metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[(2,2′-bipyidine-2κ2N,N′)-μ-cyanido-1:2κ2N:C-dicopper(I)]-μ-bromido-[(2,2′-bipyidine-2κ2N,N′)-μ-cyanido-1:2κ2N:C-dicopper(I)]-μ-cyanido-κ2N:C]

aColleges of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, People's Republic of China
*Correspondence e-mail: jxuee@yahoo.com

(Received 3 April 2012; accepted 23 April 2012; online 28 April 2012)

In the title complex, [Cu4Br(CN)3(C10H8N2)2]n, the four independent CuI atoms are all in distorted trigonal-planar geometries. One is formed by one N atom and one C atom from two cyanide groups and one Br atom, one is formed by two N atoms from two cyanide groups and one Br atom, and the other two are formed by two N atoms from a chelating 2,2′-bipyridine (bpy) ligand and one C atom from a cyanide group. The structure exhibits a zigzag chain backbone along [101] constructed by bromide and cyanide anions bridging the CuI atoms, with the [Cu(bpy)(CN)] units pointing laterally.

Related literature

For copper cyanide coordination polymers, see: Korzeniak et al. (2005[Korzeniak, T., Stadnicka, K., Pełka, R., Bałanda, M., Tomala, K., Kowalski, K. & Sieklucka, B. (2005). Chem. Commun. pp. 2939-2941.]); Yi et al. (2004[Yi, L., Ding, B., Zhao, B., Cheng, P., Liao, D.-Z., Yan, S.-P. & Jiang, Z.-H. (2004). Inorg. Chem. 43, 33-43.]). For structures containing cyanide groups, see: Zhang et al. (2000[Zhang, H., Cai, J., Feng, X.-L., Ye, B.-H., Li, X.-Y. & Ji, L.-N. (2000). J. Chem. Soc. Dalton Trans. pp. 1687-1688.]). For related copper complexes, see: He et al. (2006[He, X., Lu, C.-Z., Wu, C.-D. & Chen, L.-J. (2006). Eur. J. Inorg. Chem. pp. 2491-2503.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu4Br(CN)3(C10H8N2)2]

  • Mr = 724.53

  • Monoclinic, P 21 /n

  • a = 10.0074 (10) Å

  • b = 17.7556 (17) Å

  • c = 14.5125 (14) Å

  • β = 102.924 (1)°

  • V = 2513.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.96 mm−1

  • T = 273 K

  • 0.24 × 0.24 × 0.22 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.383, Tmax = 0.409

  • 23142 measured reflections

  • 6171 independent reflections

  • 3491 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.084

  • S = 1.00

  • 6171 reflections

  • 317 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—N1 2.025 (3)
Cu1—N2 2.029 (3)
Cu1—C21 1.836 (4)
Cu2—N3 2.055 (3)
Cu2—N4 2.010 (3)
Cu2—C23 1.836 (3)
Cu3—N5 1.876 (3)
Cu3—Br1 2.5163 (6)
Cu3—C22 1.842 (3)
Cu4—N6i 1.906 (3)
Cu4—N7 1.878 (3)
Cu4—Br1 2.4650 (6)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Considerable attention has been paid to the study of copper cyanide coordination polymers due to their fascinating structural frameworks, physical and chemical properties, and potential applications in many fields (Korzeniak et al., 2005; Yi et al., 2004). Cyanide group is a versatile ligand that can act as a monodentate ligand as well as a µ2-, µ3- or µ4-bridging ligand, exhibiting intriguing topological architectures (Zhang et al., 2000). Copper atom has versatile coordination properties and normally adopts two-, three-, four-, five-, or six-coordination, forming diverse geometries (He et al., 2006). Herein, we report a copper cyanide coordination polymers derived from 2,2'-bipyidine ligand. The title complex contains four unique CuI ions, which are all in distorted trigonal-planar geometries. However, the detailed coordination environments of these CuI atoms are different, as Cu1 and Cu2 are each coordinated by two N atoms of a 2,2'-bipyidine ligand and one µ2-cyanide group. Cu3 and Cu4 are each coordinated by two µ2-cyanide groups and one bromide ion (Fig. 1, Table 1). The structure exhibits by a zigzag chain backbone, [Cu2Br(CN)]n, along [1 0 1] (Fig. 2). The [Cu(bpy)(CN)] units point lateral of the chain.

Related literature top

For copper cyanide coordination polymers, see: Korzeniak et al. (2005); Yi et al. (2004). For structures containing cyanide groups, see: Zhang et al. (2000). For related copper complexes, see: He et al. (2006).

Experimental top

A mixture of CuBr2 (0.33 g, 1.48 mmol), K4Fe(CN)6.3H2O (0.42 g, 0.99 mmol), 2,2'-bipyridine (0.156 g, 1.00 mmol) and 24 ml H2O was stirred for 30 min in air. The resulting gel was then transferred to a 30 ml Teflon-lined autoclave and kept at 160°C for 5 days. After the mixture was slowly cooled to room temperature, yellow block crystals of the title complex were filtered, washed with water and dried at room temperature (yield: 0.17 g, 66%).

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title complex, showing the coordination environments around the CuI atoms. Displacement ellipsoids are drawn at 50% probability level. [Symmetry code: (i) x+1/2, -y+1/2, z+1/2.]
[Figure 2] Fig. 2. The zigzag chain in the title complex.
catena-Poly[[(2,2'-bipyidine-2κ2N,N')-µ-cyanido- 1:2κ2N:C-dicopper(I)]-µ-bromido-[(2,2'-bipyidine- 2κ2N,N')-µ-cyanido-1:2κ2N:C-dicopper(I)]- µ-cyanido-κ2N:C] top
Crystal data top
[Cu4Br(CN)3(C10H8N2)2]F(000) = 1416
Mr = 724.53Dx = 1.915 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4357 reflections
a = 10.0074 (10) Åθ = 2.3–22.8°
b = 17.7556 (17) ŵ = 4.96 mm1
c = 14.5125 (14) ÅT = 273 K
β = 102.924 (1)°Block, yellow
V = 2513.4 (4) Å30.24 × 0.24 × 0.22 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
6171 independent reflections
Radiation source: fine-focus sealed tube3491 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 28.3°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1313
Tmin = 0.383, Tmax = 0.409k = 2123
23142 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0336P)2 + 0.2889P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
6171 reflectionsΔρmax = 0.37 e Å3
317 parametersΔρmin = 0.41 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00042 (11)
Crystal data top
[Cu4Br(CN)3(C10H8N2)2]V = 2513.4 (4) Å3
Mr = 724.53Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.0074 (10) ŵ = 4.96 mm1
b = 17.7556 (17) ÅT = 273 K
c = 14.5125 (14) Å0.24 × 0.24 × 0.22 mm
β = 102.924 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
6171 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3491 reflections with I > 2σ(I)
Tmin = 0.383, Tmax = 0.409Rint = 0.035
23142 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.00Δρmax = 0.37 e Å3
6171 reflectionsΔρmin = 0.41 e Å3
317 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.35793 (5)0.01457 (3)0.84772 (3)0.08134 (17)
Cu21.10313 (5)0.03539 (3)0.62780 (4)0.1015 (2)
Cu30.46792 (5)0.19932 (3)0.63059 (3)0.07283 (15)
Cu40.87398 (4)0.19909 (2)0.81033 (3)0.06160 (13)
Br10.66910 (4)0.26922 (3)0.72846 (3)0.08278 (14)
N10.2531 (3)0.01213 (16)0.95197 (18)0.0624 (7)
N20.4332 (3)0.08313 (16)0.91135 (18)0.0633 (7)
N31.1656 (3)0.07460 (17)0.6509 (2)0.0754 (8)
N41.2024 (3)0.02421 (17)0.5226 (2)0.0719 (8)
N50.4205 (3)0.12318 (17)0.70702 (19)0.0722 (8)
N60.4104 (3)0.26904 (16)0.4389 (2)0.0695 (8)
N70.9502 (3)0.13623 (16)0.73146 (19)0.0681 (7)
C10.1708 (4)0.0657 (2)0.9725 (3)0.0736 (10)
H10.14230.10370.92840.088*
C20.1261 (4)0.0676 (2)1.0554 (3)0.0766 (10)
H20.06950.10611.06740.092*
C30.1669 (4)0.0114 (2)1.1194 (3)0.0718 (10)
H30.13790.01091.17600.086*
C40.2521 (3)0.04517 (19)1.0997 (2)0.0605 (8)
H40.28130.08361.14310.073*
C50.2931 (3)0.04371 (18)1.0149 (2)0.0535 (8)
C60.3839 (3)0.10117 (18)0.9871 (2)0.0550 (8)
C70.4153 (3)0.1688 (2)1.0339 (2)0.0668 (9)
H70.38000.18031.08630.080*
C80.4990 (4)0.2189 (2)1.0022 (3)0.0851 (12)
H80.52010.26501.03240.102*
C90.5519 (4)0.2003 (3)0.9248 (3)0.0854 (12)
H90.60960.23310.90220.102*
C100.5169 (4)0.1325 (3)0.8830 (3)0.0805 (11)
H100.55330.11960.83150.097*
C111.1467 (4)0.1211 (3)0.7194 (3)0.0967 (14)
H111.08910.10570.75800.116*
C121.2070 (5)0.1896 (3)0.7354 (3)0.1034 (15)
H121.19260.21990.78450.124*
C131.2888 (5)0.2128 (3)0.6784 (4)0.1056 (15)
H131.33100.25970.68730.127*
C141.3087 (4)0.1667 (2)0.6077 (3)0.0893 (12)
H141.36520.18210.56840.107*
C151.2458 (3)0.0972 (2)0.5940 (3)0.0633 (9)
C161.2631 (3)0.0431 (2)0.5204 (2)0.0617 (9)
C171.3361 (4)0.0580 (2)0.4522 (3)0.0811 (11)
H171.37690.10490.45040.097*
C181.3487 (4)0.0046 (3)0.3876 (3)0.0975 (13)
H181.39810.01470.34180.117*
C191.2890 (4)0.0634 (3)0.3904 (3)0.0954 (12)
H191.29720.10090.34730.114*
C201.2164 (4)0.0755 (2)0.4580 (3)0.0903 (12)
H201.17420.12210.45930.108*
C210.3923 (3)0.0802 (2)0.7580 (2)0.0658 (9)
C220.4283 (3)0.24393 (18)0.5130 (2)0.0536 (8)
C231.0047 (4)0.09831 (19)0.6881 (3)0.0706 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0947 (3)0.0914 (4)0.0562 (3)0.0338 (3)0.0130 (2)0.0137 (2)
Cu20.0880 (3)0.0867 (4)0.1408 (5)0.0024 (3)0.0487 (3)0.0510 (3)
Cu30.0990 (3)0.0733 (3)0.0532 (3)0.0211 (2)0.0318 (2)0.0187 (2)
Cu40.0725 (3)0.0637 (3)0.0520 (2)0.0044 (2)0.02109 (19)0.0135 (2)
Br10.0697 (2)0.0949 (3)0.0768 (3)0.0063 (2)0.00151 (19)0.0136 (2)
N10.0643 (16)0.0648 (19)0.0558 (17)0.0068 (14)0.0085 (13)0.0070 (15)
N20.0630 (16)0.073 (2)0.0557 (17)0.0154 (14)0.0176 (13)0.0033 (15)
N30.0662 (17)0.072 (2)0.095 (2)0.0112 (15)0.0324 (17)0.0206 (18)
N40.0713 (18)0.056 (2)0.088 (2)0.0030 (15)0.0171 (16)0.0208 (17)
N50.093 (2)0.075 (2)0.0492 (17)0.0009 (16)0.0170 (15)0.0079 (15)
N60.0674 (18)0.069 (2)0.072 (2)0.0068 (14)0.0151 (15)0.0024 (16)
N70.0760 (18)0.0662 (19)0.0627 (18)0.0042 (15)0.0169 (15)0.0111 (15)
C10.077 (2)0.058 (2)0.079 (3)0.0036 (19)0.004 (2)0.012 (2)
C20.078 (2)0.071 (3)0.078 (3)0.001 (2)0.011 (2)0.010 (2)
C30.078 (2)0.080 (3)0.059 (2)0.008 (2)0.0191 (18)0.011 (2)
C40.066 (2)0.063 (2)0.052 (2)0.0099 (17)0.0114 (16)0.0017 (17)
C50.0533 (17)0.057 (2)0.0477 (19)0.0139 (15)0.0061 (14)0.0019 (16)
C60.0524 (17)0.061 (2)0.0503 (19)0.0149 (15)0.0090 (14)0.0022 (16)
C70.066 (2)0.066 (2)0.070 (2)0.0063 (18)0.0191 (17)0.0082 (19)
C80.076 (3)0.073 (3)0.104 (3)0.005 (2)0.017 (2)0.007 (2)
C90.076 (3)0.088 (3)0.095 (3)0.005 (2)0.024 (2)0.022 (3)
C100.079 (3)0.099 (3)0.068 (3)0.019 (2)0.027 (2)0.011 (2)
C110.082 (3)0.108 (4)0.108 (4)0.022 (3)0.039 (3)0.016 (3)
C120.083 (3)0.108 (4)0.116 (4)0.020 (3)0.015 (3)0.026 (3)
C130.083 (3)0.092 (4)0.138 (4)0.013 (2)0.018 (3)0.022 (3)
C140.078 (3)0.082 (3)0.108 (3)0.015 (2)0.021 (2)0.001 (3)
C150.0484 (17)0.061 (2)0.079 (2)0.0021 (16)0.0100 (16)0.0222 (19)
C160.0492 (17)0.061 (2)0.071 (2)0.0034 (16)0.0059 (16)0.0193 (19)
C170.083 (3)0.082 (3)0.079 (3)0.018 (2)0.020 (2)0.014 (2)
C180.100 (3)0.120 (4)0.075 (3)0.011 (3)0.025 (2)0.009 (3)
C190.098 (3)0.099 (4)0.084 (3)0.005 (3)0.011 (2)0.005 (3)
C200.100 (3)0.057 (3)0.112 (4)0.008 (2)0.018 (3)0.008 (3)
C210.073 (2)0.073 (2)0.050 (2)0.0087 (18)0.0102 (16)0.0081 (18)
C220.0647 (19)0.059 (2)0.0359 (17)0.0024 (15)0.0098 (14)0.0112 (15)
C230.075 (2)0.059 (2)0.082 (3)0.0009 (18)0.027 (2)0.019 (2)
Geometric parameters (Å, º) top
Cu1—N12.025 (3)C4—C51.383 (4)
Cu1—N22.029 (3)C4—H40.9300
Cu1—C211.836 (4)C5—C61.480 (4)
Cu2—N32.055 (3)C6—C71.381 (4)
Cu2—N42.010 (3)C7—C81.370 (5)
Cu2—C231.836 (3)C7—H70.9300
Cu3—N51.876 (3)C8—C91.385 (5)
Cu3—Br12.5163 (6)C8—H80.9300
Cu3—C221.842 (3)C9—C101.357 (5)
Cu4—N6i1.906 (3)C9—H90.9300
Cu4—N71.878 (3)C10—H100.9300
Cu4—Br12.4650 (6)C11—C121.354 (6)
N1—C11.334 (4)C11—H110.9300
N1—C51.347 (4)C12—C131.351 (6)
N2—C101.339 (4)C12—H120.9300
N2—C61.341 (3)C13—C141.362 (5)
N3—C151.336 (4)C13—H130.9300
N3—C111.338 (5)C14—C151.379 (5)
N4—C201.337 (5)C14—H140.9300
N4—C161.344 (4)C15—C161.474 (5)
N5—C211.141 (4)C16—C171.381 (4)
N6—C221.141 (4)C17—C181.360 (5)
N7—C231.140 (4)C17—H170.9300
C1—C21.374 (5)C18—C191.351 (6)
C1—H10.9300C18—H180.9300
C2—C31.363 (5)C19—C201.363 (5)
C2—H20.9300C19—H190.9300
C3—C41.387 (5)C20—H200.9300
C3—H30.9300
C21—Cu1—N1138.90 (14)C8—C7—C6119.2 (3)
C21—Cu1—N2139.10 (13)C8—C7—H7120.4
N1—Cu1—N280.99 (11)C6—C7—H7120.4
C23—Cu2—N4146.27 (15)C7—C8—C9119.4 (4)
C23—Cu2—N3132.60 (15)C7—C8—H8120.3
N4—Cu2—N381.13 (13)C9—C8—H8120.3
C22—Cu3—N5145.80 (13)C10—C9—C8117.8 (4)
C22—Cu3—Br1106.87 (10)C10—C9—H9121.1
N5—Cu3—Br1107.33 (9)C8—C9—H9121.1
N7—Cu4—N6i139.32 (12)N2—C10—C9124.0 (4)
N7—Cu4—Br1114.45 (9)N2—C10—H10118.0
N6i—Cu4—Br1106.16 (8)C9—C10—H10118.0
Cu4—Br1—Cu3119.81 (2)N3—C11—C12123.4 (4)
C1—N1—C5118.5 (3)N3—C11—H11118.3
C1—N1—Cu1126.9 (2)C12—C11—H11118.3
C5—N1—Cu1113.4 (2)C13—C12—C11118.4 (5)
C10—N2—C6117.8 (3)C13—C12—H12120.8
C10—N2—Cu1127.9 (2)C11—C12—H12120.8
C6—N2—Cu1114.2 (2)C12—C13—C14119.3 (4)
C15—N3—C11118.6 (3)C12—C13—H13120.4
C15—N3—Cu2112.8 (3)C14—C13—H13120.4
C11—N3—Cu2128.3 (3)C13—C14—C15120.5 (4)
C20—N4—C16118.1 (3)C13—C14—H14119.7
C20—N4—Cu2127.7 (3)C15—C14—H14119.7
C16—N4—Cu2114.1 (3)N3—C15—C14119.8 (4)
C21—N5—Cu3175.6 (3)N3—C15—C16115.9 (3)
C22—N6—Cu4ii174.1 (3)C14—C15—C16124.3 (3)
C23—N7—Cu4175.3 (3)N4—C16—C17120.1 (4)
N1—C1—C2123.4 (3)N4—C16—C15115.8 (3)
N1—C1—H1118.3C17—C16—C15124.1 (3)
C2—C1—H1118.3C18—C17—C16120.4 (4)
C3—C2—C1118.2 (4)C18—C17—H17119.8
C3—C2—H2120.9C16—C17—H17119.8
C1—C2—H2120.9C19—C18—C17119.5 (4)
C2—C3—C4119.6 (3)C19—C18—H18120.3
C2—C3—H3120.2C17—C18—H18120.3
C4—C3—H3120.2C18—C19—C20118.4 (4)
C5—C4—C3119.2 (3)C18—C19—H19120.8
C5—C4—H4120.4C20—C19—H19120.8
C3—C4—H4120.4N4—C20—C19123.5 (4)
N1—C5—C4121.0 (3)N4—C20—H20118.2
N1—C5—C6115.5 (3)C19—C20—H20118.2
C4—C5—C6123.5 (3)N5—C21—Cu1175.3 (3)
N2—C6—C7121.7 (3)N6—C22—Cu3175.7 (3)
N2—C6—C5114.8 (3)N7—C23—Cu2175.0 (3)
C7—C6—C5123.5 (3)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cu4Br(CN)3(C10H8N2)2]
Mr724.53
Crystal system, space groupMonoclinic, P21/n
Temperature (K)273
a, b, c (Å)10.0074 (10), 17.7556 (17), 14.5125 (14)
β (°) 102.924 (1)
V3)2513.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)4.96
Crystal size (mm)0.24 × 0.24 × 0.22
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.383, 0.409
No. of measured, independent and
observed [I > 2σ(I)] reflections
23142, 6171, 3491
Rint0.035
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.084, 1.00
No. of reflections6171
No. of parameters317
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.41

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—N12.025 (3)Cu3—N51.876 (3)
Cu1—N22.029 (3)Cu3—Br12.5163 (6)
Cu1—C211.836 (4)Cu3—C221.842 (3)
Cu2—N32.055 (3)Cu4—N6i1.906 (3)
Cu2—N42.010 (3)Cu4—N71.878 (3)
Cu2—C231.836 (3)Cu4—Br12.4650 (6)
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant No. 20971032).

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHe, X., Lu, C.-Z., Wu, C.-D. & Chen, L.-J. (2006). Eur. J. Inorg. Chem. pp. 2491–2503.  Web of Science CSD CrossRef Google Scholar
First citationKorzeniak, T., Stadnicka, K., Pełka, R., Bałanda, M., Tomala, K., Kowalski, K. & Sieklucka, B. (2005). Chem. Commun. pp. 2939–2941.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYi, L., Ding, B., Zhao, B., Cheng, P., Liao, D.-Z., Yan, S.-P. & Jiang, Z.-H. (2004). Inorg. Chem. 43, 33–43.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, H., Cai, J., Feng, X.-L., Ye, B.-H., Li, X.-Y. & Ji, L.-N. (2000). J. Chem. Soc. Dalton Trans. pp. 1687–1688.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds