metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m694-m695

Chlorido[N,N′-di­benzyl-N,N′-bis­­(pyridin-2-ylmeth­yl)ethane-1,2-di­amine]­copper(II) perchlorate methanol monosolvate

aKey Laboratory for Green Chemical Process of the Ministry of Education, Wuhan Institute of Technology, Wuhan 430073, People's Republic of China, and bCollege of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
*Correspondence e-mail: zhiqpan@163.com

(Received 19 April 2012; accepted 22 April 2012; online 28 April 2012)

In the title solvated mol­ecular salt, [CuCl(C28H30N4)]ClO4·CH3OH, the Cu2+ ion is coordinated by the N,N′,N′′,N′′′-tetra­dentate ligand and a chloride ion, generating a very distorted square-based pyramidal CuN4Cl coordination geometry with the Cl ion in the basal position. In the crystal, the solvent mol­ecules and anions are linked by weak O—H⋯O hydrogen bonding.

Related literature

For related copper complexes, see: Cejudo et al. (2006[Cejudo, R., Alzuet, G., Gonzalez-Alvarez, M., Garcia-Gimenez, J. L. & Liu-Gonzalez, M. (2006). J. Inorg. Biochem. 24, 70-79.]); Vaidyanathan & Nair (2003[Vaidyanathan, V. G. & Nair, B. U. (2003). J. Inorg. Biochem. 93, 271-276.]); Wang et al. (2007[Wang, H., Li, M. X., Shao, M. & He, X. (2007). Polyhedron, 26, 5171-5176.]); Xiao et al. (2011[Xiao, W., Li, S.-R., Zhou, H., Pan, Z.-Q. & Huang, Q. (2011). Acta Cryst. E67, m701.]). For further synthetic details, see: Hamid & Hamid (2010[Hamid, G. & Hamid, R. M. (2010). Bull. Chem. Soc. Ethiop. 24, 151-155.]); Fenton et al. (1995[Fenton, R. R., Stephens, F. S., Vagg, R. S. & Williams, P. A. (1995). Inorg. Chim. Acta, 231, 73-85.]); Sun et al. (2002[Sun, G.-C., Li, Y.-Z., He, Z.-H., Li, Z.-J., Qu, J.-Q., Liu, C.-R. & Wang, L.-F. (2002). Acta Cryst. E58, o417-o418.]). For geometric descriptors of five-coordinate metal ions, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).

[Scheme 1]

Experimental

Crystal data
  • [CuCl(C28H30N4)]ClO4·CH4O

  • Mr = 653.04

  • Monoclinic, P 21 /n

  • a = 17.800 (2) Å

  • b = 10.5804 (13) Å

  • c = 18.107 (2) Å

  • β = 118.374 (1)°

  • V = 3000.3 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.95 mm−1

  • T = 291 K

  • 0.28 × 0.24 × 0.22 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS inc., Madison, Wisconsin, USA.]) Tmin = 0.777, Tmax = 0.818

  • 16310 measured reflections

  • 5885 independent reflections

  • 4329 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.110

  • S = 1.04

  • 5885 reflections

  • 372 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—N3 1.983 (3)
Cu1—N2 2.022 (2)
Cu1—N4 2.087 (2)
Cu1—N1 2.152 (3)
Cu1—Cl2 2.2830 (9)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1B⋯O12 0.96 2.48 3.140 (4) 126

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, study of copper complex with polynitrogen ligands has been given considerable attention because of their interesting biochemical properties (Cejudo et al., 2006; Vaidyanathan et al., 2003; Wang et al., 2007; Xiao et al., 2011). In this paper, we report on the crystal structure of a new copper(II) complex with the polynitrogen ligand N1,N2-dibenzyl-N1,N2-bis(pyridin-2-ylmethyl)ethane-1,2-diamine (L).

The structure of the title compound is shown in Fig.1. The Cu(II) atom is five-coordinated by two amino N atoms and two pyridine N atoms from the ligand L and one Cl atom. The coordination geometry for central Cu(II) atom can be described as distorted square based pyramidal, with τ = 0.30 (Addison et al., 1984).

Related literature top

For related copper complexes, see: Cejudo et al. (2006); Vaidyanathan et al. (2003); Wang et al. (2007); Xiao et al. (2011). For further synthetic details, see: Hamid & Hamid (2010); Fenton et al. (1995); Sun et al. (2002). For geometric descriptors of five-coordinate metal ions, see: Addison et al. (1984).

Experimental top

N,N'-bis(2-benzylmethyl)-1,2-diaminoethane was prepared using a variant of the method suggested by Hamid & Hamid (2010). The ligand L was synthesized according to a procedure reported previously (Fenton et al. 1995; Sun et al., 2002). To a refluxing solution of L (0.149 g, 0.3 mmol) in absolute methanol (15 ml) was added dropwise a solution of CuCl2 (0.0404 g 0.3 mmol)and Cu(ClO4)2.6H2O (0.112 g, 0.3 mmol). After the addition was completed, the resulting solution became green, and the mixture was stirred for about 6 h at room temperature. After filtration, blue blocks were obtained by slow evaporation of the absolute methanol solution at room temperature for two weeks.

Refinement top

All C-bound H atoms were placed in calculated positions with 0.93–0.97 Å, and included in the refinement in the riding-model approximation, with U(H) set to 1.2–1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
Chlorido[N,N'-dibenzyl-N,N'-bis(pyridin-2- ylmethyl)ethane-1,2-diamine]copper(II) perchlorate methanol monosolvate top
Crystal data top
[CuCl(C28H30N4)]ClO4·CH4OF(000) = 1356
Mr = 653.04Dx = 1.446 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4897 reflections
a = 17.800 (2) Åθ = 2.2–24.4°
b = 10.5804 (13) ŵ = 0.95 mm1
c = 18.107 (2) ÅT = 291 K
β = 118.374 (1)°Block, blue
V = 3000.3 (6) Å30.28 × 0.24 × 0.22 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
5885 independent reflections
Radiation source: sealed tube4329 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
phi and ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 2121
Tmin = 0.777, Tmax = 0.818k = 1312
16310 measured reflectionsl = 2215
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.05P)2 + 1.22P]
where P = (Fo2 + 2Fc2)/3
5885 reflections(Δ/σ)max = 0.001
372 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
[CuCl(C28H30N4)]ClO4·CH4OV = 3000.3 (6) Å3
Mr = 653.04Z = 4
Monoclinic, P21/nMo Kα radiation
a = 17.800 (2) ŵ = 0.95 mm1
b = 10.5804 (13) ÅT = 291 K
c = 18.107 (2) Å0.28 × 0.24 × 0.22 mm
β = 118.374 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
5885 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
4329 reflections with I > 2σ(I)
Tmin = 0.777, Tmax = 0.818Rint = 0.042
16310 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.04Δρmax = 0.24 e Å3
5885 reflectionsΔρmin = 0.36 e Å3
372 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8517 (2)0.0164 (3)0.6532 (2)0.0510 (8)
H10.85160.08320.61990.061*
C20.8816 (2)0.0377 (3)0.7372 (2)0.0506 (8)
H20.90090.11730.76010.061*
C30.8824 (2)0.0609 (4)0.7866 (2)0.0529 (9)
H30.90280.04920.84390.064*
C40.8530 (2)0.1772 (3)0.7508 (2)0.0476 (8)
H40.85300.24510.78340.057*
C50.82358 (18)0.1917 (3)0.66583 (18)0.0356 (6)
C60.7922 (2)0.3167 (3)0.62251 (18)0.0400 (7)
H6A0.76110.36000.64690.048*
H6B0.84080.36880.63180.048*
C70.72963 (18)0.4225 (3)0.48671 (18)0.0364 (6)
H7A0.69930.40580.42690.044*
H7B0.78690.44910.50040.044*
C80.68568 (18)0.5318 (3)0.50492 (18)0.0360 (6)
C90.7309 (2)0.6120 (3)0.5716 (2)0.0436 (7)
H90.78820.59600.60830.052*
C100.6910 (2)0.7169 (3)0.5842 (2)0.0499 (8)
H100.72170.76990.62980.060*
C110.6071 (2)0.7426 (3)0.5301 (2)0.0515 (8)
H110.58110.81340.53840.062*
C120.5617 (2)0.6636 (3)0.4638 (2)0.0542 (9)
H120.50450.68030.42740.065*
C130.6003 (2)0.5599 (3)0.4508 (2)0.0441 (7)
H130.56890.50740.40510.053*
C140.8694 (2)0.0635 (3)0.4603 (2)0.0523 (8)
H140.91850.01470.47940.063*
C150.8721 (2)0.1880 (4)0.4398 (2)0.0550 (9)
H150.92230.22350.44510.066*
C160.7996 (2)0.2578 (4)0.4116 (2)0.0547 (9)
H160.80000.34240.39790.066*
C170.7244 (2)0.2037 (3)0.4031 (2)0.0512 (8)
H170.67430.25060.38240.061*
C180.7261 (2)0.0808 (3)0.4257 (2)0.0440 (7)
C190.65156 (19)0.0122 (3)0.4241 (2)0.0420 (7)
H19A0.59850.04940.38230.050*
H19B0.65340.01850.47840.050*
C200.6269 (2)0.1318 (3)0.31094 (19)0.0419 (7)
H20A0.65770.06990.29610.050*
H20B0.56670.11060.28050.050*
C210.63972 (19)0.2601 (3)0.28309 (18)0.0420 (7)
C220.5718 (2)0.3417 (4)0.2408 (2)0.0567 (9)
H220.51670.31520.22630.068*
C230.5853 (2)0.4638 (4)0.2196 (2)0.0579 (9)
H230.53950.51880.19210.070*
C240.6649 (3)0.5012 (4)0.2394 (2)0.0601 (10)
H240.67400.58220.22540.072*
C250.7326 (2)0.4209 (4)0.2799 (2)0.0561 (9)
H250.78730.44730.29270.067*
C260.7200 (2)0.3020 (4)0.3015 (2)0.0498 (8)
H260.76650.24840.32930.060*
C270.65133 (19)0.2506 (3)0.51552 (19)0.0402 (7)
H27A0.61910.31620.52540.048*
H27B0.65980.18150.55390.048*
C280.60207 (18)0.2044 (3)0.4264 (2)0.0414 (7)
H28A0.55260.15690.41990.050*
H28B0.58190.27630.38870.050*
C290.5166 (3)0.8830 (4)0.1346 (3)0.0703 (11)
H29A0.47100.94270.10700.105*
H29B0.51990.82930.09350.105*
H29C0.56950.92760.16520.105*
Cl10.39157 (5)0.94576 (7)0.32224 (5)0.04209 (18)
Cl20.90470 (5)0.25490 (9)0.50649 (6)0.0526 (2)
Cu10.78296 (2)0.15945 (3)0.49085 (2)0.03736 (12)
N10.82264 (17)0.0959 (2)0.61692 (16)0.0436 (6)
N20.73604 (15)0.3018 (2)0.53140 (15)0.0349 (5)
N30.79833 (15)0.0104 (2)0.45376 (16)0.0407 (6)
N40.65620 (15)0.1222 (2)0.40350 (15)0.0362 (5)
O10.50092 (17)0.8086 (3)0.19076 (18)0.0680 (7)
H1B0.51930.85400.24240.082*
O110.44953 (15)0.9508 (2)0.40876 (14)0.0556 (6)
O120.43016 (16)0.9986 (3)0.27602 (17)0.0634 (7)
O130.36408 (16)0.8190 (2)0.30031 (17)0.0628 (7)
O140.31790 (16)1.0195 (3)0.30381 (17)0.0639 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0486 (18)0.0393 (18)0.0505 (19)0.0061 (15)0.0116 (16)0.0060 (15)
C20.0488 (18)0.0376 (18)0.0486 (19)0.0091 (14)0.0095 (15)0.0165 (15)
C30.0494 (19)0.061 (2)0.0385 (17)0.0044 (17)0.0126 (15)0.0105 (16)
C40.0482 (18)0.0468 (19)0.0387 (17)0.0063 (15)0.0134 (15)0.0055 (14)
C50.0362 (15)0.0360 (16)0.0380 (15)0.0020 (12)0.0203 (13)0.0036 (12)
C60.0468 (17)0.0354 (17)0.0341 (15)0.0025 (13)0.0163 (13)0.0003 (12)
C70.0338 (14)0.0349 (16)0.0345 (15)0.0009 (12)0.0114 (12)0.0020 (12)
C80.0361 (14)0.0320 (15)0.0336 (15)0.0005 (12)0.0114 (12)0.0059 (12)
C90.0452 (17)0.0414 (17)0.0375 (16)0.0043 (14)0.0144 (14)0.0005 (13)
C100.055 (2)0.0382 (18)0.0450 (18)0.0043 (15)0.0140 (16)0.0050 (15)
C110.057 (2)0.0370 (18)0.0508 (19)0.0074 (15)0.0175 (17)0.0027 (15)
C120.0476 (19)0.0454 (19)0.053 (2)0.0141 (16)0.0103 (16)0.0078 (16)
C130.0472 (17)0.0385 (17)0.0379 (16)0.0009 (14)0.0132 (14)0.0007 (13)
C140.0478 (18)0.0432 (19)0.054 (2)0.0122 (15)0.0150 (16)0.0007 (15)
C150.0447 (18)0.056 (2)0.055 (2)0.0162 (16)0.0160 (16)0.0022 (17)
C160.054 (2)0.0446 (19)0.053 (2)0.0180 (16)0.0161 (17)0.0082 (16)
C170.0456 (18)0.0356 (17)0.060 (2)0.0038 (14)0.0153 (16)0.0067 (15)
C180.0410 (16)0.0374 (17)0.0469 (18)0.0051 (13)0.0154 (14)0.0054 (14)
C190.0388 (16)0.0300 (15)0.0464 (18)0.0062 (12)0.0115 (14)0.0010 (13)
C200.0447 (17)0.0391 (17)0.0400 (16)0.0047 (13)0.0186 (14)0.0091 (13)
C210.0381 (15)0.0504 (19)0.0300 (15)0.0026 (14)0.0100 (13)0.0046 (13)
C220.0435 (18)0.061 (2)0.052 (2)0.0088 (16)0.0112 (16)0.0169 (18)
C230.059 (2)0.055 (2)0.051 (2)0.0086 (18)0.0198 (18)0.0135 (17)
C240.066 (2)0.052 (2)0.052 (2)0.0044 (18)0.0199 (18)0.0146 (17)
C250.052 (2)0.053 (2)0.053 (2)0.0111 (16)0.0163 (17)0.0013 (17)
C260.0442 (18)0.056 (2)0.0389 (17)0.0007 (15)0.0112 (14)0.0035 (15)
C270.0394 (16)0.0392 (16)0.0386 (16)0.0036 (13)0.0156 (13)0.0075 (13)
C280.0287 (14)0.0338 (16)0.0509 (19)0.0001 (12)0.0101 (13)0.0057 (13)
C290.073 (3)0.061 (3)0.063 (3)0.013 (2)0.021 (2)0.010 (2)
Cl10.0397 (4)0.0399 (4)0.0418 (4)0.0014 (3)0.0154 (3)0.0004 (3)
Cl20.0352 (4)0.0541 (5)0.0591 (5)0.0073 (3)0.0146 (4)0.0039 (4)
Cu10.03061 (19)0.0358 (2)0.0403 (2)0.00030 (15)0.01249 (15)0.00317 (16)
N10.0446 (14)0.0358 (14)0.0408 (14)0.0050 (11)0.0126 (12)0.0044 (11)
N20.0360 (12)0.0325 (13)0.0308 (12)0.0019 (10)0.0114 (10)0.0002 (10)
N30.0369 (13)0.0390 (14)0.0406 (14)0.0019 (11)0.0139 (11)0.0011 (11)
N40.0318 (12)0.0310 (12)0.0402 (13)0.0034 (10)0.0126 (11)0.0011 (10)
O10.0582 (15)0.0594 (16)0.0646 (16)0.0164 (13)0.0113 (13)0.0211 (14)
O110.0487 (13)0.0586 (15)0.0453 (13)0.0095 (11)0.0109 (11)0.0012 (11)
O120.0546 (14)0.0589 (16)0.0616 (16)0.0028 (12)0.0153 (13)0.0166 (13)
O130.0516 (14)0.0526 (15)0.0672 (16)0.0052 (11)0.0145 (13)0.0131 (13)
O140.0539 (14)0.0623 (17)0.0607 (16)0.0141 (13)0.0151 (13)0.0054 (13)
Geometric parameters (Å, º) top
C1—N11.337 (4)C19—N41.483 (4)
C1—C21.369 (5)C19—H19A0.9700
C1—H10.9300C19—H19B0.9700
C2—C31.370 (5)C20—C211.502 (5)
C2—H20.9300C20—N41.504 (4)
C3—C41.373 (5)C20—H20A0.9700
C3—H30.9300C20—H20B0.9700
C4—C51.378 (4)C21—C261.377 (5)
C4—H40.9300C21—C221.383 (5)
C5—N11.340 (4)C22—C231.400 (5)
C5—C61.504 (4)C22—H220.9300
C6—N21.476 (4)C23—C241.347 (5)
C6—H6A0.9700C23—H230.9300
C6—H6B0.9700C24—C251.367 (5)
C7—N21.486 (4)C24—H240.9300
C7—C81.518 (4)C25—C261.368 (5)
C7—H7A0.9700C25—H250.9300
C7—H7B0.9700C26—H260.9300
C8—C91.379 (4)C27—N21.496 (4)
C8—C131.394 (4)C27—C281.505 (4)
C9—C101.393 (5)C27—H27A0.9700
C9—H90.9300C27—H27B0.9700
C10—C111.368 (5)C28—N41.496 (4)
C10—H100.9300C28—H28A0.9700
C11—C121.367 (5)C28—H28B0.9700
C11—H110.9300C29—O11.414 (5)
C12—C131.373 (5)C29—H29A0.9600
C12—H120.9300C29—H29B0.9600
C13—H130.9300C29—H29C0.9600
C14—N31.336 (4)Cl1—O111.409 (2)
C14—C151.376 (5)Cl1—O131.419 (3)
C14—H140.9300Cl1—O141.423 (3)
C15—C161.359 (5)Cl1—O121.425 (3)
C15—H150.9300Cu1—N31.983 (3)
C16—C171.394 (5)Cu1—N22.022 (2)
C16—H160.9300Cu1—N42.087 (2)
C17—C181.359 (5)Cu1—N12.152 (3)
C17—H170.9300Cu1—Cl22.2830 (9)
C18—N31.359 (4)O1—H1B0.9600
C18—C191.500 (4)
N1—C1—C2123.2 (3)C26—C21—C22117.8 (3)
N1—C1—H1118.4C26—C21—C20121.0 (3)
C2—C1—H1118.4C22—C21—C20121.2 (3)
C1—C2—C3118.5 (3)C21—C22—C23120.6 (3)
C1—C2—H2120.7C21—C22—H22119.7
C3—C2—H2120.7C23—C22—H22119.7
C2—C3—C4119.4 (3)C24—C23—C22119.6 (3)
C2—C3—H3120.3C24—C23—H23120.2
C4—C3—H3120.3C22—C23—H23120.2
C3—C4—C5118.9 (3)C23—C24—C25120.6 (4)
C3—C4—H4120.5C23—C24—H24119.7
C5—C4—H4120.5C25—C24—H24119.7
N1—C5—C4122.2 (3)C24—C25—C26120.1 (3)
N1—C5—C6115.8 (3)C24—C25—H25119.9
C4—C5—C6122.0 (3)C26—C25—H25119.9
N2—C6—C5112.0 (2)C25—C26—C21121.3 (3)
N2—C6—H6A109.2C25—C26—H26119.3
C5—C6—H6A109.2C21—C26—H26119.3
N2—C6—H6B109.2N2—C27—C28110.1 (2)
C5—C6—H6B109.2N2—C27—H27A109.6
H6A—C6—H6B107.9C28—C27—H27A109.6
N2—C7—C8116.8 (2)N2—C27—H27B109.6
N2—C7—H7A108.1C28—C27—H27B109.6
C8—C7—H7A108.1H27A—C27—H27B108.1
N2—C7—H7B108.1N4—C28—C27111.2 (2)
C8—C7—H7B108.1N4—C28—H28A109.4
H7A—C7—H7B107.3C27—C28—H28A109.4
C9—C8—C13118.2 (3)N4—C28—H28B109.4
C9—C8—C7120.8 (3)C27—C28—H28B109.4
C13—C8—C7120.8 (3)H28A—C28—H28B108.0
C8—C9—C10120.2 (3)O1—C29—H29A109.5
C8—C9—H9119.9O1—C29—H29B109.5
C10—C9—H9119.9H29A—C29—H29B109.5
C11—C10—C9120.6 (3)O1—C29—H29C109.5
C11—C10—H10119.7H29A—C29—H29C109.5
C9—C10—H10119.7H29B—C29—H29C109.5
C12—C11—C10119.7 (3)O11—Cl1—O13108.66 (16)
C12—C11—H11120.2O11—Cl1—O14110.26 (16)
C10—C11—H11120.2O13—Cl1—O14107.23 (17)
C11—C12—C13120.3 (3)O11—Cl1—O12109.60 (15)
C11—C12—H12119.9O13—Cl1—O12113.89 (17)
C13—C12—H12119.9O14—Cl1—O12107.14 (16)
C12—C13—C8121.1 (3)N3—Cu1—N2161.01 (10)
C12—C13—H13119.4N3—Cu1—N481.13 (10)
C8—C13—H13119.4N2—Cu1—N486.06 (10)
N3—C14—C15122.1 (3)N3—Cu1—N192.73 (10)
N3—C14—H14118.9N2—Cu1—N180.29 (10)
C15—C14—H14118.9N4—Cu1—N1115.89 (10)
C16—C15—C14118.1 (3)N3—Cu1—Cl299.64 (8)
C16—C15—H15120.9N2—Cu1—Cl299.03 (7)
C14—C15—H15120.9N4—Cu1—Cl2142.95 (7)
C15—C16—C17120.6 (3)N1—Cu1—Cl2101.12 (8)
C15—C16—H16119.7C1—N1—C5117.8 (3)
C17—C16—H16119.7C1—N1—Cu1130.9 (2)
C18—C17—C16118.5 (3)C5—N1—Cu1111.08 (19)
C18—C17—H17120.7C6—N2—C7110.6 (2)
C16—C17—H17120.7C6—N2—C27109.8 (2)
N3—C18—C17121.2 (3)C7—N2—C27113.4 (2)
N3—C18—C19114.4 (3)C6—N2—Cu1107.97 (18)
C17—C18—C19124.4 (3)C7—N2—Cu1112.35 (17)
N4—C19—C18108.3 (3)C27—N2—Cu1102.29 (18)
N4—C19—H19A110.0C14—N3—C18119.4 (3)
C18—C19—H19A110.0C14—N3—Cu1128.9 (2)
N4—C19—H19B110.0C18—N3—Cu1111.4 (2)
C18—C19—H19B110.0C19—N4—C28111.5 (2)
H19A—C19—H19B108.4C19—N4—C20108.3 (2)
C21—C20—N4114.1 (2)C28—N4—C20110.0 (2)
C21—C20—H20A108.7C19—N4—Cu199.18 (17)
N4—C20—H20A108.7C28—N4—Cu1106.68 (17)
C21—C20—H20B108.7C20—N4—Cu1120.60 (18)
N4—C20—H20B108.7C29—O1—H1B109.3
H20A—C20—H20B107.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O120.962.483.140 (4)126

Experimental details

Crystal data
Chemical formula[CuCl(C28H30N4)]ClO4·CH4O
Mr653.04
Crystal system, space groupMonoclinic, P21/n
Temperature (K)291
a, b, c (Å)17.800 (2), 10.5804 (13), 18.107 (2)
β (°) 118.374 (1)
V3)3000.3 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.95
Crystal size (mm)0.28 × 0.24 × 0.22
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.777, 0.818
No. of measured, independent and
observed [I > 2σ(I)] reflections
16310, 5885, 4329
Rint0.042
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.110, 1.04
No. of reflections5885
No. of parameters372
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.36

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—N31.983 (3)Cu1—N12.152 (3)
Cu1—N22.022 (2)Cu1—Cl22.2830 (9)
Cu1—N42.087 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O120.962.483.140 (4)126
 

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (20971102) and the Foundation for Midlife and Youth Talent project of Hubei Province, China (Q20111507).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS inc., Madison, Wisconsin, USA.  Google Scholar
First citationCejudo, R., Alzuet, G., Gonzalez-Alvarez, M., Garcia-Gimenez, J. L. & Liu-Gonzalez, M. (2006). J. Inorg. Biochem. 24, 70–79.  Web of Science CSD CrossRef Google Scholar
First citationFenton, R. R., Stephens, F. S., Vagg, R. S. & Williams, P. A. (1995). Inorg. Chim. Acta, 231, 73–85.  CSD CrossRef CAS Web of Science Google Scholar
First citationHamid, G. & Hamid, R. M. (2010). Bull. Chem. Soc. Ethiop. 24, 151–155.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, G.-C., Li, Y.-Z., He, Z.-H., Li, Z.-J., Qu, J.-Q., Liu, C.-R. & Wang, L.-F. (2002). Acta Cryst. E58, o417–o418.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVaidyanathan, V. G. & Nair, B. U. (2003). J. Inorg. Biochem. 93, 271–276.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWang, H., Li, M. X., Shao, M. & He, X. (2007). Polyhedron, 26, 5171–5176.  Web of Science CSD CrossRef CAS Google Scholar
First citationXiao, W., Li, S.-R., Zhou, H., Pan, Z.-Q. & Huang, Q. (2011). Acta Cryst. E67, m701.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m694-m695
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds