metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[di­aqua­bis­­{μ-5-[4-(1H-imidazol-1-ylmethyl)phen­yl]tetra­zolato}copper(II)]

aDepartment of Chemistry, Changchun Normal University, Changchun 130032, People's Republic of China
*Correspondence e-mail: rzchen2012@163.com

(Received 23 March 2012; accepted 6 April 2012; online 18 April 2012)

In the title compound, [Cu(C11H9N6)2(H2O)2]n, the CuII atom lies on an inversion center and is coordinated by four N atoms from four 5-[4-(1H-imidazol-1-ylmethyl)phen­yl]tetra­zolate ligands and two water mol­ecules in a distorted octa­hedral geometry. The ligands bridge the CuII atoms, leading to the formation of a two-dimensional network parallel to (100). The structure is further stabilized by O—H⋯N hydrogen bonds within the network.

Related literature

For background to metal-organic architectures, see: Song et al. (2012[Song, X.-Z., Qin, C., Guan, W., Song, S.-Y. & Zhang, H.-J. (2012). New J. Chem. 36, 877-882.]); Wang et al. (2010[Wang, G.-H., Lei, Y.-Q., Wang, N., He, R.-L., Jia, H.-Q., Hu, N.-H. & Xu, J.-W. (2010). Cryst. Growth Des. 6, 519-523.]). For background to metal-azolate frameworks, see: Masciocchi et al. (2005[Masciocchi, N., Galli, S. & Sironi, A. (2005). Comm. Inorg. Chem. 26, 1-37.]). For a related structure, see: Zhang et al. (2006[Zhang, J.-P., Lin, Y.-Y., Huang, X.-C. & Chen, X.-M. (2006). Cryst. Growth Des. 10, 534-540.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C11H9N6)2(H2O)2]

  • Mr = 550.06

  • Monoclinic, P 21 /c

  • a = 7.3363 (10) Å

  • b = 6.1934 (9) Å

  • c = 25.219 (4) Å

  • β = 97.708 (2)°

  • V = 1135.5 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.01 mm−1

  • T = 293 K

  • 0.25 × 0.21 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.751, Tmax = 0.824

  • 6050 measured reflections

  • 2224 independent reflections

  • 2064 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.085

  • S = 1.09

  • 2224 reflections

  • 175 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—N1 2.0247 (15)
Cu1—N6i 1.9909 (16)
Cu1—O1W 2.610 (2)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1A⋯N3ii 0.90 (2) 2.07 (2) 2.929 (3) 161 (3)
Symmetry code: (ii) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: XP in SHELXTL and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Metal-organic architectures constructed by flexible, multifunctional ligands often exhibit structural diversity (Song et al., 2012; Wang et al., 2010). Metal-azolate frameworks, being composed of transition metal ions and deprotonated five-membered heterocycles, are regarded as a great achievement in understanding supramolecular isomerism (Masciocchi et al., 2005). The azolate nitrogen donors can be presicely controlled as coordination and guest binding sites. In addition to the strong coordination ability toward transition metal ions, azolate ligands also combine the negative charge of carboxylates and predictable coordination modes of pyridines. Recently, we obtained the title complex by the reaction of copper chloride with 5-(4-imidazol-1-yl-benzyl)-2H-tetrazole using hydrothermal method and its crystal structure is reported here.

In the title compound, the CuII atom lies on an inversion center and adopts a distorted octahedral coordination geometry, being coordinated by four N atoms from four azolate ligands and two water molecules (Fig. 1, Table 1). The Cu—O and Cu—N bond lengths and the bond angles are in the normal range (Zhang et al., 2006). The bridging azolate ligands allow the formation of a two-dimensional network parallel to (1 0 0) (Fig. 2). The crystal structure is further stabilized by O—H···N hydrogen bonds within the network (Table 2).

Related literature top

For background to metal-organic architectures, see: Song et al. (2012); Wang et al. (2010). For background to metal-azolate frameworks, see: Masciocchi et al. (2005). For a related structure, see: Zhang et al. (2006).

Experimental top

A mixture of CuCl2.2H2O (0.2 mmol, 0.034 g), 5-(4-imidazol-1-yl-benzyl)-2H-tetrazole (0.2 mmol, 0.045 g), NaOH (0.2 mmol, 0.008 g) and water (10 ml) was sealed in a 15 ml Teflon-lined reactor, which was heated at 120°C for 72 h and then gradually cooled to room temperature. Blue crystals were obtained.

Refinement top

H atoms on C atoms were generated geometrically and refined as riding atoms, with C—H = 0.93 (aromatic) and 0.97 (CH2) Å and Uiso(H) = 1.2Ueq(C). Water H atoms were located in a difference Fourier map and refined with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) x, 1/2-y, 1/2+z; (ii) -x, -y, 1-z; (iii) -x, -1/2+y, 1/2-z.]
[Figure 2] Fig. 2. View of the two-dimensional network.
Poly[diaquabis{µ-5-[4-(1H-imidazol-1- ylmethyl)phenyl]tetrazolato}copper(II)] top
Crystal data top
[Cu(C11H9N6)2(H2O)2]F(000) = 566
Mr = 550.06Dx = 1.609 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2224 reflections
a = 7.3363 (10) Åθ = 1.0–26.0°
b = 6.1934 (9) ŵ = 1.01 mm1
c = 25.219 (4) ÅT = 293 K
β = 97.708 (2)°Block, blue
V = 1135.5 (3) Å30.25 × 0.21 × 0.20 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
2224 independent reflections
Radiation source: fine-focus sealed tube2064 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ϕ and ω scansθmax = 26.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 69
Tmin = 0.751, Tmax = 0.824k = 77
6050 measured reflectionsl = 2731
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.044P)2 + 0.7185P]
where P = (Fo2 + 2Fc2)/3
2224 reflections(Δ/σ)max < 0.001
175 parametersΔρmax = 0.35 e Å3
2 restraintsΔρmin = 0.29 e Å3
Crystal data top
[Cu(C11H9N6)2(H2O)2]V = 1135.5 (3) Å3
Mr = 550.06Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.3363 (10) ŵ = 1.01 mm1
b = 6.1934 (9) ÅT = 293 K
c = 25.219 (4) Å0.25 × 0.21 × 0.20 mm
β = 97.708 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2224 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2064 reflections with I > 2σ(I)
Tmin = 0.751, Tmax = 0.824Rint = 0.015
6050 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0312 restraints
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.35 e Å3
2224 reflectionsΔρmin = 0.29 e Å3
175 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00000.00000.50000.03061 (14)
C10.1942 (2)0.1287 (3)0.35950 (7)0.0210 (4)
C20.2239 (2)0.0738 (3)0.30431 (7)0.0206 (4)
C30.1855 (3)0.1330 (3)0.28390 (7)0.0238 (4)
H30.14280.23870.30540.029*
C40.2110 (3)0.1813 (3)0.23170 (7)0.0241 (4)
H40.18390.31930.21830.029*
C50.2764 (2)0.0262 (3)0.19905 (7)0.0204 (4)
C60.3139 (3)0.1795 (3)0.21932 (7)0.0246 (4)
H60.35710.28480.19780.030*
C70.2875 (3)0.2295 (3)0.27156 (7)0.0235 (4)
H70.31260.36820.28470.028*
C80.3083 (3)0.0898 (3)0.14277 (7)0.0252 (4)
H8A0.42690.16040.14440.030*
H8B0.21470.19280.12850.030*
C90.1502 (3)0.1771 (3)0.07892 (7)0.0252 (4)
H90.03240.12330.08000.030*
C100.3754 (3)0.3717 (4)0.06022 (8)0.0337 (5)
H100.44160.47900.04540.040*
C110.4493 (3)0.2182 (4)0.09521 (8)0.0315 (5)
H110.57270.20050.10870.038*
N10.1185 (2)0.1067 (3)0.43685 (6)0.0249 (3)
N20.1231 (3)0.0072 (2)0.39174 (7)0.0287 (4)
N30.1844 (2)0.3016 (3)0.43178 (6)0.0293 (4)
N40.2332 (3)0.3209 (3)0.38258 (7)0.0316 (4)
N50.3034 (2)0.0945 (3)0.10656 (6)0.0230 (3)
N60.1884 (2)0.3443 (3)0.05002 (6)0.0273 (4)
O1W0.2368 (3)0.3145 (3)0.50004 (7)0.0427 (4)
H1A0.214 (4)0.447 (3)0.5139 (12)0.064*
H1B0.336 (3)0.265 (5)0.5113 (12)0.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0456 (2)0.0346 (2)0.01278 (19)0.02094 (15)0.00818 (14)0.00562 (13)
C10.0209 (9)0.0248 (9)0.0174 (9)0.0010 (7)0.0029 (7)0.0002 (7)
C20.0200 (8)0.0262 (9)0.0160 (9)0.0007 (7)0.0041 (6)0.0006 (7)
C30.0276 (9)0.0250 (10)0.0195 (9)0.0025 (8)0.0062 (7)0.0033 (7)
C40.0296 (10)0.0230 (9)0.0198 (9)0.0006 (8)0.0036 (7)0.0006 (7)
C50.0206 (9)0.0264 (9)0.0139 (9)0.0048 (7)0.0012 (7)0.0025 (7)
C60.0308 (10)0.0270 (10)0.0170 (9)0.0009 (8)0.0067 (7)0.0058 (7)
C70.0289 (10)0.0227 (9)0.0188 (9)0.0029 (8)0.0034 (7)0.0007 (7)
C80.0345 (10)0.0261 (10)0.0153 (9)0.0079 (8)0.0043 (7)0.0033 (7)
C90.0283 (10)0.0286 (10)0.0185 (9)0.0068 (8)0.0030 (7)0.0025 (7)
C100.0367 (11)0.0403 (12)0.0265 (11)0.0037 (9)0.0136 (9)0.0104 (9)
C110.0276 (10)0.0408 (12)0.0271 (10)0.0025 (9)0.0070 (8)0.0062 (9)
N10.0346 (9)0.0250 (8)0.0160 (7)0.0079 (7)0.0064 (6)0.0040 (6)
N20.0454 (11)0.0258 (9)0.0167 (8)0.0091 (7)0.0110 (7)0.0039 (6)
N30.0429 (10)0.0269 (9)0.0200 (8)0.0103 (7)0.0116 (7)0.0042 (6)
N40.0479 (11)0.0281 (9)0.0217 (8)0.0110 (8)0.0149 (7)0.0035 (7)
N50.0276 (8)0.0282 (8)0.0134 (7)0.0056 (7)0.0039 (6)0.0024 (6)
N60.0362 (9)0.0324 (9)0.0142 (7)0.0107 (7)0.0067 (6)0.0041 (6)
O1W0.0577 (11)0.0355 (9)0.0361 (9)0.0071 (8)0.0100 (8)0.0050 (7)
Geometric parameters (Å, º) top
Cu1—N12.0247 (15)C8—N51.459 (2)
Cu1—N6i1.9909 (16)C8—H8A0.9700
Cu1—O1W2.610 (2)C8—H8B0.9700
C1—N21.325 (2)C9—N61.318 (3)
C1—N41.339 (2)C9—N51.341 (2)
C1—C21.477 (2)C9—H90.9300
C2—C71.391 (3)C10—C111.359 (3)
C2—C31.395 (3)C10—N61.372 (3)
C3—C41.387 (3)C10—H100.9300
C3—H30.9300C11—N51.378 (3)
C4—C51.392 (3)C11—H110.9300
C4—H40.9300N1—N31.313 (2)
C5—C61.386 (3)N1—N21.343 (2)
C5—C81.521 (2)N3—N41.342 (2)
C6—C71.392 (3)O1W—H1A0.900 (18)
C6—H60.9300O1W—H1B0.874 (18)
C7—H70.9300
N6ii—Cu1—N6i180.00C2—C7—H7119.7
N6ii—Cu1—N189.67 (6)C6—C7—H7119.7
N6i—Cu1—N190.33 (6)N5—C8—C5112.80 (15)
N6ii—Cu1—N1iii90.33 (6)N5—C8—H8A109.0
N6i—Cu1—N1iii89.67 (6)C5—C8—H8A109.0
N1—Cu1—N1iii180.0N5—C8—H8B109.0
O1W—Cu1—N196.47 (6)C5—C8—H8B109.0
O1W—Cu1—N6ii87.49 (7)H8A—C8—H8B107.8
O1W—Cu1—O1Wiii180.00N6—C9—N5111.21 (18)
O1W—Cu1—N1iii83.53 (6)N6—C9—H9124.4
O1W—Cu1—N6i92.51 (7)N5—C9—H9124.4
N2—C1—N4112.13 (16)C11—C10—N6109.69 (18)
N2—C1—C2123.50 (16)C11—C10—H10125.2
N4—C1—C2124.37 (16)N6—C10—H10125.2
C7—C2—C3119.01 (16)C10—C11—N5105.68 (18)
C7—C2—C1120.23 (17)C10—C11—H11127.2
C3—C2—C1120.75 (16)N5—C11—H11127.2
C4—C3—C2120.16 (17)N3—N1—N2110.41 (15)
C4—C3—H3119.9N3—N1—Cu1125.39 (12)
C2—C3—H3119.9N2—N1—Cu1123.89 (12)
C3—C4—C5120.89 (17)C1—N2—N1104.08 (15)
C3—C4—H4119.6N1—N3—N4108.63 (15)
C5—C4—H4119.6C1—N4—N3104.76 (15)
C6—C5—C4118.91 (16)C9—N5—C11107.46 (16)
C6—C5—C8122.29 (16)C9—N5—C8124.89 (16)
C4—C5—C8118.79 (16)C11—N5—C8127.63 (16)
C5—C6—C7120.50 (17)C9—N6—C10105.94 (16)
C5—C6—H6119.8C9—N6—Cu1iv123.39 (14)
C7—C6—H6119.8C10—N6—Cu1iv130.58 (14)
C2—C7—C6120.53 (17)H1A—O1W—H1B109 (3)
N2—C1—C2—C7175.61 (18)N6i—Cu1—N1—N2146.67 (17)
N4—C1—C2—C73.5 (3)N4—C1—N2—N10.1 (2)
N2—C1—C2—C33.2 (3)C2—C1—N2—N1179.28 (17)
N4—C1—C2—C3177.71 (18)N3—N1—N2—C10.2 (2)
C7—C2—C3—C40.0 (3)Cu1—N1—N2—C1173.62 (13)
C1—C2—C3—C4178.88 (17)N2—N1—N3—N40.4 (2)
C2—C3—C4—C50.6 (3)Cu1—N1—N3—N4173.29 (13)
C3—C4—C5—C60.8 (3)N2—C1—N4—N30.3 (2)
C3—C4—C5—C8177.86 (17)C2—C1—N4—N3179.51 (17)
C4—C5—C6—C70.3 (3)N1—N3—N4—C10.4 (2)
C8—C5—C6—C7178.27 (17)N6—C9—N5—C110.8 (2)
C3—C2—C7—C60.5 (3)N6—C9—N5—C8179.32 (16)
C1—C2—C7—C6179.34 (17)C10—C11—N5—C90.5 (2)
C5—C6—C7—C20.3 (3)C10—C11—N5—C8178.94 (17)
C6—C5—C8—N524.7 (3)C5—C8—N5—C985.6 (2)
C4—C5—C8—N5156.69 (17)C5—C8—N5—C1192.7 (2)
N6—C10—C11—N50.0 (2)N5—C9—N6—C100.8 (2)
N6ii—Cu1—N1—N3139.55 (17)N5—C9—N6—Cu1iv176.09 (12)
N6i—Cu1—N1—N340.45 (17)C11—C10—N6—C90.5 (2)
N6ii—Cu1—N1—N233.33 (17)C11—C10—N6—Cu1iv176.08 (14)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1/2, z+1/2; (iii) x, y, z+1; (iv) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···N3v0.90 (2)2.07 (2)2.929 (3)161 (3)
Symmetry code: (v) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C11H9N6)2(H2O)2]
Mr550.06
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.3363 (10), 6.1934 (9), 25.219 (4)
β (°) 97.708 (2)
V3)1135.5 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.01
Crystal size (mm)0.25 × 0.21 × 0.20
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.751, 0.824
No. of measured, independent and
observed [I > 2σ(I)] reflections
6050, 2224, 2064
Rint0.015
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.085, 1.09
No. of reflections2224
No. of parameters175
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.29

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999).

Selected bond lengths (Å) top
Cu1—N12.0247 (15)Cu1—O1W2.610 (2)
Cu1—N6i1.9909 (16)
Symmetry code: (i) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···N3ii0.90 (2)2.07 (2)2.929 (3)161 (3)
Symmetry code: (ii) x, y+1, z+1.
 

Acknowledgements

We thank Changchun Normal University for support.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMasciocchi, N., Galli, S. & Sironi, A. (2005). Comm. Inorg. Chem. 26, 1–37.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, X.-Z., Qin, C., Guan, W., Song, S.-Y. & Zhang, H.-J. (2012). New J. Chem. 36, 877–882.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, G.-H., Lei, Y.-Q., Wang, N., He, R.-L., Jia, H.-Q., Hu, N.-H. & Xu, J.-W. (2010). Cryst. Growth Des. 6, 519–523.  Google Scholar
First citationZhang, J.-P., Lin, Y.-Y., Huang, X.-C. & Chen, X.-M. (2006). Cryst. Growth Des. 10, 534–540.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds