metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(3-methyl­anilinium) hexa­chlorido­stannate(IV) dihydrate

aOrdered Matter Science Research Center, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: jgsdxlml@163.com

(Received 11 April 2012; accepted 20 April 2012; online 28 April 2012)

In the title compound, (C7H10N)2[SnCl6]·2H2O, the SnIV atom lies on a site with symmetry 2/m. One of the Cl atoms lies on a mirror plane and the 3-methyl­anilinium cation is also situated on a mirror plane. The water mol­ecule is located on a twofold rotation axis. The H atoms of the methyl and ammonium groups and the solvent water mol­ecule are disordered by symmetry. In the crystal, N—H⋯Cl, O—H⋯Cl and N—H⋯O hydrogen bonds connect the organic cations, the inorganic octahedrally shaped anions and the water mol­ecules.

Related literature

For background to ferroelectric metal-organic complexes, see: Zhang et al. (2009[Zhang, W., Chen, L.-Z., Xiong, R.-G., Nakamura, T. & Huang, S.-P. (2009). J. Am. Chem. Soc. 131, 12544-12545.], 2010[Zhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z., Xiong, R.-G. & Huang, S.-P. (2010). J. Am. Chem. Soc. 132, 7300-7302.]). For related structures, see: Liu (2011a[Liu, M.-L. (2011a). Acta Cryst. E67, m1622.],b[Liu, M.-L. (2011b). Acta Cryst. E67, m1812.],c[Liu, M.-L. (2011c). Acta Cryst. E67, m1827.]).

[Scheme 1]

Experimental

Crystal data
  • (C7H10N)2[SnCl6]·2H2O

  • Mr = 583.74

  • Monoclinic, C 2/m

  • a = 20.467 (4) Å

  • b = 7.1699 (14) Å

  • c = 7.7569 (16) Å

  • β = 93.83 (3)°

  • V = 1135.8 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.84 mm−1

  • T = 293 K

  • 0.36 × 0.32 × 0.28 mm

Data collection
  • Rigaku Mercury2 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.963, Tmoax = 0.971

  • 5833 measured reflections

  • 1405 independent reflections

  • 1370 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.096

  • S = 0.92

  • 1405 reflections

  • 74 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.73 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl2i 0.89 2.59 3.476 (4) 171
N1—H1B⋯O1ii 0.89 1.93 2.809 (5) 170
N1—H1C⋯Cl1iii 0.89 2.75 3.5883 (7) 157
O1—H1D⋯Cl2 0.85 2.44 3.228 (2) 154
Symmetry codes: (i) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z-1]; (ii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently much attention has been devoted to metal-organic compounds due to the tunability of their special structural features and their interesting physical properties (Zhang et al., 2009, 2010). As a continuation of our researches (Liu, 2011a,b,c), the title compound has been synthesized and its crystal structure is herein reported.

In the title compound, the SnIV atom lies on a 2/m symmetry site, and is coordinated by six Cl atoms (Fig. 1). One of the Cl atoms lies on a mirror plane and the 3-methylanilinium cation is also situated on a mirror plane. The water molecule is located on a twofold rotation axis. The H atoms of the methyl and amidogen groups and the water molecule are disordered induced by symmetry. N—H···Cl, O—H···Cl and N—H···O hydrogen-bonding interactions connect the [SnCl6]2- anions, the 3-methylanilinium cations and the water molecules (Table 1). The non-H atoms of the 3-methylanilinium cation are coplanar. The average Sn—Cl bond distances range from 2.4260 (13) to 2.4384 (9) Å and the cis Cl—Sn—Cl angles range from 88.78 (5) to 91.22 (5)°.

Related literature top

For background to ferroelectric metal-organic complexes, see: Zhang et al. (2009, 2010). For related structures, see: Liu (2011a,b,c).

Experimental top

3-Methylbenzenamine (3.21 g, 0.03 mol) was dissolved in 30 ml ethanol, to which hydrochloric acid (1.1 g, 0.03 mol) was then added. Stannous chloride (2.25 g, 0.01 mol) was dissolved in 20 ml ethanol, to which was added hydrochloric acid, then mixed with the above solution without any precipitation under stirring at ambient temperature. Single crystals suitable for X-ray structure analysis were obtained by slow evaporation after 4 days in air.

The dielectric constant of the compound as a function of temperature indicates that the permittivity is basically temperature-independent [ε = C/(T–T0)], suggesting that this compound is not ferroelectric or there may be no distinct phase transition occurring within the measured temperature (below the melting point).

Refinement top

H atoms on C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic), 0.96 (methyl) and N—H = 0.89 Å and with Uiso(H) = 1.2Ueq(C, N). Water H atoms were located from a difference Fourier map and refined as riding atoms, with O—H = 0.85 Å and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms on C7, N1 and O1 are disordered over two sets of sites. [Symmetry codes: (A) -x, -y, 2-z; (B) -x, y, 2-z; (C) x, -y, z.]
Bis(3-methylanilinium) hexachloridostannate(IV) dihydrate top
Crystal data top
(C7H10N)2[SnCl6]·2H2OF(000) = 580
Mr = 583.74Dx = 1.707 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yCell parameters from 1370 reflections
a = 20.467 (4) Åθ = 3.4–25.0°
b = 7.1699 (14) ŵ = 1.84 mm1
c = 7.7569 (16) ÅT = 293 K
β = 93.83 (3)°Block, colourless
V = 1135.8 (4) Å30.36 × 0.32 × 0.28 mm
Z = 2
Data collection top
Rigaku Mercury2 CCD
diffractometer
1405 independent reflections
Radiation source: fine-focus sealed tube1370 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 2625
Tmin = 0.963, Tmax = 0.971k = 99
5833 measured reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0749P)2 + 1.7826P]
where P = (Fo2 + 2Fc2)/3
S = 0.92(Δ/σ)max < 0.001
1405 reflectionsΔρmax = 0.38 e Å3
74 parametersΔρmin = 0.73 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.041 (2)
Crystal data top
(C7H10N)2[SnCl6]·2H2OV = 1135.8 (4) Å3
Mr = 583.74Z = 2
Monoclinic, C2/mMo Kα radiation
a = 20.467 (4) ŵ = 1.84 mm1
b = 7.1699 (14) ÅT = 293 K
c = 7.7569 (16) Å0.36 × 0.32 × 0.28 mm
β = 93.83 (3)°
Data collection top
Rigaku Mercury2 CCD
diffractometer
1405 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1370 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.971Rint = 0.036
5833 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 0.92Δρmax = 0.38 e Å3
1405 reflectionsΔρmin = 0.73 e Å3
74 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.4203 (2)1.00000.2314 (5)0.0565 (10)
H1A0.42530.94640.12960.068*0.50
H1B0.44290.93670.31400.068*0.50
H1C0.43491.11690.22940.068*0.50
C10.3335 (2)1.00000.4366 (5)0.0416 (8)
H10.36611.00000.52610.050*
C20.3501 (2)1.00000.2664 (5)0.0392 (8)
C30.3029 (2)1.00000.1309 (5)0.0537 (11)
H30.31471.00000.01710.064*
C40.2382 (2)1.00000.1673 (6)0.0618 (13)
H40.20581.00000.07740.074*
C50.2208 (2)1.00000.3365 (7)0.0542 (11)
H50.17671.00000.35880.065*
C60.2677 (2)1.00000.4732 (5)0.0429 (8)
C70.2496 (3)1.00000.6588 (7)0.0622 (13)
H7A0.28191.06870.72850.075*0.50
H7B0.24810.87390.70000.075*0.50
H7C0.20751.05740.66590.075*0.50
Sn10.00000.00001.00000.0370 (2)
Cl10.07220 (7)0.00000.76437 (18)0.0617 (3)
Cl20.06652 (4)0.24302 (12)0.85527 (11)0.0565 (3)
O10.00000.3385 (11)0.50000.136 (3)
H1D0.02160.35110.58910.203*0.50
H1E0.03900.30620.53040.203*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0412 (19)0.081 (3)0.0478 (19)0.0000.0093 (15)0.000
C10.0394 (19)0.050 (2)0.0354 (17)0.0000.0004 (14)0.000
C20.0346 (18)0.046 (2)0.0368 (17)0.0000.0041 (14)0.000
C30.054 (3)0.072 (3)0.0344 (18)0.0000.0035 (17)0.000
C40.045 (2)0.085 (4)0.053 (2)0.0000.0157 (19)0.000
C50.035 (2)0.063 (3)0.064 (3)0.0000.0028 (18)0.000
C60.047 (2)0.0370 (19)0.0458 (19)0.0000.0089 (16)0.000
C70.070 (3)0.065 (3)0.054 (2)0.0000.025 (2)0.000
Sn10.0290 (2)0.0291 (2)0.0536 (3)0.0000.00791 (15)0.000
Cl10.0550 (7)0.0597 (7)0.0742 (7)0.0000.0323 (6)0.000
Cl20.0503 (4)0.0477 (4)0.0712 (5)0.0134 (3)0.0023 (3)0.0088 (4)
O10.127 (5)0.173 (7)0.105 (4)0.0000.009 (4)0.000
Geometric parameters (Å, º) top
N1—C21.480 (5)C5—H50.9300
N1—H1A0.8900C6—C71.511 (6)
N1—H1B0.8899C7—H7A0.9602
N1—H1C0.8901C7—H7B0.9600
C1—C21.385 (5)C7—H7C0.9600
C1—C61.395 (6)Sn1—Cl1i2.4260 (13)
C1—H10.9300Sn1—Cl12.4260 (13)
C2—C31.380 (6)Sn1—Cl2ii2.4384 (9)
C3—C41.372 (7)Sn1—Cl2iii2.4384 (9)
C3—H30.9300Sn1—Cl22.4384 (9)
C4—C51.383 (7)Sn1—Cl2i2.4384 (9)
C4—H40.9300O1—H1D0.8500
C5—C61.383 (7)O1—H1E0.8499
C2—N1—H1A109.5C1—C6—C7119.7 (4)
C2—N1—H1B109.4C6—C7—H7A109.5
H1A—N1—H1B109.5C6—C7—H7B109.5
C2—N1—H1C109.5H7A—C7—H7B109.4
H1A—N1—H1C109.5C6—C7—H7C109.4
H1B—N1—H1C109.5H7A—C7—H7C109.5
C2—C1—C6119.7 (4)H7B—C7—H7C109.5
C2—C1—H1120.2Cl1i—Sn1—Cl1180.0
C6—C1—H1120.2Cl1i—Sn1—Cl2ii89.85 (4)
C3—C2—C1121.5 (4)Cl1—Sn1—Cl2ii90.15 (3)
C3—C2—N1119.9 (4)Cl1i—Sn1—Cl2iii90.15 (4)
C1—C2—N1118.5 (4)Cl1—Sn1—Cl2iii89.85 (4)
C2—C3—C4118.6 (4)Cl2ii—Sn1—Cl2iii180.0
C2—C3—H3120.7Cl1i—Sn1—Cl289.85 (3)
C4—C3—H3120.7Cl1—Sn1—Cl290.15 (3)
C5—C4—C3120.7 (4)Cl2ii—Sn1—Cl291.22 (5)
C5—C4—H4119.7Cl2iii—Sn1—Cl288.78 (5)
C3—C4—H4119.7Cl1i—Sn1—Cl2i90.15 (3)
C6—C5—C4121.1 (4)Cl1—Sn1—Cl2i89.85 (3)
C6—C5—H5119.5Cl2ii—Sn1—Cl2i88.78 (5)
C4—C5—H5119.5Cl2iii—Sn1—Cl2i91.22 (5)
C5—C6—C1118.4 (4)Cl2—Sn1—Cl2i180.0
C5—C6—C7121.9 (4)H1D—O1—H1E109.5
C6—C1—C2—C30.0C3—C4—C5—C60.0
C6—C1—C2—N1180.0C4—C5—C6—C10.0
C1—C2—C3—C40.0C4—C5—C6—C7180.0
N1—C2—C3—C4180.0C2—C1—C6—C50.0
C2—C3—C4—C50.0C2—C1—C6—C7180.0
Symmetry codes: (i) x, y, z+2; (ii) x, y, z; (iii) x, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl2iv0.892.593.476 (4)171
N1—H1B···O1v0.891.932.809 (5)170
N1—H1C···Cl1vi0.892.753.5883 (7)157
O1—H1D···Cl20.852.443.228 (2)154
Symmetry codes: (iv) x+1/2, y+1/2, z1; (v) x+1/2, y+1/2, z; (vi) x+1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formula(C7H10N)2[SnCl6]·2H2O
Mr583.74
Crystal system, space groupMonoclinic, C2/m
Temperature (K)293
a, b, c (Å)20.467 (4), 7.1699 (14), 7.7569 (16)
β (°) 93.83 (3)
V3)1135.8 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.84
Crystal size (mm)0.36 × 0.32 × 0.28
Data collection
DiffractometerRigaku Mercury2 CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.963, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
5833, 1405, 1370
Rint0.036
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.096, 0.92
No. of reflections1405
No. of parameters74
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.73

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl2i0.892.593.476 (4)171.0
N1—H1B···O1ii0.891.932.809 (5)170.3
N1—H1C···Cl1iii0.892.753.5883 (7)157.2
O1—H1D···Cl20.852.443.228 (2)154.2
Symmetry codes: (i) x+1/2, y+1/2, z1; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y+3/2, z+1.
 

Acknowledgements

The author thanks an anonymous advisor from Ordered Matter Science Research Centre, Southeast University, for great help in the revision of this paper.

References

First citationLiu, M.-L. (2011a). Acta Cryst. E67, m1622.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, M.-L. (2011b). Acta Cryst. E67, m1812.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, M.-L. (2011c). Acta Cryst. E67, m1827.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, W., Chen, L.-Z., Xiong, R.-G., Nakamura, T. & Huang, S.-P. (2009). J. Am. Chem. Soc. 131, 12544–12545.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z., Xiong, R.-G. & Huang, S.-P. (2010). J. Am. Chem. Soc. 132, 7300–7302.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds