organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1492

4-Methyl­benzoic acid–N′-[(E)-4-methyl­benzyl­­idene]pyridine-4-carbohydrazide–water (1/1/1)

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and cDepartment of Chemistry, P.A. College of Engineering, Nadupadavu, Mangalore 574 153, India
*Correspondence e-mail: hkfun@usm.my

(Received 17 April 2012; accepted 17 April 2012; online 21 April 2012)

In the title hydrated 1:1 adduct, C8H8O2·C14H13N3O·H2O, the Schiff base mol­ecule exists in an E conformation with respect to the N=C bond [1.2843 (13) Å] and the dihedral angle between the pyridine ring and the benzene ring is 1.04 (5)°. In the crystal, mol­ecules are linked by N—H⋯O, C—H⋯O, O—H⋯O and O—H⋯N hydrogen bonds into sheets lying parallel to the ab plane. The crystal structure also features ππ inter­actions with centroid–centroid distances of 3.6224 (6) and 3.7121 (6) Å.

Related literature

For related structures, see: Jing et al. (2005[Jing, Z.-L., Fan, Z., Yu, M., Chen, X. & Deng, Q.-L. (2005). Acta Cryst. E61, o3208-o3209.]); Wang et al. (2007[Wang, C.-L., Zhang, Z.-H. & Jing, Z.-L. (2007). Acta Cryst. E63, o4825.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C8H8O2·C14H13N3O·H2O

  • Mr = 393.43

  • Orthorhombic, P b c a

  • a = 7.3199 (4) Å

  • b = 11.6311 (6) Å

  • c = 45.875 (2) Å

  • V = 3905.7 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.31 × 0.22 × 0.13 mm

Data collection
  • Bruker APEX DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.972, Tmax = 0.988

  • 59762 measured reflections

  • 5751 independent reflections

  • 5011 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.108

  • S = 1.07

  • 5751 reflections

  • 280 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1O3⋯N1 0.99 (2) 1.66 (2) 2.6347 (13) 168 (2)
O1W—H1W1⋯O1 0.887 (17) 1.927 (17) 2.7974 (11) 166.7 (16)
O1W—H2W1⋯N3i 0.89 (2) 2.14 (2) 3.0231 (12) 168.7 (17)
N2—H1N2⋯O1Wii 0.873 (17) 1.988 (17) 2.8120 (12) 157.0 (14)
C4—H4A⋯O1iii 0.95 2.40 3.2796 (13) 154
C10—H10A⋯O2iv 0.95 2.51 3.4188 (13) 160
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) -x+1, -y+1, -z+1; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z]; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The structures of isoniazid and its various derivatives have been described previously (Wang et al., 2007; Jing et al., 2005). Here, the synthesis and crystal structure of its Schiff base derivative (I) is reported. The Schiff base, N'-[(E)-(4-methylphenyl)methylidene]pyridine-4- carbohydrazide was synthesized by the condensation of isoniazid with 4-methylbenzaldehyde in absolute alcohol in presence of hydrochloric acid. During the crystallization, the synthesized Schiff base crystallized with 4-methyl benzoic acid (which is a side product obtained by the auto-oxidation of unreacted 4-methyl benzaldehyde) and one molecule of water to form title compound (I) (Fig. 1).

The Schiff base molecule exists in an E conformation with respect to the N3 C7 bond [N3 C7 = 1.2843 (13) Å; torsion angle N2—N3—C7—C8 = -178.00 (8)°]. The pyridine ring (N1/C1–C5) is essentially planar with a maximum deviation of 0.002 (1) Å at atoms C1 and C5. There is a slight inclination between the pyridine ring and the benzene ring (C8—C13), as indicated by the dihedral angle formed of 1.04 (5) °. The bond lengths and angles are comparable with those in related structures (Wang et al., 2007 and Jing et al., 2005).

In the crystal (Fig. 2), the molecules are linked via N2—H1N2···O1W, C4—H4A···O1, C10—H10A···O2, O1W—H1W1···O1, O1W—H2W1···N3 and O3—H1O3···N1 hydrogen bonds (Table 1) into two-dimensional networks parallel to the ab plane. The crystal structure also features ππ interactions with Cg1···Cg2 = 3.6224 (6) Å [symmetry code: 1-X, 1-Y, 1-Z] and Cg3···Cg3 = 3.7121 (6) Å [symmetry code: -1/2+X, Y, 1/2-Z], where Cg1, Cg2 and Cg3 are the centroids of N1/C1–C5, C8–C13 and C17–C22 rings, respectively.

Related literature top

For related structures, see: Jing et al. (2005); Wang et al. (2007). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of isoniazid (1.4 g, 0.01 mol) and 4-methylbenzaldehyde (1.2 g, 0.01 mol) in 15 ml of absolute alcohol containing two drops of hydrochloric acid was refluxed for about 3 h. On cooling, a solid was separated out. The solid was filtered out and recrystallized from DMF. Colourless blocks of (I) were grown from DMF by slow evaporation method. During the crystallization, the synthesized Schiff base was crystallized with 4-methyl benzoic acid (which was a side product obtained by the auto-oxidation of unreacted 4-methyl benzaldehyde) and one molecule of water to form the title compound (I). (M.p: 428 K).

Refinement top

The O– and N– bound H atoms were located in a difference Fourier map and refine freely [O—H = 0.884 (18) - 0.99 (2) Å and N—H 0.875 (17) Å]. The remaining H atoms were positioned geometrically and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C) (C—H = 0.95 and 0.98 Å). A rotating group model was applied to the methyl groups. In the final refinement, one outlier (4 1 22) was omitted.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
4-Methylbenzoic acid–N'-[(E)-4-methylbenzylidene]pyridine-4-carbohydrazide– water (1/1/1) top
Crystal data top
C8H8O2·C14H13N3O·H2OF(000) = 1664
Mr = 393.43Dx = 1.338 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 9870 reflections
a = 7.3199 (4) Åθ = 2.7–30.1°
b = 11.6311 (6) ŵ = 0.09 mm1
c = 45.875 (2) ÅT = 100 K
V = 3905.7 (4) Å3Block, colourless
Z = 80.31 × 0.22 × 0.13 mm
Data collection top
Bruker APEX DUO CCD
diffractometer
5751 independent reflections
Radiation source: fine-focus sealed tube5011 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 30.1°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1010
Tmin = 0.972, Tmax = 0.988k = 1615
59762 measured reflectionsl = 6164
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.051P)2 + 1.7498P]
where P = (Fo2 + 2Fc2)/3
5751 reflections(Δ/σ)max = 0.001
280 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C8H8O2·C14H13N3O·H2OV = 3905.7 (4) Å3
Mr = 393.43Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.3199 (4) ŵ = 0.09 mm1
b = 11.6311 (6) ÅT = 100 K
c = 45.875 (2) Å0.31 × 0.22 × 0.13 mm
Data collection top
Bruker APEX DUO CCD
diffractometer
5751 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5011 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.988Rint = 0.035
59762 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.41 e Å3
5751 reflectionsΔρmin = 0.23 e Å3
280 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1W0.43207 (11)0.73964 (7)0.507362 (18)0.01826 (16)
O10.63620 (11)0.64905 (6)0.461214 (16)0.01601 (15)
O20.69422 (12)0.14784 (7)0.336901 (17)0.02270 (18)
O30.56737 (13)0.31295 (8)0.322091 (18)0.0261 (2)
N10.59728 (12)0.38603 (8)0.376242 (19)0.01606 (17)
N20.71637 (12)0.47981 (7)0.482605 (18)0.01298 (16)
N30.75142 (12)0.53545 (7)0.508766 (18)0.01307 (16)
C10.56364 (13)0.54599 (9)0.40841 (2)0.01386 (18)
H1A0.52610.62330.41130.017*
C20.54681 (14)0.49497 (9)0.38132 (2)0.0164 (2)
H2A0.49760.53880.36570.020*
C30.66639 (13)0.32491 (9)0.39840 (2)0.01493 (19)
H3A0.70180.24760.39490.018*
C40.68877 (13)0.36905 (9)0.42629 (2)0.01328 (18)
H4A0.73850.32320.44150.016*
C50.63617 (12)0.48261 (8)0.43136 (2)0.01171 (17)
C60.66039 (13)0.54445 (8)0.45976 (2)0.01197 (18)
C70.80639 (13)0.46935 (9)0.52941 (2)0.01297 (18)
H7A0.82320.38980.52560.016*
C80.84364 (13)0.51370 (8)0.55861 (2)0.01218 (18)
C90.92034 (13)0.43970 (9)0.57926 (2)0.01375 (18)
H9A0.95170.36340.57380.017*
C100.95145 (13)0.47632 (9)0.60776 (2)0.01496 (19)
H10A1.00410.42490.62150.018*
C110.90594 (13)0.58772 (9)0.61626 (2)0.01477 (19)
C120.82840 (13)0.66163 (9)0.59548 (2)0.01501 (19)
H12A0.79620.73770.60100.018*
C130.79782 (13)0.62599 (9)0.56710 (2)0.01372 (18)
H13A0.74580.67760.55340.016*
C140.93757 (16)0.62885 (10)0.64699 (2)0.0211 (2)
H14A1.00080.56890.65810.032*
H14B0.81990.64580.65620.032*
H14C1.01260.69860.64660.032*
C160.65514 (17)0.08019 (11)0.19543 (2)0.0240 (2)
H16A0.65530.00380.19360.036*
H16B0.76720.11130.18680.036*
H16C0.54880.11170.18520.036*
C170.64625 (14)0.11288 (9)0.22720 (2)0.0168 (2)
C180.69565 (14)0.03460 (9)0.24886 (3)0.0182 (2)
H18A0.73400.04050.24350.022*
C190.68955 (14)0.06485 (9)0.27810 (2)0.0166 (2)
H19A0.72410.01070.29260.020*
C200.63260 (13)0.17483 (9)0.28622 (2)0.01416 (19)
C210.57996 (14)0.25295 (9)0.26468 (2)0.01573 (19)
H21A0.53870.32750.27000.019*
C220.58768 (14)0.22215 (9)0.23551 (2)0.0169 (2)
H22A0.55260.27610.22100.020*
C230.63459 (14)0.20873 (9)0.31746 (2)0.01617 (19)
H1N20.698 (2)0.4055 (15)0.4832 (4)0.031 (4)*
H2W10.366 (3)0.8001 (16)0.5016 (4)0.042 (5)*
H1W10.504 (2)0.7217 (15)0.4926 (4)0.034 (4)*
H1O30.580 (3)0.3298 (19)0.3432 (5)0.063 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1W0.0218 (4)0.0135 (4)0.0194 (4)0.0021 (3)0.0042 (3)0.0000 (3)
O10.0220 (4)0.0109 (3)0.0151 (3)0.0003 (3)0.0003 (3)0.0003 (3)
O20.0291 (4)0.0237 (4)0.0153 (4)0.0021 (3)0.0009 (3)0.0034 (3)
O30.0398 (5)0.0242 (4)0.0144 (4)0.0109 (4)0.0047 (3)0.0053 (3)
N10.0162 (4)0.0189 (4)0.0131 (4)0.0010 (3)0.0009 (3)0.0011 (3)
N20.0169 (4)0.0108 (4)0.0112 (4)0.0005 (3)0.0015 (3)0.0002 (3)
N30.0144 (4)0.0138 (4)0.0110 (4)0.0012 (3)0.0006 (3)0.0006 (3)
C10.0139 (4)0.0137 (4)0.0139 (4)0.0008 (3)0.0002 (3)0.0016 (3)
C20.0175 (5)0.0191 (5)0.0126 (4)0.0003 (4)0.0011 (3)0.0022 (4)
C30.0148 (4)0.0146 (4)0.0154 (5)0.0005 (3)0.0017 (3)0.0017 (4)
C40.0131 (4)0.0131 (4)0.0136 (4)0.0003 (3)0.0005 (3)0.0008 (3)
C50.0105 (4)0.0130 (4)0.0116 (4)0.0011 (3)0.0008 (3)0.0004 (3)
C60.0110 (4)0.0132 (4)0.0117 (4)0.0010 (3)0.0008 (3)0.0005 (3)
C70.0132 (4)0.0124 (4)0.0133 (4)0.0001 (3)0.0003 (3)0.0002 (3)
C80.0111 (4)0.0140 (4)0.0115 (4)0.0011 (3)0.0000 (3)0.0009 (3)
C90.0134 (4)0.0134 (4)0.0145 (4)0.0003 (3)0.0000 (3)0.0011 (3)
C100.0138 (4)0.0182 (5)0.0129 (4)0.0000 (3)0.0012 (3)0.0029 (4)
C110.0127 (4)0.0187 (5)0.0128 (4)0.0029 (3)0.0011 (3)0.0001 (4)
C120.0153 (4)0.0136 (4)0.0161 (5)0.0016 (3)0.0016 (3)0.0011 (4)
C130.0137 (4)0.0133 (4)0.0141 (4)0.0004 (3)0.0002 (3)0.0014 (3)
C140.0232 (5)0.0263 (6)0.0137 (5)0.0023 (4)0.0000 (4)0.0028 (4)
C160.0248 (5)0.0304 (6)0.0167 (5)0.0025 (4)0.0010 (4)0.0073 (4)
C170.0131 (4)0.0206 (5)0.0166 (5)0.0027 (4)0.0001 (3)0.0043 (4)
C180.0155 (4)0.0171 (5)0.0221 (5)0.0008 (4)0.0011 (4)0.0051 (4)
C190.0147 (4)0.0157 (5)0.0193 (5)0.0002 (3)0.0018 (4)0.0003 (4)
C200.0123 (4)0.0163 (5)0.0139 (4)0.0014 (3)0.0001 (3)0.0010 (3)
C210.0158 (4)0.0150 (4)0.0165 (5)0.0006 (3)0.0003 (3)0.0010 (4)
C220.0172 (4)0.0188 (5)0.0147 (4)0.0009 (4)0.0015 (4)0.0001 (4)
C230.0149 (4)0.0189 (5)0.0147 (5)0.0017 (4)0.0002 (3)0.0000 (4)
Geometric parameters (Å, º) top
O1W—H2W10.89 (2)C9—H9A0.9500
O1W—H1W10.884 (18)C10—C111.3935 (15)
O1—C61.2312 (12)C10—H10A0.9500
O2—C231.2197 (13)C11—C121.4035 (14)
O3—C231.3254 (13)C11—C141.5068 (14)
O3—H1O30.99 (2)C12—C131.3845 (14)
N1—C31.3396 (13)C12—H12A0.9500
N1—C21.3402 (14)C13—H13A0.9500
N2—C61.3533 (12)C14—H14A0.9800
N2—N31.3874 (11)C14—H14B0.9800
N2—H1N20.875 (17)C14—H14C0.9800
N3—C71.2843 (13)C16—C171.5073 (15)
C1—C21.3825 (14)C16—H16A0.9800
C1—C51.3908 (13)C16—H16B0.9800
C1—H1A0.9500C16—H16C0.9800
C2—H2A0.9500C17—C221.3944 (15)
C3—C41.3884 (14)C17—C181.3956 (16)
C3—H3A0.9500C18—C191.3874 (15)
C4—C51.3954 (13)C18—H18A0.9500
C4—H4A0.9500C19—C201.3960 (14)
C5—C61.4985 (13)C19—H19A0.9500
C7—C81.4612 (13)C20—C211.3966 (14)
C7—H7A0.9500C20—C231.4863 (14)
C8—C91.3978 (13)C21—C221.3867 (14)
C8—C131.4035 (14)C21—H21A0.9500
C9—C101.3936 (14)C22—H22A0.9500
H2W1—O1W—H1W1106.4 (16)C13—C12—C11121.37 (9)
C23—O3—H1O3107.7 (13)C13—C12—H12A119.3
C3—N1—C2118.28 (9)C11—C12—H12A119.3
C6—N2—N3117.83 (8)C12—C13—C8120.06 (9)
C6—N2—H1N2121.6 (11)C12—C13—H13A120.0
N3—N2—H1N2117.7 (11)C8—C13—H13A120.0
C7—N3—N2114.61 (8)C11—C14—H14A109.5
C2—C1—C5119.15 (9)C11—C14—H14B109.5
C2—C1—H1A120.4H14A—C14—H14B109.5
C5—C1—H1A120.4C11—C14—H14C109.5
N1—C2—C1122.52 (9)H14A—C14—H14C109.5
N1—C2—H2A118.7H14B—C14—H14C109.5
C1—C2—H2A118.7C17—C16—H16A109.5
N1—C3—C4123.20 (9)C17—C16—H16B109.5
N1—C3—H3A118.4H16A—C16—H16B109.5
C4—C3—H3A118.4C17—C16—H16C109.5
C3—C4—C5118.11 (9)H16A—C16—H16C109.5
C3—C4—H4A120.9H16B—C16—H16C109.5
C5—C4—H4A120.9C22—C17—C18118.66 (10)
C1—C5—C4118.74 (9)C22—C17—C16120.50 (10)
C1—C5—C6116.68 (9)C18—C17—C16120.84 (10)
C4—C5—C6124.52 (9)C19—C18—C17120.98 (10)
O1—C6—N2123.40 (9)C19—C18—H18A119.5
O1—C6—C5120.29 (9)C17—C18—H18A119.5
N2—C6—C5116.26 (9)C18—C19—C20120.00 (10)
N3—C7—C8121.54 (9)C18—C19—H19A120.0
N3—C7—H7A119.2C20—C19—H19A120.0
C8—C7—H7A119.2C19—C20—C21119.33 (9)
C9—C8—C13118.74 (9)C19—C20—C23119.83 (9)
C9—C8—C7118.62 (9)C21—C20—C23120.81 (9)
C13—C8—C7122.57 (9)C22—C21—C20120.23 (10)
C10—C9—C8120.88 (9)C22—C21—H21A119.9
C10—C9—H9A119.6C20—C21—H21A119.9
C8—C9—H9A119.6C21—C22—C17120.79 (10)
C11—C10—C9120.50 (9)C21—C22—H22A119.6
C11—C10—H10A119.8C17—C22—H22A119.6
C9—C10—H10A119.8O2—C23—O3123.14 (10)
C10—C11—C12118.44 (9)O2—C23—C20123.68 (10)
C10—C11—C14121.35 (9)O3—C23—C20113.18 (9)
C12—C11—C14120.21 (10)
C6—N2—N3—C7179.09 (9)C9—C10—C11—C120.00 (15)
C3—N1—C2—C10.06 (15)C9—C10—C11—C14179.69 (10)
C5—C1—C2—N10.23 (15)C10—C11—C12—C130.28 (15)
C2—N1—C3—C40.23 (15)C14—C11—C12—C13179.97 (9)
N1—C3—C4—C50.11 (15)C11—C12—C13—C80.34 (15)
C2—C1—C5—C40.34 (14)C9—C8—C13—C120.12 (14)
C2—C1—C5—C6176.80 (9)C7—C8—C13—C12176.90 (9)
C3—C4—C5—C10.18 (14)C22—C17—C18—C190.95 (15)
C3—C4—C5—C6176.72 (9)C16—C17—C18—C19179.28 (10)
N3—N2—C6—O11.32 (14)C17—C18—C19—C200.28 (16)
N3—N2—C6—C5175.99 (8)C18—C19—C20—C210.81 (15)
C1—C5—C6—O18.01 (13)C18—C19—C20—C23177.12 (9)
C4—C5—C6—O1168.95 (9)C19—C20—C21—C221.24 (15)
C1—C5—C6—N2174.60 (9)C23—C20—C21—C22176.67 (9)
C4—C5—C6—N28.45 (14)C20—C21—C22—C170.57 (15)
N2—N3—C7—C8178.00 (8)C18—C17—C22—C210.52 (15)
N3—C7—C8—C9173.70 (9)C16—C17—C22—C21179.71 (10)
N3—C7—C8—C139.28 (15)C19—C20—C23—O24.58 (16)
C13—C8—C9—C100.15 (14)C21—C20—C23—O2173.33 (10)
C7—C8—C9—C10177.30 (9)C19—C20—C23—O3176.40 (9)
C8—C9—C10—C110.22 (15)C21—C20—C23—O35.70 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O3···N10.99 (2)1.66 (2)2.6347 (13)168 (2)
O1W—H1W1···O10.887 (17)1.927 (17)2.7974 (11)166.7 (16)
O1W—H2W1···N3i0.89 (2)2.14 (2)3.0231 (12)168.7 (17)
N2—H1N2···O1Wii0.873 (17)1.988 (17)2.8120 (12)157.0 (14)
C4—H4A···O1iii0.952.403.2796 (13)154
C10—H10A···O2iv0.952.513.4188 (13)160
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x+1, y+1, z+1; (iii) x+3/2, y1/2, z; (iv) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC8H8O2·C14H13N3O·H2O
Mr393.43
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)7.3199 (4), 11.6311 (6), 45.875 (2)
V3)3905.7 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.31 × 0.22 × 0.13
Data collection
DiffractometerBruker APEX DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.972, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
59762, 5751, 5011
Rint0.035
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.108, 1.07
No. of reflections5751
No. of parameters280
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.23

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O3···N10.99 (2)1.66 (2)2.6347 (13)168 (2)
O1W—H1W1···O10.887 (17)1.927 (17)2.7974 (11)166.7 (16)
O1W—H2W1···N3i0.89 (2)2.14 (2)3.0231 (12)168.7 (17)
N2—H1N2···O1Wii0.873 (17)1.988 (17)2.8120 (12)157.0 (14)
C4—H4A···O1iii0.952.403.2796 (13)154
C10—H10A···O2iv0.952.513.4188 (13)160
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x+1, y+1, z+1; (iii) x+3/2, y1/2, z; (iv) x+1/2, y+1/2, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and CWO thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). CWO also thanks the Malaysian Goverment and USM for the award of the post of Research Officer under the Research University Grant No. 1001/PFIZIK/811160. BN thanks the UGC SAP for financial assistance for the purchase of chemicals. DNS thanks the UGC–RFSMS scheme (under SAP-Phase1) for financial assistance and Mangalore University for research facilities.

References

First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJing, Z.-L., Fan, Z., Yu, M., Chen, X. & Deng, Q.-L. (2005). Acta Cryst. E61, o3208–o3209.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, C.-L., Zhang, Z.-H. & Jing, Z.-L. (2007). Acta Cryst. E63, o4825.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1492
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds