organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1559

Di­methyl 1-(3-hy­dr­oxy-2-iodo-1-phenyl­prop­yl)-1H-1,2,3-triazole-4,5-di­carboxyl­ate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, Tamil Nadu, India
*Correspondence e-mail: hkfun@usm.my

(Received 23 April 2012; accepted 23 April 2012; online 28 April 2012)

In the title compound, C15H16IN3O5, the central triazole ring is essentially planar (r.m.s deviation = 0.0034 Å) and makes a dihedral angle of 70.14 (5)° with the pendant benzene ring. The mean planes of the two meth­oxy­carbonyl groups make dihedral angles of 22.52 (7) and 40.93 (4)° with the triazole ring. In the crystal, inversion dimers linked by pairs of O—H⋯O hydrogen bonds generate R22(18) loops. The dimers are linked by C—H⋯O and C—H⋯N inter­actions into sheets lying parallel to the ac plane.

Related literature

For background to the industrial applications of 1,2,3-tri­azoles, see: Wamhoff (1984[Wamhoff, H. (1984). Comprehensive Heterocyclic Chemistry, Vol. 5, edited by A. R. Katritzky & C. W. Rees, pp. 669-732. Oxford: Pergamon Press.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C15H16IN3O5

  • Mr = 445.21

  • Triclinic, [P \overline 1]

  • a = 8.0504 (3) Å

  • b = 9.6941 (4) Å

  • c = 11.1893 (4) Å

  • α = 106.426 (1)°

  • β = 91.798 (1)°

  • γ = 98.606 (1)°

  • V = 825.65 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.97 mm−1

  • T = 100 K

  • 0.31 × 0.24 × 0.14 mm

Data collection
  • Bruker APEX DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.579, Tmax = 0.763

  • 21676 measured reflections

  • 5934 independent reflections

  • 5827 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.015

  • wR(F2) = 0.038

  • S = 1.10

  • 5934 reflections

  • 223 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.92 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H1O5⋯O3i 0.74 (2) 2.22 (2) 2.9213 (11) 159 (2)
C9—H9A⋯O1ii 0.97 2.57 3.3595 (13) 139
C13—H13B⋯O3iii 0.96 2.48 3.4375 (14) 174
C13—H13C⋯O5i 0.96 2.58 3.4247 (14) 147
C15—H15C⋯N2iv 0.96 2.62 3.4903 (14) 151
Symmetry codes: (i) -x, -y+2, -z; (ii) x-1, y, z; (iii) -x+1, -y+2, -z; (iv) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

1,2,3-Triazoles are important in a wide range of industrial applications such as agrochemicals, corrosion inhibitors, dyes, optical brighteners as well as biologically active agents (Wamhoff et al., 1984). As part of our sudies in this area, we now describe the synthesis and structure of the title compound, (I) (Fig. 1).

The central triazole ring (N1–N3/C10/C11) is essentially planar [r.m.s deviation = 0.0034 Å] and makes a dihedral angle of 70.14 (5)° with the terminal benzene ring (C1–C6). The mean planes of the two methyl carboxylate groups (O1/O2/C14/C15 with maximum deviation = 0.0199 (6) Å at atom C14 and O3/O4/C12/C13 with maximum deviation = 0.0060 (6) Å at atom C12) make dihedral angles of 22.52 (7) and 40.93 (4)°, respectively with the triazole ring.

In the crystal (Fig. 2), the molecules are linked by O5—H1O5···O3, C9—H9A···O1, C13—H13B···O3, C13—H13C···O5 and C15—H15C···N2 hydrogen bonds (Table 1) into sheets parallel to ac plane.

Related literature top

For background to the industrial applications of 1,2,3-triazoles, see: Wamhoff (1984). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of 3-azido-2-iodo-3-phenylpropan-1-ol (0.3 g, 0.99 mmol) and dimethyl but-2-ynedioate (0.14 g, 0.99 mmol) was heated to reflux in toluene for 3 h. The solvent was evaporated under reduced pressure to afford the crude reaction mass which was then subjected to column chromatography using silica gel (60–120 mesh) as the stationary phase and petroleum ether:ethyl acetate (80:20) as the mobile phase to give colourless blocks of (I) by slow recrystallization from the eluant. Yield: 0.35 g (81%); M.p.: 129–130 °C.

Refinement top

Atom H1O5 was located from difference fourier map and refined freely [O—H = 0.74 (2) Å]. The remaining H atoms were positioned geometrically [C—H = 0.93 0.96, 0.97 and 0.98 Å] and refined using a riding model with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl groups. Sixteen outliers (5 - 1 4), (-4 1 6), (-4 2 5), (-4 3 4), (-2 3 0), (-4 1 0), (-4 4 4), (-2 - 1 3), (2 1 2), (-2 2 2), (-1 4 0), (-4 - 2 5), (5 0 4), (3 - 1 3), (-3 1 1) and (2 - 4 3) were omitted.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound. The dashed lines represent the hydrogen bonds. For clarity sake, hydrogen atoms not involved in hydrogen bonding have been omitted.
Dimethyl 1-(3-hydroxy-2-iodo-1-phenylpropyl)-1H-1,2,3-triazole-4,5-dicarboxylate top
Crystal data top
C15H16IN3O5Z = 2
Mr = 445.21F(000) = 440
Triclinic, P1Dx = 1.791 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0504 (3) ÅCell parameters from 9309 reflections
b = 9.6941 (4) Åθ = 2.2–32.6°
c = 11.1893 (4) ŵ = 1.97 mm1
α = 106.426 (1)°T = 100 K
β = 91.798 (1)°Block, colourless
γ = 98.606 (1)°0.31 × 0.24 × 0.14 mm
V = 825.65 (5) Å3
Data collection top
Bruker APEX DUO CCD
diffractometer
5934 independent reflections
Radiation source: fine-focus sealed tube5827 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ϕ and ω scansθmax = 32.6°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1211
Tmin = 0.579, Tmax = 0.763k = 1414
21676 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.015Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.038H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0171P)2 + 0.3086P]
where P = (Fo2 + 2Fc2)/3
5934 reflections(Δ/σ)max = 0.002
223 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.92 e Å3
Crystal data top
C15H16IN3O5γ = 98.606 (1)°
Mr = 445.21V = 825.65 (5) Å3
Triclinic, P1Z = 2
a = 8.0504 (3) ÅMo Kα radiation
b = 9.6941 (4) ŵ = 1.97 mm1
c = 11.1893 (4) ÅT = 100 K
α = 106.426 (1)°0.31 × 0.24 × 0.14 mm
β = 91.798 (1)°
Data collection top
Bruker APEX DUO CCD
diffractometer
5934 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5827 reflections with I > 2σ(I)
Tmin = 0.579, Tmax = 0.763Rint = 0.015
21676 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0150 restraints
wR(F2) = 0.038H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.49 e Å3
5934 reflectionsΔρmin = 0.92 e Å3
223 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.382668 (7)0.637377 (7)0.141512 (5)0.01603 (2)
O10.55901 (10)1.17479 (8)0.31744 (7)0.01765 (13)
O20.46348 (10)1.25049 (8)0.50897 (7)0.01713 (13)
O30.29674 (10)1.04776 (7)0.09582 (6)0.01498 (12)
O40.26687 (9)0.80305 (7)0.05704 (6)0.01300 (12)
O50.09851 (11)0.94656 (9)0.12543 (7)0.01876 (14)
N10.13027 (10)0.84350 (8)0.29530 (7)0.01084 (12)
N20.13613 (11)0.87602 (9)0.42137 (7)0.01341 (13)
N30.25260 (11)0.99050 (9)0.46809 (7)0.01367 (14)
C10.11822 (13)0.50289 (10)0.15751 (9)0.01454 (15)
H1A0.16490.53710.09420.017*
C20.15365 (14)0.37227 (10)0.17255 (10)0.01754 (17)
H2A0.22460.32020.12020.021*
C30.08244 (14)0.31994 (10)0.26621 (10)0.01701 (17)
H3A0.10650.23320.27710.020*
C40.02472 (14)0.39767 (10)0.34358 (9)0.01666 (17)
H4A0.07400.36160.40510.020*
C50.05871 (13)0.52943 (10)0.32951 (9)0.01423 (15)
H5A0.12950.58140.38220.017*
C60.01325 (11)0.58325 (9)0.23655 (8)0.01099 (14)
C70.00868 (11)0.72960 (9)0.22038 (8)0.01059 (13)
H7A0.00280.72360.13220.013*
C80.17309 (12)0.78729 (9)0.25651 (8)0.01215 (14)
H8A0.18780.79380.34440.015*
C90.16977 (13)0.93812 (10)0.23842 (9)0.01566 (16)
H9A0.28370.95920.23690.019*
H9B0.10441.01110.30850.019*
C100.24390 (12)0.94051 (9)0.26041 (8)0.01084 (14)
C110.32129 (12)1.03422 (9)0.37215 (8)0.01193 (14)
C120.27066 (11)0.93847 (9)0.12878 (8)0.01094 (14)
C130.30152 (14)0.78729 (11)0.07305 (8)0.01628 (16)
H13A0.29700.68590.11660.024*
H13B0.41160.83970.07610.024*
H13C0.21870.82590.11190.024*
C140.46100 (12)1.15881 (10)0.39366 (8)0.01275 (14)
C150.60447 (14)1.36969 (11)0.54233 (10)0.01921 (18)
H15A0.58651.43910.61910.029*
H15B0.61401.41640.47720.029*
H15C0.70631.33260.55270.029*
H1O50.166 (3)0.934 (2)0.0748 (18)0.032 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01068 (3)0.01859 (3)0.01613 (3)0.00087 (2)0.00104 (2)0.00174 (2)
O10.0165 (3)0.0192 (3)0.0152 (3)0.0009 (3)0.0032 (3)0.0036 (2)
O20.0163 (3)0.0158 (3)0.0135 (3)0.0035 (3)0.0017 (2)0.0018 (2)
O30.0186 (3)0.0131 (3)0.0134 (3)0.0007 (2)0.0005 (2)0.0052 (2)
O40.0170 (3)0.0114 (3)0.0099 (3)0.0024 (2)0.0029 (2)0.0018 (2)
O50.0203 (4)0.0221 (3)0.0174 (3)0.0057 (3)0.0010 (3)0.0101 (3)
N10.0121 (3)0.0110 (3)0.0088 (3)0.0010 (2)0.0003 (2)0.0024 (2)
N20.0157 (4)0.0143 (3)0.0089 (3)0.0004 (3)0.0004 (3)0.0024 (2)
N30.0148 (4)0.0140 (3)0.0108 (3)0.0000 (3)0.0007 (3)0.0024 (2)
C10.0162 (4)0.0122 (3)0.0152 (4)0.0034 (3)0.0042 (3)0.0033 (3)
C20.0192 (4)0.0130 (4)0.0205 (4)0.0052 (3)0.0041 (3)0.0033 (3)
C30.0191 (4)0.0117 (3)0.0202 (4)0.0019 (3)0.0010 (3)0.0051 (3)
C40.0205 (4)0.0150 (4)0.0151 (4)0.0012 (3)0.0009 (3)0.0064 (3)
C50.0159 (4)0.0141 (3)0.0130 (3)0.0023 (3)0.0024 (3)0.0044 (3)
C60.0111 (4)0.0102 (3)0.0107 (3)0.0009 (3)0.0001 (3)0.0021 (3)
C70.0104 (3)0.0103 (3)0.0099 (3)0.0009 (3)0.0001 (3)0.0017 (3)
C80.0117 (4)0.0123 (3)0.0114 (3)0.0022 (3)0.0005 (3)0.0017 (3)
C90.0172 (4)0.0133 (3)0.0172 (4)0.0052 (3)0.0023 (3)0.0041 (3)
C100.0118 (4)0.0108 (3)0.0098 (3)0.0017 (3)0.0007 (3)0.0029 (3)
C110.0124 (4)0.0117 (3)0.0103 (3)0.0009 (3)0.0005 (3)0.0017 (3)
C120.0102 (3)0.0122 (3)0.0095 (3)0.0011 (3)0.0003 (3)0.0022 (3)
C130.0218 (5)0.0167 (4)0.0094 (3)0.0030 (3)0.0033 (3)0.0020 (3)
C140.0126 (4)0.0123 (3)0.0120 (3)0.0010 (3)0.0006 (3)0.0020 (3)
C150.0171 (4)0.0160 (4)0.0197 (4)0.0040 (3)0.0024 (3)0.0013 (3)
Geometric parameters (Å, º) top
I1—C82.1649 (9)C4—C51.3953 (13)
O1—C141.2059 (11)C4—H4A0.9300
O2—C141.3414 (11)C5—C61.3942 (12)
O2—C151.4491 (12)C5—H5A0.9300
O3—C121.2091 (11)C6—C71.5148 (12)
O4—C121.3264 (10)C7—C81.5347 (13)
O4—C131.4602 (11)C7—H7A0.9800
O5—C91.4227 (12)C8—C91.5283 (13)
O5—H1O50.74 (2)C8—H8A0.9800
N1—N21.3534 (10)C9—H9A0.9700
N1—C101.3588 (11)C9—H9B0.9700
N1—C71.4904 (12)C10—C111.3842 (12)
N2—N31.3091 (11)C10—C121.4902 (12)
N3—C111.3646 (11)C11—C141.4811 (13)
C1—C21.3923 (13)C13—H13A0.9600
C1—C61.3991 (12)C13—H13B0.9600
C1—H1A0.9300C13—H13C0.9600
C2—C31.3913 (14)C15—H15A0.9600
C2—H2A0.9300C15—H15B0.9600
C3—C41.3907 (14)C15—H15C0.9600
C3—H3A0.9300
C14—O2—C15114.80 (8)C7—C8—I1109.17 (6)
C12—O4—C13115.88 (7)C9—C8—H8A109.1
C9—O5—H1O5110.5 (15)C7—C8—H8A109.1
N2—N1—C10110.40 (7)I1—C8—H8A109.1
N2—N1—C7118.32 (7)O5—C9—C8111.51 (7)
C10—N1—C7130.48 (7)O5—C9—H9A109.3
N3—N2—N1108.01 (7)C8—C9—H9A109.3
N2—N3—C11108.72 (7)O5—C9—H9B109.3
C2—C1—C6120.75 (8)C8—C9—H9B109.3
C2—C1—H1A119.6H9A—C9—H9B108.0
C6—C1—H1A119.6N1—C10—C11104.27 (7)
C3—C2—C1119.75 (9)N1—C10—C12124.96 (8)
C3—C2—H2A120.1C11—C10—C12130.77 (8)
C1—C2—H2A120.1N3—C11—C10108.59 (8)
C4—C3—C2119.87 (9)N3—C11—C14122.16 (8)
C4—C3—H3A120.1C10—C11—C14129.19 (8)
C2—C3—H3A120.1O3—C12—O4126.17 (8)
C3—C4—C5120.40 (9)O3—C12—C10123.15 (8)
C3—C4—H4A119.8O4—C12—C10110.64 (7)
C5—C4—H4A119.8O4—C13—H13A109.5
C6—C5—C4120.08 (9)O4—C13—H13B109.5
C6—C5—H5A120.0H13A—C13—H13B109.5
C4—C5—H5A120.0O4—C13—H13C109.5
C5—C6—C1119.13 (8)H13A—C13—H13C109.5
C5—C6—C7123.26 (8)H13B—C13—H13C109.5
C1—C6—C7117.53 (8)O1—C14—O2124.91 (9)
N1—C7—C6109.14 (7)O1—C14—C11124.26 (8)
N1—C7—C8106.17 (7)O2—C14—C11110.83 (8)
C6—C7—C8118.54 (7)O2—C15—H15A109.5
N1—C7—H7A107.5O2—C15—H15B109.5
C6—C7—H7A107.5H15A—C15—H15B109.5
C8—C7—H7A107.5O2—C15—H15C109.5
C9—C8—C7111.09 (7)H15A—C15—H15C109.5
C9—C8—I1109.34 (6)H15B—C15—H15C109.5
C10—N1—N2—N30.86 (10)I1—C8—C9—O578.79 (9)
C7—N1—N2—N3171.70 (8)N2—N1—C10—C110.45 (10)
N1—N2—N3—C110.91 (10)C7—N1—C10—C11169.83 (9)
C6—C1—C2—C30.76 (16)N2—N1—C10—C12179.45 (8)
C1—C2—C3—C40.53 (16)C7—N1—C10—C1210.07 (15)
C2—C3—C4—C51.28 (16)N2—N3—C11—C100.64 (11)
C3—C4—C5—C60.75 (15)N2—N3—C11—C14178.05 (8)
C4—C5—C6—C10.53 (14)N1—C10—C11—N30.11 (10)
C4—C5—C6—C7176.10 (9)C12—C10—C11—N3180.00 (9)
C2—C1—C6—C51.29 (15)N1—C10—C11—C14177.28 (9)
C2—C1—C6—C7175.54 (9)C12—C10—C11—C142.83 (17)
N2—N1—C7—C666.54 (10)C13—O4—C12—O31.45 (14)
C10—N1—C7—C6124.78 (9)C13—O4—C12—C10176.52 (8)
N2—N1—C7—C862.31 (9)N1—C10—C12—O3140.62 (10)
C10—N1—C7—C8106.37 (10)C11—C10—C12—O339.26 (16)
C5—C6—C7—N190.62 (10)N1—C10—C12—O441.34 (12)
C1—C6—C7—N186.06 (10)C11—C10—C12—O4138.79 (10)
C5—C6—C7—C831.01 (13)C15—O2—C14—O14.72 (14)
C1—C6—C7—C8152.31 (8)C15—O2—C14—C11175.14 (8)
N1—C7—C8—C954.79 (9)N3—C11—C14—O1156.03 (10)
C6—C7—C8—C9177.90 (8)C10—C11—C14—O120.80 (16)
N1—C7—C8—I1175.44 (5)N3—C11—C14—O223.83 (13)
C6—C7—C8—I161.45 (9)C10—C11—C14—O2159.34 (9)
C7—C8—C9—O541.77 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1O5···O3i0.74 (2)2.22 (2)2.9213 (11)159 (2)
C9—H9A···O1ii0.972.573.3595 (13)139
C13—H13B···O3iii0.962.483.4375 (14)174
C13—H13C···O5i0.962.583.4247 (14)147
C15—H15C···N2iv0.962.623.4903 (14)151
Symmetry codes: (i) x, y+2, z; (ii) x1, y, z; (iii) x+1, y+2, z; (iv) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC15H16IN3O5
Mr445.21
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.0504 (3), 9.6941 (4), 11.1893 (4)
α, β, γ (°)106.426 (1), 91.798 (1), 98.606 (1)
V3)825.65 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.97
Crystal size (mm)0.31 × 0.24 × 0.14
Data collection
DiffractometerBruker APEX DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.579, 0.763
No. of measured, independent and
observed [I > 2σ(I)] reflections
21676, 5934, 5827
Rint0.015
(sin θ/λ)max1)0.759
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.015, 0.038, 1.10
No. of reflections5934
No. of parameters223
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.49, 0.92

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1O5···O3i0.74 (2)2.22 (2)2.9213 (11)159 (2)
C9—H9A···O1ii0.972.573.3595 (13)139
C13—H13B···O3iii0.962.483.4375 (14)174
C13—H13C···O5i0.962.583.4247 (14)147
C15—H15C···N2iv0.962.623.4903 (14)151
Symmetry codes: (i) x, y+2, z; (ii) x1, y, z; (iii) x+1, y+2, z; (iv) x+1, y+2, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and TSC thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSC also thanks the Malaysian Government and USM for the award of a research fellowship.

References

First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWamhoff, H. (1984). Comprehensive Heterocyclic Chemistry, Vol. 5, edited by A. R. Katritzky & C. W. Rees, pp. 669–732. Oxford: Pergamon Press.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1559
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds