organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1438

4-Benzyl-8-phenyl-1-thia-4-aza­spiro­[4.5]decan-3-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, Tamil Nadu, India
*Correspondence e-mail: hkfun@usm.my

(Received 8 April 2012; accepted 8 April 2012; online 18 April 2012)

In the title compound, C21H23NOS, the thia­zolidine ring adopts a twist conformation about one of its C—S bonds, while the cyclo­hexane ring has a chair conformation. The S and N atoms attached to the spiro C atom are in axial and equatorial orientations, respectively. The thia­zolidine ring forms dihedral angles of 86.24 (14) and 31.82 (15)° with the directly attached and remote terminal benzene rings, respectively. The dihedral angle between the two terminal benzene rings is 86.74 (14)°. In the crystal, the only significant directional inter­action is a weak C—H⋯π bond, which generates [010] chains.

Related literature

For the pharmacological activity of spiro­thia­zolidin-4-ones, see: Singh et al. (2006[Singh, R., Khaturia, S., Merienne, C., Morgantc, G. & Loupyd, A. (2006). Bioorg. Med. Chem. 14, 2409-2417.]); Kasimogullari & Cesur (2004[Kasimogullari, B. O. & Cesur, Z. (2004). Molecules, 9, 894-901.]); Dandia et al. (2004[Dandia, A., Singh, R. & Arya, K. (2004). Phosphorus Sulfur Silicon Relat. Elem. 179, 551-564.]); Sahu et al. (2006[Sahu, S. K., Mishra, S. K., Banergee, M., Panda, P. K. & Misro, P. K. (2006). J. Indian Chem. Soc. 7, 725-727.]). For a related structure, see: Akkurt et al. (2008[Akkurt, M., Yalçın, Ş. P., Klip, N. T. & Büyükgüngör, O. (2008). Acta Cryst. E64, o1572-o1573.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the stability of the temperature controller used for data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C21H23NOS

  • Mr = 337.46

  • Monoclinic, P 21 /c

  • a = 9.8299 (9) Å

  • b = 15.3823 (14) Å

  • c = 12.0833 (10) Å

  • β = 108.717 (4)°

  • V = 1730.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 100 K

  • 0.33 × 0.21 × 0.14 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.939, Tmax = 0.973

  • 10508 measured reflections

  • 3534 independent reflections

  • 2144 reflections with I > 2σ(I)

  • Rint = 0.080

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.145

  • S = 1.01

  • 3534 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17ACg1i 0.95 2.72 3.565 (3) 149
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Spirothiazolidin-4-ones are well known to possess varied pharmacological activities such as anti-fungal (Singh et al., 2006), anti-mycobacterial (Kasimogullari & Cesur, 2004), anti-TB (Dandia et al., 2004), and anti-bacterial (Sahu et al., 2006) properties. As a part of our studies in this area, we now describe the synthesis and structure of the title compound, (I).

The asymmetric unit of (I) is shown in Fig. 1. The central thiazolidine ring (S1/N1/C8–C10) is twisted with deviations from the least-squares plane of 0.199 (1) and -0.211 (3) Å for atoms S1 and C10, respectively. The cyclohexane ring (C10–C15) adopts a chair conformation with puckering parameters (Cremer & Pople, 1975), Q = 0.583 (3) Å, θ = 173.4 (3)° and ϕ = 347 (2)°. The thiazolidine ring forms dihedral angles of 86.24 (14) and 31.82 (15)° with the terminal C1–C6 and C16–C21 benzene rings, respectively. The dihedral angle between the two terminal benzene rings is 86.74 (14)°. Bond lengths and angles are comparable to a related structure (Akkurt et al., 2008).

The only significant intermolecular interaction in the crystal is a weak C—H···Cg1 interaction (Table 1) where Cg1 is the centroid of C1–C6 ring.

Related literature top

For the pharmacological activitys of spirothiazolidin-4-ones, see: Singh et al. (2006); Kasimogullari & Cesur (2004); Dandia et al. (2004); Sahu et al. (2006). For a related structure, see: Akkurt et al. (2008). For ring puckering parameters, see: Cremer & Pople (1975). For the stability of the temperature controller used for data collection, see: Cosier & Glazer (1986). For standard bond lengths, see: Allen et al. (1987).

Experimental top

A mixture of triphenyl phosphine (0.43 g, 1.1 mmol), benzyl azide (0.20 g, 1.0 mmol), 4-phenylcylohexanone (0.28 g, 1.0 mmol) and mercaptoacetic acid (0.15 g, 1.1 mmol) was heated to reflux in acetonitrile (5 ml) for 4 h. The reaction mixture was allowed to stand at room temperature. After the solvent has been evaporated, the residue was purified by column chromatography using silica gel as the stationary phase (60–120 mesh) and petroleum ether-ethyl acetate (93:7) as the mobile phase to afford the title compound. Yield: 0.48 g (95%); M.p.: 130–131 °C. Colourless crystals were obtained by recrystallization from ethanol solution.

Refinement top

All H atoms were positioned geometrically [C—H = 0.95, 0.99 or 1.00 Å] and refined using a riding model with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability displacement ellipsoids.
4-Benzyl-8-phenyl-1-thia-4-azaspiro[4.5]decan-3-one top
Crystal data top
C21H23NOSF(000) = 720
Mr = 337.46Dx = 1.295 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2184 reflections
a = 9.8299 (9) Åθ = 2.6–29.6°
b = 15.3823 (14) ŵ = 0.19 mm1
c = 12.0833 (10) ÅT = 100 K
β = 108.717 (4)°Block, colourless
V = 1730.4 (3) Å30.33 × 0.21 × 0.14 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
3534 independent reflections
Radiation source: fine-focus sealed tube2144 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.080
ϕ and ω scansθmax = 26.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1211
Tmin = 0.939, Tmax = 0.973k = 1619
10508 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0622P)2 + 0.185P]
where P = (Fo2 + 2Fc2)/3
3534 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.71 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
C21H23NOSV = 1730.4 (3) Å3
Mr = 337.46Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.8299 (9) ŵ = 0.19 mm1
b = 15.3823 (14) ÅT = 100 K
c = 12.0833 (10) Å0.33 × 0.21 × 0.14 mm
β = 108.717 (4)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3534 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2144 reflections with I > 2σ(I)
Tmin = 0.939, Tmax = 0.973Rint = 0.080
10508 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.01Δρmax = 0.71 e Å3
3534 reflectionsΔρmin = 0.46 e Å3
217 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.33380 (9)0.00046 (5)0.85069 (6)0.0253 (2)
O10.3626 (2)0.18832 (13)1.06649 (16)0.0320 (6)
N10.3843 (3)0.16539 (15)0.88513 (19)0.0211 (6)
C10.6646 (3)0.29768 (18)0.8312 (2)0.0241 (7)
H1A0.60470.32620.76330.029*
C20.8123 (4)0.3003 (2)0.8566 (3)0.0296 (8)
H2A0.85310.33140.80710.035*
C30.9005 (4)0.2575 (2)0.9542 (3)0.0309 (8)
H3A1.00170.25740.97020.037*
C40.8401 (4)0.2147 (2)1.0284 (3)0.0310 (8)
H4A0.90010.18681.09680.037*
C50.6923 (3)0.21282 (19)1.0028 (2)0.0257 (7)
H5A0.65170.18301.05360.031*
C60.6026 (3)0.25385 (18)0.9040 (2)0.0211 (7)
C70.4415 (3)0.25215 (19)0.8761 (2)0.0243 (7)
H7A0.41480.29190.93030.029*
H7B0.39620.27430.79580.029*
C80.3482 (3)0.1418 (2)0.9806 (2)0.0251 (7)
C90.2885 (3)0.0507 (2)0.9689 (2)0.0264 (7)
H9A0.18300.05220.95140.032*
H9B0.33130.01801.04250.032*
C100.3402 (3)0.10667 (19)0.7831 (2)0.0210 (7)
C110.1909 (3)0.13109 (19)0.7013 (2)0.0227 (7)
H11A0.19120.19280.67800.027*
H11B0.12020.12480.74360.027*
C120.1448 (3)0.07408 (18)0.5916 (2)0.0212 (7)
H12A0.04910.09280.54000.025*
H12B0.13750.01280.61400.025*
C130.2545 (3)0.08156 (19)0.5260 (2)0.0213 (7)
H13A0.26470.14490.51160.026*
C140.4012 (3)0.0504 (2)0.6074 (2)0.0242 (7)
H14A0.39400.01130.62840.029*
H14B0.47310.05430.56610.029*
C150.4503 (3)0.10522 (19)0.7182 (2)0.0221 (7)
H15A0.46790.16550.69750.027*
H15B0.54210.08170.77070.027*
C160.2087 (3)0.0375 (2)0.4081 (2)0.0217 (7)
C170.2160 (3)0.05266 (19)0.3972 (2)0.0232 (7)
H17A0.24730.08770.46550.028*
C180.1782 (3)0.0918 (2)0.2878 (2)0.0260 (7)
H18A0.18430.15320.28180.031*
C190.1316 (3)0.0417 (2)0.1874 (2)0.0277 (7)
H19A0.10600.06840.11270.033*
C200.1226 (3)0.0480 (2)0.1970 (2)0.0282 (8)
H20A0.09100.08290.12860.034*
C210.1598 (3)0.0866 (2)0.3064 (2)0.0248 (7)
H21A0.15180.14780.31200.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0414 (5)0.0194 (4)0.0179 (4)0.0007 (4)0.0134 (3)0.0011 (4)
O10.0528 (15)0.0301 (13)0.0176 (11)0.0009 (11)0.0177 (10)0.0058 (10)
N10.0318 (15)0.0173 (13)0.0172 (12)0.0043 (11)0.0121 (10)0.0026 (11)
C10.041 (2)0.0168 (16)0.0145 (14)0.0017 (14)0.0096 (14)0.0039 (13)
C20.049 (2)0.0215 (18)0.0238 (16)0.0070 (15)0.0188 (15)0.0078 (14)
C30.0326 (19)0.0268 (19)0.0346 (18)0.0060 (14)0.0125 (15)0.0142 (16)
C40.042 (2)0.0256 (18)0.0227 (16)0.0024 (15)0.0071 (15)0.0057 (14)
C50.041 (2)0.0177 (17)0.0195 (16)0.0028 (14)0.0112 (14)0.0019 (14)
C60.0362 (19)0.0131 (15)0.0161 (14)0.0020 (13)0.0111 (13)0.0019 (13)
C70.042 (2)0.0149 (16)0.0182 (15)0.0026 (14)0.0122 (13)0.0004 (13)
C80.0335 (19)0.0257 (18)0.0194 (15)0.0028 (14)0.0134 (13)0.0015 (14)
C90.0354 (19)0.0299 (19)0.0162 (15)0.0036 (15)0.0114 (13)0.0005 (14)
C100.0338 (18)0.0181 (16)0.0142 (14)0.0021 (13)0.0122 (13)0.0035 (13)
C110.0289 (18)0.0246 (18)0.0190 (15)0.0016 (13)0.0138 (13)0.0006 (13)
C120.0288 (18)0.0197 (17)0.0169 (14)0.0002 (13)0.0099 (12)0.0003 (13)
C130.0315 (18)0.0196 (16)0.0155 (14)0.0035 (13)0.0112 (13)0.0025 (13)
C140.0309 (18)0.0252 (17)0.0208 (15)0.0009 (14)0.0144 (13)0.0035 (14)
C150.0281 (18)0.0228 (17)0.0174 (14)0.0017 (13)0.0101 (13)0.0017 (13)
C160.0262 (17)0.0228 (16)0.0192 (15)0.0034 (13)0.0114 (12)0.0019 (14)
C170.0342 (18)0.0212 (18)0.0172 (15)0.0030 (14)0.0125 (13)0.0020 (14)
C180.0331 (19)0.0217 (17)0.0261 (16)0.0024 (14)0.0139 (14)0.0054 (14)
C190.0327 (19)0.035 (2)0.0165 (15)0.0020 (15)0.0094 (13)0.0069 (15)
C200.037 (2)0.032 (2)0.0176 (16)0.0040 (15)0.0103 (14)0.0027 (15)
C210.0339 (19)0.0221 (17)0.0207 (16)0.0000 (14)0.0122 (13)0.0024 (14)
Geometric parameters (Å, º) top
S1—C91.808 (3)C11—C121.532 (4)
S1—C101.849 (3)C11—H11A0.9900
O1—C81.231 (3)C11—H11B0.9900
N1—C81.360 (3)C12—C131.534 (4)
N1—C71.466 (4)C12—H12A0.9900
N1—C101.476 (3)C12—H12B0.9900
C1—C21.385 (4)C13—C161.510 (4)
C1—C61.394 (4)C13—C141.538 (4)
C1—H1A0.9500C13—H13A1.0000
C2—C31.385 (4)C14—C151.524 (4)
C2—H2A0.9500C14—H14A0.9900
C3—C41.391 (4)C14—H14B0.9900
C3—H3A0.9500C15—H15A0.9900
C4—C51.385 (4)C15—H15B0.9900
C4—H4A0.9500C16—C211.390 (4)
C5—C61.387 (4)C16—C171.397 (4)
C5—H5A0.9500C17—C181.391 (4)
C6—C71.510 (4)C17—H17A0.9500
C7—H7A0.9900C18—C191.385 (4)
C7—H7B0.9900C18—H18A0.9500
C8—C91.510 (4)C19—C201.390 (4)
C9—H9A0.9900C19—H19A0.9500
C9—H9B0.9900C20—C211.387 (4)
C10—C151.527 (4)C20—H20A0.9500
C10—C111.530 (4)C21—H21A0.9500
C9—S1—C1090.75 (13)C10—C11—H11B109.2
C8—N1—C7121.1 (2)C12—C11—H11B109.2
C8—N1—C10117.3 (2)H11A—C11—H11B107.9
C7—N1—C10120.8 (2)C11—C12—C13110.0 (2)
C2—C1—C6120.9 (3)C11—C12—H12A109.7
C2—C1—H1A119.5C13—C12—H12A109.7
C6—C1—H1A119.5C11—C12—H12B109.7
C1—C2—C3120.0 (3)C13—C12—H12B109.7
C1—C2—H2A120.0H12A—C12—H12B108.2
C3—C2—H2A120.0C16—C13—C12114.0 (2)
C2—C3—C4119.6 (3)C16—C13—C14113.4 (2)
C2—C3—H3A120.2C12—C13—C14108.4 (2)
C4—C3—H3A120.2C16—C13—H13A106.8
C5—C4—C3120.0 (3)C12—C13—H13A106.8
C5—C4—H4A120.0C14—C13—H13A106.8
C3—C4—H4A120.0C15—C14—C13110.9 (2)
C4—C5—C6120.9 (3)C15—C14—H14A109.5
C4—C5—H5A119.5C13—C14—H14A109.5
C6—C5—H5A119.5C15—C14—H14B109.5
C5—C6—C1118.5 (3)C13—C14—H14B109.5
C5—C6—C7121.0 (3)H14A—C14—H14B108.0
C1—C6—C7120.5 (3)C14—C15—C10112.5 (2)
N1—C7—C6113.5 (2)C14—C15—H15A109.1
N1—C7—H7A108.9C10—C15—H15A109.1
C6—C7—H7A108.9C14—C15—H15B109.1
N1—C7—H7B108.9C10—C15—H15B109.1
C6—C7—H7B108.9H15A—C15—H15B107.8
H7A—C7—H7B107.7C21—C16—C17118.0 (3)
O1—C8—N1124.7 (3)C21—C16—C13120.3 (3)
O1—C8—C9123.6 (3)C17—C16—C13121.7 (2)
N1—C8—C9111.6 (2)C18—C17—C16120.9 (3)
C8—C9—S1106.9 (2)C18—C17—H17A119.6
C8—C9—H9A110.3C16—C17—H17A119.6
S1—C9—H9A110.3C19—C18—C17120.3 (3)
C8—C9—H9B110.3C19—C18—H18A119.9
S1—C9—H9B110.3C17—C18—H18A119.9
H9A—C9—H9B108.6C18—C19—C20119.4 (3)
N1—C10—C15111.8 (2)C18—C19—H19A120.3
N1—C10—C11110.7 (2)C20—C19—H19A120.3
C15—C10—C11111.3 (2)C21—C20—C19120.0 (3)
N1—C10—S1102.67 (17)C21—C20—H20A120.0
C15—C10—S1110.1 (2)C19—C20—H20A120.0
C11—C10—S1110.0 (2)C20—C21—C16121.4 (3)
C10—C11—C12112.0 (2)C20—C21—H21A119.3
C10—C11—H11A109.2C16—C21—H21A119.3
C12—C11—H11A109.2
C6—C1—C2—C31.3 (4)C9—S1—C10—C15148.8 (2)
C1—C2—C3—C42.3 (4)C9—S1—C10—C1188.2 (2)
C2—C3—C4—C52.0 (4)N1—C10—C11—C12177.3 (2)
C3—C4—C5—C60.6 (4)C15—C10—C11—C1252.4 (3)
C4—C5—C6—C10.4 (4)S1—C10—C11—C1269.9 (3)
C4—C5—C6—C7179.8 (3)C10—C11—C12—C1357.8 (3)
C2—C1—C6—C50.1 (4)C11—C12—C13—C16172.1 (2)
C2—C1—C6—C7179.4 (3)C11—C12—C13—C1460.4 (3)
C8—N1—C7—C6101.0 (3)C16—C13—C14—C15172.6 (2)
C10—N1—C7—C689.9 (3)C12—C13—C14—C1559.6 (3)
C5—C6—C7—N147.5 (3)C13—C14—C15—C1055.7 (3)
C1—C6—C7—N1133.2 (3)N1—C10—C15—C14175.6 (2)
C7—N1—C8—O11.7 (5)C11—C10—C15—C1451.3 (3)
C10—N1—C8—O1171.2 (3)S1—C10—C15—C1471.0 (3)
C7—N1—C8—C9178.6 (2)C12—C13—C16—C21104.1 (3)
C10—N1—C8—C99.1 (4)C14—C13—C16—C21131.1 (3)
O1—C8—C9—S1164.6 (3)C12—C13—C16—C1777.1 (4)
N1—C8—C9—S115.1 (3)C14—C13—C16—C1747.8 (4)
C10—S1—C9—C826.3 (2)C21—C16—C17—C181.2 (4)
C8—N1—C10—C15145.8 (3)C13—C16—C17—C18177.7 (3)
C7—N1—C10—C1544.7 (3)C16—C17—C18—C190.4 (4)
C8—N1—C10—C1189.6 (3)C17—C18—C19—C200.2 (4)
C7—N1—C10—C1179.9 (3)C18—C19—C20—C210.2 (4)
C8—N1—C10—S127.8 (3)C19—C20—C21—C161.0 (5)
C7—N1—C10—S1162.7 (2)C17—C16—C21—C201.5 (4)
C9—S1—C10—N129.6 (2)C13—C16—C21—C20177.4 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C17—H17A···Cg1i0.952.723.565 (3)149
Symmetry code: (i) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC21H23NOS
Mr337.46
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.8299 (9), 15.3823 (14), 12.0833 (10)
β (°) 108.717 (4)
V3)1730.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.33 × 0.21 × 0.14
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.939, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
10508, 3534, 2144
Rint0.080
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.145, 1.01
No. of reflections3534
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.71, 0.46

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C17—H17A···Cg1i0.952.723.565 (3)149
Symmetry code: (i) x+1, y1/2, z+3/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and TSC thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSC also thanks the Malaysian Government and USM for the award of a research fellowship.

References

First citationAkkurt, M., Yalçın, Ş. P., Klip, N. T. & Büyükgüngör, O. (2008). Acta Cryst. E64, o1572–o1573.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDandia, A., Singh, R. & Arya, K. (2004). Phosphorus Sulfur Silicon Relat. Elem. 179, 551–564.  Web of Science CrossRef CAS Google Scholar
First citationKasimogullari, B. O. & Cesur, Z. (2004). Molecules, 9, 894–901.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSahu, S. K., Mishra, S. K., Banergee, M., Panda, P. K. & Misro, P. K. (2006). J. Indian Chem. Soc. 7, 725–727.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, R., Khaturia, S., Merienne, C., Morgantc, G. & Loupyd, A. (2006). Bioorg. Med. Chem. 14, 2409–2417.  Web of Science PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1438
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds