13430.039*
H22B0.12200.00780.18660.039*
H22C0.28320.02880.18130.039*
O1B0.7412 (2)0.1999 (2)0.21860 (12)0.0192 (5)
N1B0.5215 (3)0.2611 (3)0.16445 (14)0.0171 (5)
C1B0.5909 (3)0.3858 (3)0.36734 (19)0.0216 (6)
H1BA0.53000.42730.32800.026*
C2B0.6464 (4)0.4580 (3)0.4319 (2)0.0250 (7)
H2BA0.62130.54720.43700.030*
C3B0.7388 (4)0.3989 (3)0.48871 (18)0.0259 (7)
H3BA0.77780.44750.53270.031*
C4B0.7732 (4)0.2688 (3)0.48044 (18)0.0255 (7)
H4BA0.83680.22840.51900.031*
C5B0.7163 (3)0.1959 (3)0.41661 (18)0.0215 (6)
H5BA0.74110.10650.41200.026*
C6B0.6232 (3)0.2537 (3)0.35958 (15)0.0155 (5)
C7B0.5484 (3)0.1774 (3)0.29080 (16)0.0149 (5)
H7BA0.44860.20930.28160.018*
C8B0.5398 (3)0.0301 (3)0.30118 (15)0.0155 (5)
C9B0.4277 (3)0.0183 (3)0.33470 (18)0.0209 (6)
H9BA0.36200.04090.35110.025*
C10B0.4114 (4)0.1520 (3)0.3442 (2)0.0267 (7)
H10B0.33540.18350.36750.032*
C11B0.5055 (4)0.2397 (3)0.3198 (2)0.0277 (7)
H11B0.49360.33130.32570.033*
C12B0.6170 (4)0.1927 (3)0.28682 (19)0.0275 (7)
H12B0.68170.25260.27000.033*
C13B0.6355 (3)0.0590 (3)0.27790 (18)0.0220 (6)
H13B0.71340.02810.25590.026*
C14B0.6141 (3)0.2129 (3)0.22130 (16)0.0150 (5)
C15B0.5644 (3)0.3007 (3)0.09483 (16)0.0175 (6)
C16B0.5224 (3)0.2252 (3)0.03030 (17)0.0221 (6)
H16B0.46610.14880.03260.027*
C17B0.5623 (4)0.2607 (4)0.03800 (18)0.0267 (7)
H17B0.53400.20780.08190.032*
C18B0.6432 (3)0.3733 (4)0.04225 (18)0.0249 (7)
C19B0.6823 (3)0.4486 (3)0.02270 (19)0.0229 (6)
H19B0.73680.52610.01980.028*
C20B0.6451 (3)0.4153 (3)0.09239 (17)0.0198 (6)
C21B0.6900 (4)0.4120 (4)0.1154 (2)0.0352 (9)
H21D0.66750.50430.12510.053*
H21E0.64050.35720.15670.053*
H21F0.79250.39960.11180.053*
C22B0.6906 (4)0.5003 (3)0.16090 (19)0.0266 (7)
H22D0.71010.58940.14540.040*
H22E0.77660.46450.19010.040*
H22F0.61490.50280.19200.040*
H1NA0.069 (4)0.224 (3)0.172 (2)0.015 (8)*
H1NB0.434 (5)0.262 (4)0.171 (2)0.030 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0105 (9)0.0352 (12)0.0149 (10)0.0014 (8)0.0022 (8)0.0017 (8)
N1A0.0088 (11)0.0310 (14)0.0120 (12)0.0012 (9)0.0017 (9)0.0047 (10)
C1A0.0153 (14)0.0243 (15)0.0304 (17)0.0004 (11)0.0034 (12)0.0034 (13)
C2A0.0234 (16)0.0298 (17)0.0338 (19)0.0040 (13)0.0117 (14)0.0122 (14)
C3A0.0277 (16)0.0323 (17)0.0171 (15)0.0087 (13)0.0046 (12)0.0042 (12)
C4A0.0251 (15)0.0241 (15)0.0176 (15)0.0040 (12)0.0006 (12)0.0024 (11)
C5A0.0214 (14)0.0184 (14)0.0167 (14)0.0007 (11)0.0014 (11)0.0012 (11)
C6A0.0148 (13)0.0218 (14)0.0131 (13)0.0024 (10)0.0044 (10)0.0005 (10)
C7A0.0084 (12)0.0256 (15)0.0141 (13)0.0003 (10)0.0030 (10)0.0006 (11)
C8A0.0093 (12)0.0274 (15)0.0121 (13)0.0011 (10)0.0013 (10)0.0014 (11)
C9A0.0295 (17)0.0312 (17)0.0234 (16)0.0005 (13)0.0125 (13)0.0030 (13)
C10A0.037 (2)0.0266 (17)0.0335 (19)0.0049 (14)0.0076 (15)0.0053 (14)
C11A0.0243 (16)0.0240 (16)0.0308 (18)0.0018 (12)0.0049 (13)0.0005 (13)
C12A0.0221 (16)0.0320 (18)0.0328 (19)0.0059 (13)0.0052 (14)0.0023 (14)
C13A0.0194 (15)0.0280 (16)0.0262 (16)0.0025 (12)0.0099 (12)0.0001 (13)
C14A0.0114 (12)0.0238 (14)0.0109 (13)0.0005 (10)0.0024 (10)0.0002 (10)
C15A0.0117 (12)0.0286 (15)0.0114 (13)0.0021 (11)0.0014 (10)0.0041 (11)
C16A0.0192 (14)0.0293 (16)0.0163 (14)0.0028 (12)0.0016 (11)0.0028 (12)
C17A0.0241 (16)0.0349 (18)0.0139 (14)0.0017 (13)0.0004 (12)0.0003 (12)
C18A0.0176 (14)0.0345 (17)0.0153 (14)0.0078 (12)0.0043 (11)0.0069 (12)
C19A0.0156 (14)0.0268 (16)0.0221 (15)0.0006 (11)0.0040 (11)0.0063 (12)
C20A0.0120 (13)0.0260 (15)0.0178 (14)0.0023 (11)0.0013 (10)0.0022 (11)
C21A0.0262 (17)0.046 (2)0.0197 (16)0.0060 (15)0.0089 (13)0.0096 (14)
C22A0.0242 (16)0.0276 (16)0.0244 (16)0.0021 (12)0.0004 (13)0.0010 (13)
O1B0.0102 (9)0.0326 (12)0.0149 (10)0.0001 (8)0.0023 (7)0.0016 (8)
N1B0.0094 (11)0.0297 (14)0.0125 (12)0.0004 (9)0.0027 (9)0.0034 (9)
C1B0.0173 (14)0.0231 (15)0.0239 (16)0.0006 (11)0.0021 (11)0.0009 (12)
C2B0.0233 (16)0.0210 (15)0.0322 (18)0.0007 (12)0.0101 (13)0.0050 (13)
C3B0.0305 (17)0.0308 (17)0.0159 (15)0.0051 (13)0.0035 (12)0.0064 (12)
C4B0.0273 (16)0.0314 (17)0.0167 (15)0.0003 (13)0.0001 (12)0.0023 (12)
C5B0.0246 (15)0.0203 (14)0.0192 (15)0.0018 (12)0.0018 (12)0.0007 (11)
C6B0.0135 (12)0.0234 (14)0.0105 (12)0.0017 (10)0.0052 (10)0.0014 (10)
C7B0.0110 (12)0.0216 (14)0.0123 (13)0.0011 (10)0.0023 (10)0.0002 (10)
C8B0.0115 (12)0.0228 (14)0.0111 (12)0.0001 (10)0.0013 (10)0.0003 (10)
C9B0.0186 (14)0.0240 (15)0.0211 (15)0.0008 (11)0.0061 (11)0.0002 (11)
C10B0.0252 (16)0.0282 (17)0.0272 (17)0.0048 (13)0.0052 (13)0.0055 (13)
C11B0.0344 (18)0.0190 (15)0.0271 (17)0.0022 (13)0.0029 (14)0.0004 (12)
C12B0.0305 (17)0.0274 (17)0.0241 (16)0.0080 (13)0.0029 (13)0.0039 (13)
C13B0.0201 (15)0.0276 (16)0.0191 (15)0.0040 (12)0.0058 (11)0.0001 (12)
C14B0.0122 (12)0.0200 (14)0.0125 (13)0.0011 (10)0.0010 (10)0.0003 (10)
C15B0.0101 (12)0.0298 (16)0.0128 (13)0.0018 (11)0.0016 (10)0.0045 (11)
C16B0.0160 (14)0.0330 (17)0.0165 (14)0.0026 (12)0.0001 (11)0.0015 (12)
C17B0.0236 (16)0.0416 (19)0.0141 (14)0.0036 (13)0.0005 (12)0.0005 (13)
C18B0.0183 (14)0.0414 (19)0.0167 (14)0.0093 (13)0.0068 (11)0.0108 (13)
C19B0.0136 (13)0.0318 (17)0.0242 (16)0.0019 (11)0.0042 (11)0.0096 (13)
C20B0.0140 (13)0.0276 (16)0.0176 (14)0.0014 (11)0.0015 (11)0.0043 (11)
C21B0.0275 (18)0.059 (2)0.0227 (17)0.0099 (16)0.0135 (14)0.0159 (16)
C22B0.0272 (17)0.0266 (16)0.0249 (17)0.0036 (13)0.0009 (13)0.0005 (13)
Geometric parameters (Å, º) top
O1A—C14A1.233 (3)O1B—C14B1.231 (3)
N1A—C14A1.350 (4)N1B—C14B1.345 (4)
N1A—C15A1.436 (4)N1B—C15B1.440 (4)
N1A—H1NA0.88 (4)N1B—H1NB0.86 (5)
C1A—C6A1.384 (4)C1B—C2B1.393 (5)
C1A—C2A1.398 (5)C1B—C6B1.394 (4)
C1A—H1AA0.9500C1B—H1BA0.9500
C2A—C3A1.385 (5)C2B—C3B1.390 (5)
C2A—H2AA0.9500C2B—H2BA0.9500
C3A—C4A1.385 (5)C3B—C4B1.380 (5)
C3A—H3AA0.9500C3B—H3BA0.9500
C4A—C5A1.393 (4)C4B—C5B1.390 (4)
C4A—H4AA0.9500C4B—H4BA0.9500
C5A—C6A1.401 (4)C5B—C6B1.391 (4)
C5A—H5AA0.9500C5B—H5BA0.9500
C6A—C7A1.526 (4)C6B—C7B1.525 (4)
C7A—C8A1.523 (4)C7B—C8B1.521 (4)
C7A—C14A1.529 (4)C7B—C14B1.530 (4)
C7A—H7AA1.0000C7B—H7BA1.0000
C8A—C9A1.383 (4)C8B—C13B1.397 (4)
C8A—C13A1.400 (4)C8B—C9B1.399 (4)
C9A—C10A1.392 (5)C9B—C10B1.388 (5)
C9A—H9AA0.9500C9B—H9BA0.9500
C10A—C11A1.381 (5)C10B—C11B1.385 (5)
C10A—H10A0.9500C10B—H10B0.9500
C11A—C12A1.380 (5)C11B—C12B1.385 (5)
C11A—H11A0.9500C11B—H11B0.9500
C12A—C13A1.383 (5)C12B—C13B1.389 (5)
C12A—H12A0.9500C12B—H12B0.9500
C13A—H13A0.9500C13B—H13B0.9500
C15A—C16A1.385 (4)C15B—C16B1.385 (4)
C15A—C20A1.404 (4)C15B—C20B1.401 (4)
C16A—C17A1.404 (4)C16B—C17B1.393 (4)
C16A—H16A0.9500C16B—H16B0.9500
C17A—C18A1.381 (5)C17B—C18B1.390 (5)
C17A—H17A0.9500C17B—H17B0.9500
C18A—C19A1.394 (5)C18B—C19B1.385 (5)
C18A—C21A1.505 (4)C18B—C21B1.511 (4)
C19A—C20A1.390 (4)C19B—C20B1.401 (4)
C19A—H19A0.9500C19B—H19B0.9500
C20A—C22A1.508 (4)C20B—C22B1.499 (4)
C21A—H21A0.9800C21B—H21D0.9800
C21A—H21B0.9800C21B—H21E0.9800
C21A—H21C0.9800C21B—H21F0.9800
C22A—H22A0.9800C22B—H22D0.9800
C22A—H22B0.9800C22B—H22E0.9800
C22A—H22C0.9800C22B—H22F0.9800
C14A—N1A—C15A121.6 (2)C14B—N1B—C15B122.0 (2)
C14A—N1A—H1NA118 (2)C14B—N1B—H1NB116 (3)
C15A—N1A—H1NA120 (2)C15B—N1B—H1NB122 (3)
C6A—C1A—C2A120.2 (3)C2B—C1B—C6B121.0 (3)
C6A—C1A—H1AA119.9C2B—C1B—H1BA119.5
C2A—C1A—H1AA119.9C6B—C1B—H1BA119.5
C3A—C2A—C1A120.4 (3)C3B—C2B—C1B119.8 (3)
C3A—C2A—H2AA119.8C3B—C2B—H2BA120.1
C1A—C2A—H2AA119.8C1B—C2B—H2BA120.1
C4A—C3A—C2A119.9 (3)C4B—C3B—C2B119.3 (3)
C4A—C3A—H3AA120.0C4B—C3B—H3BA120.4
C2A—C3A—H3AA120.0C2B—C3B—H3BA120.4
C3A—C4A—C5A119.6 (3)C3B—C4B—C5B121.2 (3)
C3A—C4A—H4AA120.2C3B—C4B—H4BA119.4
C5A—C4A—H4AA120.2C5B—C4B—H4BA119.4
C4A—C5A—C6A120.9 (3)C4B—C5B—C6B120.1 (3)
C4A—C5A—H5AA119.6C4B—C5B—H5BA119.9
C6A—C5A—H5AA119.6C6B—C5B—H5BA119.9
C1A—C6A—C5A118.9 (3)C5B—C6B—C1B118.6 (3)
C1A—C6A—C7A119.8 (3)C5B—C6B—C7B123.0 (3)
C5A—C6A—C7A121.3 (3)C1B—C6B—C7B118.3 (3)
C8A—C7A—C6A112.4 (2)C8B—C7B—C6B114.6 (2)
C8A—C7A—C14A111.8 (2)C8B—C7B—C14B112.5 (2)
C6A—C7A—C14A110.6 (2)C6B—C7B—C14B109.8 (2)
C8A—C7A—H7AA107.3C8B—C7B—H7BA106.4
C6A—C7A—H7AA107.3C6B—C7B—H7BA106.4
C14A—C7A—H7AA107.3C14B—C7B—H7BA106.4
C9A—C8A—C13A118.4 (3)C13B—C8B—C9B118.5 (3)
C9A—C8A—C7A124.0 (3)C13B—C8B—C7B123.7 (3)
C13A—C8A—C7A117.6 (3)C9B—C8B—C7B117.7 (3)
C8A—C9A—C10A120.8 (3)C10B—C9B—C8B120.7 (3)
C8A—C9A—H9AA119.6C10B—C9B—H9BA119.6
C10A—C9A—H9AA119.6C8B—C9B—H9BA119.6
C11A—C10A—C9A120.3 (3)C11B—C10B—C9B120.3 (3)
C11A—C10A—H10A119.9C11B—C10B—H10B119.8
C9A—C10A—H10A119.9C9B—C10B—H10B119.8
C12A—C11A—C10A119.4 (3)C12B—C11B—C10B119.4 (3)
C12A—C11A—H11A120.3C12B—C11B—H11B120.3
C10A—C11A—H11A120.3C10B—C11B—H11B120.3
C11A—C12A—C13A120.6 (3)C11B—C12B—C13B120.8 (3)
C11A—C12A—H12A119.7C11B—C12B—H12B119.6
C13A—C12A—H12A119.7C13B—C12B—H12B119.6
C12A—C13A—C8A120.5 (3)C12B—C13B—C8B120.2 (3)
C12A—C13A—H13A119.7C12B—C13B—H13B119.9
C8A—C13A—H13A119.7C8B—C13B—H13B119.9
O1A—C14A—N1A123.1 (3)O1B—C14B—N1B123.4 (3)
O1A—C14A—C7A122.3 (3)O1B—C14B—C7B122.4 (2)
N1A—C14A—C7A114.6 (2)N1B—C14B—C7B114.2 (2)
C16A—C15A—C20A121.0 (3)C16B—C15B—C20B120.7 (3)
C16A—C15A—N1A118.8 (3)C16B—C15B—N1B118.9 (3)
C20A—C15A—N1A120.2 (3)C20B—C15B—N1B120.3 (3)
C15A—C16A—C17A119.8 (3)C15B—C16B—C17B120.4 (3)
C15A—C16A—H16A120.1C15B—C16B—H16B119.8
C17A—C16A—H16A120.1C17B—C16B—H16B119.8
C18A—C17A—C16A120.4 (3)C18B—C17B—C16B120.3 (3)
C18A—C17A—H17A119.8C18B—C17B—H17B119.8
C16A—C17A—H17A119.8C16B—C17B—H17B119.8
C17A—C18A—C19A118.6 (3)C19B—C18B—C17B118.4 (3)
C17A—C18A—C21A121.1 (3)C19B—C18B—C21B120.5 (3)
C19A—C18A—C21A120.3 (3)C17B—C18B—C21B121.1 (3)
C20A—C19A—C18A122.7 (3)C18B—C19B—C20B122.8 (3)
C20A—C19A—H19A118.7C18B—C19B—H19B118.6
C18A—C19A—H19A118.7C20B—C19B—H19B118.6
C19A—C20A—C15A117.5 (3)C19B—C20B—C15B117.3 (3)
C19A—C20A—C22A120.0 (3)C19B—C20B—C22B120.5 (3)
C15A—C20A—C22A122.5 (3)C15B—C20B—C22B122.2 (3)
C18A—C21A—H21A109.5C18B—C21B—H21D109.5
C18A—C21A—H21B109.5C18B—C21B—H21E109.5
H21A—C21A—H21B109.5H21D—C21B—H21E109.5
C18A—C21A—H21C109.5C18B—C21B—H21F109.5
H21A—C21A—H21C109.5H21D—C21B—H21F109.5
H21B—C21A—H21C109.5H21E—C21B—H21F109.5
C20A—C22A—H22A109.5C20B—C22B—H22D109.5
C20A—C22A—H22B109.5C20B—C22B—H22E109.5
H22A—C22A—H22B109.5H22D—C22B—H22E109.5
C20A—C22A—H22C109.5C20B—C22B—H22F109.5
H22A—C22A—H22C109.5H22D—C22B—H22F109.5
H22B—C22A—H22C109.5H22E—C22B—H22F109.5
C6A—C1A—C2A—C3A1.4 (5)C6B—C1B—C2B—C3B1.8 (5)
C1A—C2A—C3A—C4A0.1 (5)C1B—C2B—C3B—C4B0.5 (5)
C2A—C3A—C4A—C5A1.3 (5)C2B—C3B—C4B—C5B0.5 (5)
C3A—C4A—C5A—C6A1.2 (5)C3B—C4B—C5B—C6B0.1 (5)
C2A—C1A—C6A—C5A1.5 (5)C4B—C5B—C6B—C1B1.2 (5)
C2A—C1A—C6A—C7A179.1 (3)C4B—C5B—C6B—C7B175.4 (3)
C4A—C5A—C6A—C1A0.3 (4)C2B—C1B—C6B—C5B2.2 (5)
C4A—C5A—C6A—C7A179.7 (3)C2B—C1B—C6B—C7B174.6 (3)
C1A—C6A—C7A—C8A132.8 (3)C5B—C6B—C7B—C8B20.8 (4)
C5A—C6A—C7A—C8A47.8 (4)C1B—C6B—C7B—C8B155.8 (3)
C1A—C6A—C7A—C14A101.5 (3)C5B—C6B—C7B—C14B107.0 (3)
C5A—C6A—C7A—C14A77.9 (3)C1B—C6B—C7B—C14B76.5 (3)
C6A—C7A—C8A—C9A111.8 (3)C6B—C7B—C8B—C13B96.5 (3)
C14A—C7A—C8A—C9A13.2 (4)C14B—C7B—C8B—C13B29.9 (4)
C6A—C7A—C8A—C13A69.7 (3)C6B—C7B—C8B—C9B84.7 (3)
C14A—C7A—C8A—C13A165.3 (3)C14B—C7B—C8B—C9B148.9 (3)
C13A—C8A—C9A—C10A0.6 (5)C13B—C8B—C9B—C10B0.4 (5)
C7A—C8A—C9A—C10A177.9 (3)C7B—C8B—C9B—C10B178.4 (3)
C8A—C9A—C10A—C11A0.1 (6)C8B—C9B—C10B—C11B0.6 (5)
C9A—C10A—C11A—C12A1.3 (6)C9B—C10B—C11B—C12B0.8 (5)
C10A—C11A—C12A—C13A1.8 (5)C10B—C11B—C12B—C13B0.0 (5)
C11A—C12A—C13A—C8A1.1 (5)C11B—C12B—C13B—C8B1.1 (5)
C9A—C8A—C13A—C12A0.1 (5)C9B—C8B—C13B—C12B1.2 (4)
C7A—C8A—C13A—C12A178.5 (3)C7B—C8B—C13B—C12B177.5 (3)
C15A—N1A—C14A—O1A1.3 (5)C15B—N1B—C14B—O1B0.5 (5)
C15A—N1A—C14A—C7A177.7 (3)C15B—N1B—C14B—C7B179.5 (3)
C8A—C7A—C14A—O1A73.9 (3)C8B—C7B—C14B—O1B72.0 (3)
C6A—C7A—C14A—O1A52.1 (4)C6B—C7B—C14B—O1B56.9 (4)
C8A—C7A—C14A—N1A105.2 (3)C8B—C7B—C14B—N1B108.9 (3)
C6A—C7A—C14A—N1A128.8 (3)C6B—C7B—C14B—N1B122.1 (3)
C14A—N1A—C15A—C16A109.0 (3)C14B—N1B—C15B—C16B109.1 (3)
C14A—N1A—C15A—C20A71.1 (4)C14B—N1B—C15B—C20B72.1 (4)
C20A—C15A—C16A—C17A0.7 (5)C20B—C15B—C16B—C17B1.3 (5)
N1A—C15A—C16A—C17A179.4 (3)N1B—C15B—C16B—C17B179.9 (3)
C15A—C16A—C17A—C18A0.3 (5)C15B—C16B—C17B—C18B0.8 (5)
C16A—C17A—C18A—C19A0.6 (5)C16B—C17B—C18B—C19B0.2 (5)
C16A—C17A—C18A—C21A178.6 (3)C16B—C17B—C18B—C21B178.7 (3)
C17A—C18A—C19A—C20A1.2 (5)C17B—C18B—C19B—C20B0.7 (5)
C21A—C18A—C19A—C20A178.0 (3)C21B—C18B—C19B—C20B178.2 (3)
C18A—C19A—C20A—C15A0.8 (5)C18B—C19B—C20B—C15B0.2 (5)
C18A—C19A—C20A—C22A179.1 (3)C18B—C19B—C20B—C22B179.9 (3)
C16A—C15A—C20A—C19A0.2 (4)C16B—C15B—C20B—C19B0.8 (4)
N1A—C15A—C20A—C19A179.9 (3)N1B—C15B—C20B—C19B179.6 (3)
C16A—C15A—C20A—C22A179.9 (3)C16B—C15B—C20B—C22B179.1 (3)
N1A—C15A—C20A—C22A0.1 (4)N1B—C15B—C20B—C22B0.4 (4)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg4 and Cg5 are the centroids of the C1A–C6A, C1B–C6B and C8B–C13B rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1A—H1NA···O1Bi0.88 (4)2.13 (4)2.980 (3)163 (3)
N1B—H1NB···O1A0.86 (5)2.18 (5)3.012 (3)162 (3)
C7A—H7AA···O1Bi1.002.323.258 (4)155
C9A—H9AA···O1A0.952.483.110 (4)123
C7B—H7BA···O1A1.002.273.225 (4)160
C13B—H13B···O1B0.952.463.087 (4)124
C3A—H3AA···Cg5ii0.952.893.754 (4)151
C4A—H4AA···Cg40.952.843.539 (4)131
C13A—H13A···Cg4i0.952.683.561 (3)154
C9B—H9BA···Cg10.952.623.546 (3)167
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC22H21NO
Mr315.40
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.5520 (9), 10.2011 (10), 17.9656 (17)
α, β, γ (°)91.030 (2), 98.957 (2), 90.377 (2)
V3)1728.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.41 × 0.19 × 0.17
Data collection
DiffractometerBruker APEX DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.970, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
30869, 7858, 6570
Rint0.040
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.085, 0.261, 1.14
No. of reflections7858
No. of parameters445
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.61, 0.42

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg4 and Cg5 are the centroids of the C1A–C6A, C1B–C6B and C8B–C13B rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1A—H1NA···O1Bi0.88 (4)2.13 (4)2.980 (3)163 (3)
N1B—H1NB···O1A0.86 (5)2.18 (5)3.012 (3)162 (3)
C7A—H7AA···O1Bi1.00002.32003.258 (4)155.00
C9A—H9AA···O1A0.95002.48003.110 (4)123.00
C7B—H7BA···O1A1.00002.27003.225 (4)160.00
C13B—H13B···O1B0.95002.46003.087 (4)124.00
C3A—H3AA···Cg5ii0.952.893.754 (4)151
C4A—H4AA···Cg40.952.843.539 (4)131
C13A—H13A···Cg4i0.952.683.561 (3)154
C9B—H9BA···Cg10.952.623.546 (3)167
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and TSC thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). BN thanks UGC, New Delhi and Government of India for the purchase of chemicals through the SAP-DRS-Phase 1 programme.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011a). Acta Cryst. E67, o2926–o2927.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011b). Acta Cryst. E67, o2941–o2942.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMijin, D. & Marinkovic, A. (2006). Synth. Commun. 36, 193–198.  Web of Science CrossRef CAS Google Scholar
First citationMijin, D. Z., Prascevic, M. & Petrovic, S. D. (2008). J. Serb. Chem. Soc. 73, 945–950.  Web of Science CrossRef CAS Google Scholar
First citationPraveen, A. S., Jasinski, J. P., Golen, J. A., Narayana, B. & Yathirajan, H. S. (2011a). Acta Cryst. E67, o1826.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPraveen, A. S., Jasinski, J. P., Golen, J. A., Yathirajan, H. S. & Narayana, B. (2011b). Acta Cryst. E67, o2602–o2603.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPraveen, A. S., Jasinski, J. P., Golen, J. A., Narayana, B. & Yathirajan, H. S. (2011c). Acta Cryst. E67, o2604.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, W.-N., Cheng, F.-X., Yan, L. & Tang, N. (2008). J. Coord. Chem. 61, 2207–2215.  Web of Science CrossRef CAS Google Scholar
First citationWu, W.-N., Wang, Y., Zhang, A.-Y., Zhao, R.-Q. & Wang, Q.-F. (2010). Acta Cryst. E66, m288.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1316-o1317
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds