metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Methanol-κO){1-[2-(piperazin-4-ium-1-yl-κN1)ethyl­imino­methyl-κN]naphthalen-2-olato-κO}bis­­(thio­cyanato-κN)nickel(II) methanol monosolvate

aLuohe Medical College, Luohe Henan 462002, People's Republic of China
*Correspondence e-mail: li_pinai@126.com

(Received 27 March 2012; accepted 30 March 2012; online 4 April 2012)

In the title solvated complex, [Ni(C17H21N3O)(NCS)2(CH3OH)]·CH3OH, the Ni2+ ion is coordinated by one phenolate O, one imine N, and one amine N atom of the tridentate Schiff base ligand, two thio­cyanate N atoms and one methanol O atom, resulting in a distorted cis-NiO2N4 octa­hedral geometry. The chelate ring formed by the phenolate O and imine N atoms approximates to an envelope with the Ni atom as the flap, whereas the chelate ring formed by the two N atoms is twisted about the C—C bond. In the crystal, the components are linked by O—H⋯O, N—H⋯O, N—H⋯S, and O—H⋯S hydrogen bonds.

Related literature

For background to the biological properties of nickel complexes of Schiff bases, see: Chohan & Kausar (1993[Chohan, Z. H. & Kausar, S. (1993). Chem. Pharm. Bull. 41, 951-953.]); Osowole et al. (2008[Osowole, A. A., Kolawole, G. A. & Fagade, O. E. (2008). J. Coord. Chem. 61, 1046-1055.]); Arif et al. (2011[Arif, M., Qurashi, M. M. R. & Shad, M. A. (2011). J. Coord. Chem. 64, 1914-1930.]). For related structures, see: Ji & Lu (2010[Ji, X.-H. & Lu, J.-F. (2010). Acta Cryst. E66, m883-m884.]); Wang (2010[Wang, N. (2010). Acta Cryst. E66, m1033.]); Xue et al. (2010[Xue, L.-W., Zhao, G.-Q., Han, Y.-J., Chen, L.-H. & Peng, Q.-L. (2010). Acta Cryst. E66, m1352.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C17H21N3O)(NCS)2(CH4O)]·CH4O

  • Mr = 522.32

  • Monoclinic, P 21 /c

  • a = 9.7420 (19) Å

  • b = 15.304 (3) Å

  • c = 18.302 (5) Å

  • β = 116.01 (2)°

  • V = 2452.3 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.99 mm−1

  • T = 298 K

  • 0.17 × 0.15 × 0.15 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.849, Tmax = 0.865

  • 16581 measured reflections

  • 4196 independent reflections

  • 2354 reflections with I > 2σ(I)

  • Rint = 0.153

Refinement
  • R[F2 > 2σ(F2)] = 0.092

  • wR(F2) = 0.209

  • S = 1.00

  • 4196 reflections

  • 295 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.05 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—N1 1.997 (6)
Ni1—N3 2.044 (7)
Ni1—O1 2.049 (5)
Ni1—N4 2.064 (7)
Ni1—O2 2.128 (7)
Ni1—N2 2.241 (6)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3 0.82 (1) 2.03 (4) 2.793 (10) 155 (10)
N5—H5B⋯O1i 0.90 1.75 2.649 (8) 175
N5—H5A⋯S2ii 0.90 2.67 3.480 (7) 150
O3—H3⋯S2ii 0.82 2.78 3.532 (9) 154
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Soem nickel complexes derived from Schiff bases have possess interesting biological properties (Arif et al., 2011; Osowole et al., 2008; Chohan & Kausar, 1993). As an extension of the work on the structures of such complexes, the author reports herein the title new nickel complex.

The title compound contains a mononuclear nickel complex molecule and a methanol molecule of crystallization (Fig. 1). The Ni atom in the complex is coordinated by one phenolate O, one imine N, and one amine N atom of the Schiff base ligand, two thiocyanate N atoms, and one methanol O atom, forming an octahedral coordination. The bond lengths (Table 1) are comparable to those reported in the similar nickel complexes with Schiff bases (Wang, 2010; Ji & Lu, 2010; Xue et al., 2010). The crystal structure features N—H···O, N—H···S, and O—H···S hydrogen bonds (Table 2, Fig. 2).

Related literature top

For background to the biological properties of nickel complexes of Schiff bases, see: Chohan & Kausar (1993); Osowole et al. (2008); Arif et al. (2011). For related structures, see: Ji & Lu (2010); Wang (2010); Xue et al. (2010).

Experimental top

2-Hydroxy-1-naphthaldehyde (1.72 g, 0.01 mol) and 2-piperazin-1-ylethyamine (1.29 g, 0.01 mol) were mixed in methanol (30 ml). To the stirred mixture was added a methanolic solution (10 ml) of ammonium thiocyanate (1.52 g, 0.02 mol) and a methanolic solution (10 ml) of nickel nitrate (2.91 g, 0.01 mol). The final mixture was further stirred for 30 min to give a green solution. Green block-like single crystals were obtained by slow evaporation of the solution in air.

Refinement top

H2 was located from a difference Fourier map and refined isotropically, with O—H distance restrained to 0.82 (1) Å. The remaining hydrogen atoms were placed in calculated positions, with C—H distances in the range 0.93–0.97 Å, O—H distance of 0.82 Å, and with Uiso values set to 1.2Ueq(C) and 1.5Ueq(methyl C and O3).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, with displacement ellipsoids drawn at the 30% probability level for Non-H atoms.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the a axis. Hydrogen bonds are shown as dashed lines.
(Methanol-κO){1-[2-(piperazin-4-ium-1-yl- κN1)ethyliminomethyl-κN]naphthalen-2-olato- κO}bis(thiocyanato-κN)nickel(II) methanol monosolvate top
Crystal data top
[Ni(C17H21N3O)(NCS)2(CH4O)]·CH4OF(000) = 1096
Mr = 522.32Dx = 1.415 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.7420 (19) ÅCell parameters from 888 reflections
b = 15.304 (3) Åθ = 2.3–24.5°
c = 18.302 (5) ŵ = 0.99 mm1
β = 116.01 (2)°T = 298 K
V = 2452.3 (10) Å3Block, green
Z = 40.17 × 0.15 × 0.15 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
4196 independent reflections
Radiation source: fine-focus sealed tube2354 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.153
ω scanθmax = 25.2°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 1111
Tmin = 0.849, Tmax = 0.865k = 1818
16581 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.092Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.209H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0864P)2]
where P = (Fo2 + 2Fc2)/3
4196 reflections(Δ/σ)max < 0.001
295 parametersΔρmax = 1.05 e Å3
1 restraintΔρmin = 0.47 e Å3
Crystal data top
[Ni(C17H21N3O)(NCS)2(CH4O)]·CH4OV = 2452.3 (10) Å3
Mr = 522.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.7420 (19) ŵ = 0.99 mm1
b = 15.304 (3) ÅT = 298 K
c = 18.302 (5) Å0.17 × 0.15 × 0.15 mm
β = 116.01 (2)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
4196 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
2354 reflections with I > 2σ(I)
Tmin = 0.849, Tmax = 0.865Rint = 0.153
16581 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0921 restraint
wR(F2) = 0.209H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 1.05 e Å3
4196 reflectionsΔρmin = 0.47 e Å3
295 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.08725 (12)0.32345 (6)0.35614 (6)0.0356 (3)
S10.3385 (3)0.40557 (18)0.11040 (14)0.0662 (8)
S20.1939 (3)0.23841 (17)0.50772 (14)0.0641 (8)
O10.1635 (7)0.4331 (3)0.4268 (3)0.0465 (15)
O20.2267 (8)0.3634 (4)0.2996 (4)0.0612 (17)
O30.0875 (10)0.4095 (6)0.1353 (4)0.097 (3)
H30.00550.38400.11280.145*
N10.2670 (7)0.2604 (4)0.4397 (4)0.0437 (18)
N20.0484 (7)0.1938 (4)0.2933 (4)0.0348 (15)
N30.0853 (8)0.3835 (4)0.2599 (4)0.0488 (19)
N40.0474 (8)0.2903 (4)0.4131 (4)0.0412 (17)
N50.1175 (7)0.0886 (4)0.1435 (4)0.0450 (18)
H5A0.17290.13020.10800.054*
H5B0.13890.03700.11730.054*
C10.3224 (8)0.3598 (5)0.5527 (4)0.0374 (19)
C20.2355 (9)0.4313 (5)0.5085 (5)0.041 (2)
C30.2202 (10)0.5057 (6)0.5479 (5)0.053 (2)
H3A0.15820.55120.51740.063*
C40.2957 (11)0.5132 (6)0.6318 (5)0.054 (2)
H40.28730.56430.65690.065*
C50.3847 (9)0.4438 (5)0.6788 (5)0.043 (2)
C60.4632 (11)0.4468 (7)0.7668 (5)0.058 (3)
H60.45640.49780.79260.070*
C70.5449 (10)0.3806 (7)0.8133 (5)0.054 (3)
H70.59400.38610.86960.065*
C80.5545 (10)0.3047 (7)0.7763 (5)0.060 (3)
H80.61010.25810.80820.072*
C90.4832 (9)0.2953 (6)0.6919 (5)0.046 (2)
H90.49030.24260.66850.055*
C100.3988 (9)0.3667 (6)0.6409 (4)0.042 (2)
C110.3444 (11)0.2811 (5)0.5145 (5)0.052 (2)
H110.42090.24280.54710.062*
C120.2999 (10)0.1768 (6)0.4112 (5)0.055 (3)
H12A0.36120.13980.45700.066*
H12B0.35540.18650.37900.066*
C130.1465 (10)0.1340 (5)0.3598 (5)0.049 (2)
H13A0.16230.08000.33670.059*
H13B0.09600.11990.39370.059*
C140.0892 (9)0.1941 (5)0.2235 (4)0.040 (2)
H14A0.19810.20430.24410.048*
H14B0.03660.24210.18750.048*
C150.0481 (10)0.1082 (5)0.1741 (5)0.043 (2)
H15A0.07320.11350.12850.052*
H15B0.10760.06060.20820.052*
C160.1588 (10)0.0854 (5)0.2119 (5)0.048 (2)
H16A0.10490.03750.24780.058*
H16B0.26750.07450.19120.058*
C170.1185 (10)0.1709 (5)0.2595 (5)0.048 (2)
H17A0.17800.21770.22420.057*
H17B0.14670.16650.30400.057*
C180.1908 (10)0.3914 (5)0.1988 (5)0.0382 (19)
C190.1038 (10)0.2711 (5)0.4529 (5)0.041 (2)
C200.3836 (12)0.3845 (8)0.3386 (7)0.087 (4)
H20A0.39760.44410.32690.130*
H20B0.43890.34660.31920.130*
H20C0.42080.37730.39620.130*
C220.1608 (19)0.4057 (12)0.0882 (9)0.148 (7)
H22A0.15220.46100.06180.222*
H22B0.11600.36090.04800.222*
H22C0.26660.39250.12120.222*
H20.189 (11)0.361 (7)0.2499 (8)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0411 (6)0.0276 (5)0.0256 (5)0.0056 (5)0.0031 (4)0.0015 (4)
S10.0644 (17)0.0600 (17)0.0413 (14)0.0051 (13)0.0072 (12)0.0074 (12)
S20.084 (2)0.0604 (17)0.0447 (14)0.0249 (14)0.0252 (14)0.0107 (12)
O10.077 (4)0.017 (3)0.028 (3)0.012 (3)0.006 (3)0.002 (2)
O20.062 (5)0.062 (4)0.051 (4)0.018 (3)0.017 (4)0.021 (4)
O30.100 (7)0.124 (8)0.056 (5)0.019 (6)0.025 (5)0.004 (5)
N10.047 (4)0.042 (4)0.025 (4)0.013 (3)0.000 (3)0.008 (3)
N20.045 (4)0.026 (4)0.027 (3)0.006 (3)0.010 (3)0.002 (3)
N30.052 (5)0.040 (4)0.038 (4)0.006 (3)0.005 (4)0.004 (3)
N40.058 (5)0.034 (4)0.031 (4)0.011 (3)0.019 (4)0.004 (3)
N50.053 (5)0.034 (4)0.035 (4)0.009 (3)0.007 (4)0.002 (3)
C10.033 (5)0.030 (4)0.029 (4)0.002 (4)0.005 (4)0.001 (3)
C20.045 (5)0.032 (5)0.033 (5)0.003 (4)0.005 (4)0.001 (4)
C30.068 (7)0.034 (5)0.054 (6)0.007 (4)0.025 (5)0.001 (4)
C40.072 (7)0.039 (5)0.038 (5)0.020 (5)0.012 (5)0.001 (4)
C50.043 (5)0.043 (5)0.040 (5)0.009 (4)0.014 (4)0.015 (4)
C60.059 (6)0.072 (7)0.040 (5)0.005 (5)0.018 (5)0.006 (5)
C70.059 (6)0.074 (8)0.029 (5)0.019 (5)0.018 (5)0.010 (5)
C80.043 (6)0.082 (8)0.043 (6)0.004 (5)0.008 (5)0.019 (5)
C90.051 (6)0.052 (6)0.026 (4)0.008 (4)0.009 (4)0.007 (4)
C100.037 (5)0.049 (5)0.027 (4)0.001 (4)0.001 (4)0.004 (4)
C110.062 (6)0.035 (5)0.048 (6)0.019 (4)0.013 (5)0.007 (4)
C120.056 (6)0.049 (5)0.030 (5)0.031 (5)0.009 (4)0.009 (4)
C130.080 (7)0.030 (5)0.037 (5)0.005 (4)0.024 (5)0.005 (4)
C140.044 (5)0.021 (4)0.034 (4)0.000 (3)0.001 (4)0.004 (3)
C150.052 (6)0.037 (5)0.040 (5)0.004 (4)0.019 (4)0.007 (4)
C160.042 (5)0.036 (5)0.054 (6)0.011 (4)0.010 (4)0.010 (4)
C170.062 (6)0.024 (4)0.057 (6)0.005 (4)0.026 (5)0.006 (4)
C180.050 (5)0.023 (4)0.038 (5)0.006 (4)0.015 (4)0.002 (4)
C190.048 (6)0.044 (5)0.028 (5)0.006 (4)0.012 (4)0.008 (4)
C200.056 (7)0.104 (10)0.104 (9)0.015 (7)0.040 (7)0.002 (8)
C220.141 (14)0.199 (19)0.132 (13)0.042 (13)0.085 (13)0.032 (13)
Geometric parameters (Å, º) top
Ni1—N11.997 (6)C5—C101.406 (11)
Ni1—N32.044 (7)C5—C61.450 (11)
Ni1—O12.049 (5)C6—C71.337 (12)
Ni1—N42.064 (7)C6—H60.9300
Ni1—O22.128 (7)C7—C81.369 (12)
Ni1—N22.241 (6)C7—H70.9300
S1—C181.641 (9)C8—C91.396 (11)
S2—C191.673 (10)C8—H80.9300
O1—C21.344 (9)C9—C101.438 (11)
O2—C201.411 (11)C9—H90.9300
O2—H20.818 (10)C11—H110.9300
O3—C221.339 (13)C12—C131.521 (12)
O3—H30.8200C12—H12A0.9700
N1—C111.281 (10)C12—H12B0.9700
N1—C121.468 (9)C13—H13A0.9700
N2—C131.487 (9)C13—H13B0.9700
N2—C141.495 (9)C14—C151.546 (10)
N2—C171.505 (10)C14—H14A0.9700
N3—C181.146 (9)C14—H14B0.9700
N4—C191.128 (9)C15—H15A0.9700
N5—C161.473 (9)C15—H15B0.9700
N5—C151.488 (10)C16—C171.525 (10)
N5—H5A0.9000C16—H16A0.9700
N5—H5B0.9000C16—H16B0.9700
C1—C21.403 (10)C17—H17A0.9700
C1—C101.454 (10)C17—H17B0.9700
C1—C111.455 (11)C20—H20A0.9600
C2—C31.390 (11)C20—H20B0.9600
C3—C41.386 (12)C20—H20C0.9600
C3—H3A0.9300C22—H22A0.9600
C4—C51.402 (11)C22—H22B0.9600
C4—H40.9300C22—H22C0.9600
N1—Ni1—N3172.3 (3)C9—C8—H8119.1
N1—Ni1—O187.7 (2)C8—C9—C10120.4 (8)
N3—Ni1—O196.3 (2)C8—C9—H9119.8
N1—Ni1—N491.9 (3)C10—C9—H9119.8
N3—Ni1—N494.6 (3)C5—C10—C9118.0 (7)
O1—Ni1—N491.0 (2)C5—C10—C1119.7 (7)
N1—Ni1—O288.8 (3)C9—C10—C1122.3 (7)
N3—Ni1—O284.9 (3)N1—C11—C1125.3 (8)
O1—Ni1—O286.6 (2)N1—C11—H11117.4
N4—Ni1—O2177.4 (2)C1—C11—H11117.4
N1—Ni1—N281.9 (2)N1—C12—C13106.7 (7)
N3—Ni1—N293.8 (2)N1—C12—H12A110.4
O1—Ni1—N2169.1 (2)C13—C12—H12A110.4
N4—Ni1—N292.3 (2)N1—C12—H12B110.4
O2—Ni1—N290.3 (2)C13—C12—H12B110.4
C2—O1—Ni1123.5 (4)H12A—C12—H12B108.6
C20—O2—Ni1126.9 (6)N2—C13—C12110.2 (7)
C20—O2—H2116 (8)N2—C13—H13A109.6
Ni1—O2—H2117 (7)C12—C13—H13A109.6
C22—O3—H3109.5N2—C13—H13B109.6
C11—N1—C12118.5 (7)C12—C13—H13B109.6
C11—N1—Ni1127.3 (6)H13A—C13—H13B108.1
C12—N1—Ni1113.8 (5)N2—C14—C15113.6 (6)
C13—N2—C14112.6 (6)N2—C14—H14A108.9
C13—N2—C17112.5 (6)C15—C14—H14A108.9
C14—N2—C17107.1 (6)N2—C14—H14B108.9
C13—N2—Ni1102.8 (4)C15—C14—H14B108.9
C14—N2—Ni1112.8 (4)H14A—C14—H14B107.7
C17—N2—Ni1109.0 (4)N5—C15—C14110.6 (6)
C18—N3—Ni1159.3 (7)N5—C15—H15A109.5
C19—N4—Ni1171.1 (7)C14—C15—H15A109.5
C16—N5—C15110.0 (6)N5—C15—H15B109.5
C16—N5—H5A109.7C14—C15—H15B109.5
C15—N5—H5A109.7H15A—C15—H15B108.1
C16—N5—H5B109.7N5—C16—C17111.0 (7)
C15—N5—H5B109.7N5—C16—H16A109.4
H5A—N5—H5B108.2C17—C16—H16A109.4
C2—C1—C10118.0 (7)N5—C16—H16B109.4
C2—C1—C11123.1 (7)C17—C16—H16B109.4
C10—C1—C11118.8 (7)H16A—C16—H16B108.0
O1—C2—C3115.9 (7)N2—C17—C16113.3 (6)
O1—C2—C1123.2 (7)N2—C17—H17A108.9
C3—C2—C1120.9 (7)C16—C17—H17A108.9
C4—C3—C2121.1 (8)N2—C17—H17B108.9
C4—C3—H3A119.4C16—C17—H17B108.9
C2—C3—H3A119.4H17A—C17—H17B107.7
C3—C4—C5120.2 (8)N3—C18—S1177.8 (8)
C3—C4—H4119.9N4—C19—S2176.6 (8)
C5—C4—H4119.9O2—C20—H20A109.5
C4—C5—C10120.0 (7)O2—C20—H20B109.5
C4—C5—C6122.8 (8)H20A—C20—H20B109.5
C10—C5—C6117.2 (8)O2—C20—H20C109.5
C7—C6—C5124.1 (9)H20A—C20—H20C109.5
C7—C6—H6118.0H20B—C20—H20C109.5
C5—C6—H6118.0O3—C22—H22A109.5
C6—C7—C8118.6 (8)O3—C22—H22B109.5
C6—C7—H7120.7H22A—C22—H22B109.5
C8—C7—H7120.7O3—C22—H22C109.5
C7—C8—C9121.8 (9)H22A—C22—H22C109.5
C7—C8—H8119.1H22B—C22—H22C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.82 (1)2.03 (4)2.793 (10)155 (10)
N5—H5B···O1i0.901.752.649 (8)175
N5—H5A···S2ii0.902.673.480 (7)150
O3—H3···S2ii0.822.783.532 (9)154
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Ni(C17H21N3O)(NCS)2(CH4O)]·CH4O
Mr522.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)9.7420 (19), 15.304 (3), 18.302 (5)
β (°) 116.01 (2)
V3)2452.3 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.99
Crystal size (mm)0.17 × 0.15 × 0.15
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.849, 0.865
No. of measured, independent and
observed [I > 2σ(I)] reflections
16581, 4196, 2354
Rint0.153
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.092, 0.209, 1.00
No. of reflections4196
No. of parameters295
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.05, 0.47

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ni1—N11.997 (6)Ni1—N42.064 (7)
Ni1—N32.044 (7)Ni1—O22.128 (7)
Ni1—O12.049 (5)Ni1—N22.241 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.818 (10)2.03 (4)2.793 (10)155 (10)
N5—H5B···O1i0.901.752.649 (8)175
N5—H5A···S2ii0.902.673.480 (7)150
O3—H3···S2ii0.822.783.532 (9)154
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z1/2.
 

Acknowledgements

The author acknowledges the Luohe Medical College for support.

References

First citationArif, M., Qurashi, M. M. R. & Shad, M. A. (2011). J. Coord. Chem. 64, 1914–1930.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChohan, Z. H. & Kausar, S. (1993). Chem. Pharm. Bull. 41, 951–953.  CrossRef CAS PubMed Web of Science Google Scholar
First citationJi, X.-H. & Lu, J.-F. (2010). Acta Cryst. E66, m883–m884.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOsowole, A. A., Kolawole, G. A. & Fagade, O. E. (2008). J. Coord. Chem. 61, 1046–1055.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, N. (2010). Acta Cryst. E66, m1033.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXue, L.-W., Zhao, G.-Q., Han, Y.-J., Chen, L.-H. & Peng, Q.-L. (2010). Acta Cryst. E66, m1352.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds