organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1289-o1290

Di­ethyl 4-[5-(4-chloro­phen­yl)-1H-pyrazol-4-yl]-2,6-di­methyl-1,4-di­hydro­pyridine-3,5-di­carboxyl­ate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India
*Correspondence e-mail: hkfun@usm.my

(Received 26 March 2012; accepted 28 March 2012; online 4 April 2012)

In the title compound, C22H24ClN3O4, intra­molecular C—H⋯O and C—H⋯N hydrogen bonds form S(9) and S(7) ring motifs, respectively. The 1,4-dihydro­pyridine ring adopts a flattened boat conformation. The benzene ring makes a dihedral angle of 33.36 (6)° with the pyrazole ring. In the crystal, pairs of N—H⋯N hydrogen bonds link the mol­ecules into inversion dimers. The dimers are stacked in column along the a axis through N—H⋯O and C—H⋯N hydrogen bonds. The crystal packing also features C—H⋯π inter­actions involving the pyrazole ring.

Related literature

For background to and applications of 1,4-dihydro­pyridines, see: Janis & Triggle (1983[Janis, R. A. & Triggle, D. J. (1983). J. Med. Chem. 26, 775-785.]); Boecker & Guengerich (1986[Boecker, R. H. & Guengerich, F. P. (1986). J. Med. Chem. 29, 1596-1603.]); Gordeev et al. (1996[Gordeev, M. F., Patel, D. V. & Gordon, E. M. (1996). J. Org. Chem. 61, 924-928.]); Buhler & Kiowski (1987[Buhler, F. R. & Kiowski, W. (1987). J. Hypertens. 5, S3-S10.]); Vo et al. (1995[Vo, D., Matowe, W. C., Ramesh, M., Iqbal, N., Wolowyk, M. W., Howlett, S. E. & Knaus, E. E. (1995). J. Med. Chem. 38, 2851-2859.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For a related structure, see: Fun et al. (2012[Fun, H.-K., Arshad, S., Malladi, S., Shivananda, K. N. & Isloor, A. M. (2012). Acta Cryst. E68, o922-o923.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C22H24ClN3O4

  • Mr = 429.89

  • Triclinic, [P \overline 1]

  • a = 8.5210 (5) Å

  • b = 10.7809 (6) Å

  • c = 11.2707 (7) Å

  • α = 90.411 (1)°

  • β = 97.205 (1)°

  • γ = 94.210 (1)°

  • V = 1024.28 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 100 K

  • 0.38 × 0.18 × 0.17 mm

Data collection
  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.921, Tmax = 0.964

  • 17114 measured reflections

  • 5885 independent reflections

  • 5038 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.107

  • S = 1.04

  • 5885 reflections

  • 283 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1/N2/C7–C9 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O4i 0.857 (17) 2.078 (17) 2.9291 (14) 172.2 (17)
N3—H1N3⋯N2ii 0.908 (19) 2.184 (19) 3.0427 (14) 157.5 (15)
C5—H5A⋯O1 0.93 2.27 3.1988 (16) 177
C8—H8A⋯N3 0.93 2.61 3.2546 (15) 127
C22—H22B⋯N2iii 0.96 2.50 3.3741 (16) 151
C19—H19BCg1iv 0.96 2.79 3.5562 (14) 137
Symmetry codes: (i) x+1, y, z; (ii) -x, -y+2, -z; (iii) x-1, y, z; (iv) -x, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In recent years, considerable attention has been paid to the synthesis of 1,4-dihydropyridines owing to their significant biological activity. 1,4-Dihydropyridine-containing drugs (1,4-DHPs), such as nifedipine, nicardipine, amlodipine, felodipine and others have been found to be useful as calcium channel blockers (Janis & Triggle, 1983; Boecker & Guengerich, 1986; Gordeev et al., 1996) and are used most frequently as cardiovascular agents for the treatment of hypertension (Buhler & Kiowski, 1987). A number of DHP derivatives are employed as potential drug candidates for the treatment of congestive heart failure (Vo et al., 1995). Prompted by the diverse activities of 1,4-dihydropyridines, we have synthesized the title compound to study its crystal structure.

In the title compound (Fig. 1), intramolecular C5—H5A···O1 and C8—H8A···N3 hydrogen bonds form S(9) and S(7) ring motifs (Bernstein et al., 1995), respectively. The 1,4-dihydropyridine ring (C10–C12/N3/C13/C14) adopts a flattened boat conformation (Cremer & Pople, 1975) with the puckering parameters, Q = 0.4162 (11) Å; Θ = 74.64 (16)°; ϕ = 176.34 (17)°. The benzene ring (C1–C6) forms a dihedral angle of 33.36 (6)° with the pyrazole ring (N1/N2/C7–C9). The bond lengths and angles are within the normal ranges and are comparable with the related structure (Fun et al., 2012).

In the crystal packing (Fig. 2), intermolecular N1—H1N1···O4, N3—H1N3···N2 and C22—H22B···N2 hydrogen bonds (Table 1) link the molecules into a column along the a axis. The crystal packing is further stabilized by C—H···π interactions (Table 1) involving the pyrazole ring.

Related literature top

For background to and applications of 1,4-dihydropyridines, see: Janis & Triggle (1983); Boecker & Guengerich (1986); Gordeev et al. (1996); Buhler & Kiowski (1987); Vo et al. (1995). For hydrogen-bond motifs, see: Bernstein et al. (1995). For ring conformations, see: Cremer & Pople (1975). For a related structure, see: Fun et al. (2012). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

3-(4-Chlorophenyl)-1H-pyrazole-4-carbaldehyde (0.2 g, 1.1 mmol), ethylacetoacetate (0.3 g, 2.3 mmol) and ammonium acetate (0.09 g, 1.2 mmol) in ethanol (20 ml) were refluxed for 8 h in an oil bath. After the completion of the reaction, the reaction mixture was concentrated and poured into crushed ice. The precipitated product was filtered and washed with water. The resulting solid was recrystallized from hot ethanol (0.33 g, 67%). M.p.: 459–461 K.

Refinement top

N-bound H atoms were located in a difference Fourier map and were refined freely [N—H = 0.80 (3) to 0.87 (3) Å]. The remaining H atoms were positioned geometrically (C—H = 0.93 to 0.97 Å) and refined with a riding model with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl groups. In the final refinement, twelve outliners were omitted, -2 -3 2, 1 -1 1, 4 -2 6, 2 -1 3, -3 -4 5, -3 -6 4, -3 -5 4, 4 -2 5, -2 -2 3, -1 -5 1, 0 4 1 and -2 -6 3.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids. Dashed lines indicate the intramolecular hydrogen bonds.
[Figure 2] Fig. 2. A part of crystal packing diagram of the title compound, viewed along the a axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
Diethyl 4-[5-(4-chlorophenyl)-1H-pyrazol-4-yl]-2,6-dimethyl-1,4- dihydropyridine-3,5-dicarboxylate top
Crystal data top
C22H24ClN3O4Z = 2
Mr = 429.89F(000) = 452
Triclinic, P1Dx = 1.394 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5210 (5) ÅCell parameters from 7118 reflections
b = 10.7809 (6) Åθ = 2.4–32.6°
c = 11.2707 (7) ŵ = 0.22 mm1
α = 90.411 (1)°T = 100 K
β = 97.205 (1)°Block, colourless
γ = 94.210 (1)°0.38 × 0.18 × 0.17 mm
V = 1024.28 (10) Å3
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
5885 independent reflections
Radiation source: fine-focus sealed tube5038 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 30.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.921, Tmax = 0.964k = 1515
17114 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0519P)2 + 0.4397P]
where P = (Fo2 + 2Fc2)/3
5885 reflections(Δ/σ)max = 0.001
283 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C22H24ClN3O4γ = 94.210 (1)°
Mr = 429.89V = 1024.28 (10) Å3
Triclinic, P1Z = 2
a = 8.5210 (5) ÅMo Kα radiation
b = 10.7809 (6) ŵ = 0.22 mm1
c = 11.2707 (7) ÅT = 100 K
α = 90.411 (1)°0.38 × 0.18 × 0.17 mm
β = 97.205 (1)°
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
5885 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5038 reflections with I > 2σ(I)
Tmin = 0.921, Tmax = 0.964Rint = 0.027
17114 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.44 e Å3
5885 reflectionsΔρmin = 0.29 e Å3
283 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.40990 (4)0.46308 (3)0.70565 (3)0.02708 (9)
O10.04200 (12)0.49719 (9)0.17848 (9)0.0248 (2)
O20.23718 (10)0.49196 (8)0.02494 (8)0.01812 (18)
O30.12624 (10)0.84126 (8)0.44891 (7)0.01690 (17)
O40.34579 (10)0.94038 (8)0.39174 (8)0.01770 (17)
N10.32527 (12)0.89803 (9)0.27948 (9)0.01440 (19)
N20.26859 (12)0.96583 (10)0.18490 (9)0.01621 (19)
N30.24741 (11)0.87179 (9)0.03539 (9)0.01423 (19)
C10.36646 (14)0.76773 (12)0.50778 (10)0.0169 (2)
H1A0.40780.85010.51200.020*
C20.41253 (14)0.68690 (12)0.59919 (11)0.0197 (2)
H2A0.48500.71490.66420.024*
C30.34984 (14)0.56477 (12)0.59271 (11)0.0192 (2)
C40.24000 (15)0.52106 (12)0.49769 (12)0.0213 (2)
H4A0.19670.43920.49550.026*
C50.19539 (14)0.60170 (12)0.40547 (11)0.0184 (2)
H5A0.12320.57290.34060.022*
C60.25797 (13)0.72537 (11)0.40942 (10)0.0139 (2)
C70.21629 (13)0.80907 (10)0.31024 (10)0.0126 (2)
C80.11965 (13)0.91862 (11)0.15670 (10)0.0156 (2)
H8A0.05010.94770.09470.019*
C90.07844 (13)0.81976 (10)0.23091 (10)0.0127 (2)
C100.08660 (12)0.75561 (10)0.22759 (9)0.0122 (2)
H10A0.08650.69630.29310.015*
C110.20389 (13)0.85225 (10)0.24478 (10)0.0127 (2)
C120.26584 (12)0.91545 (10)0.14796 (10)0.0129 (2)
C130.21330 (13)0.74984 (11)0.01598 (10)0.0144 (2)
C140.14542 (13)0.68669 (10)0.11005 (10)0.0132 (2)
C150.13184 (13)0.55150 (11)0.10873 (10)0.0156 (2)
C160.24515 (15)0.35748 (11)0.02645 (11)0.0192 (2)
H16A0.26690.32730.10410.023*
H16B0.14590.32730.00900.023*
C170.37844 (15)0.31492 (12)0.06902 (12)0.0209 (2)
H17A0.39320.22580.06970.031*
H17B0.35280.34250.14560.031*
H17C0.47430.34940.05260.031*
C180.23545 (13)0.88366 (10)0.36557 (10)0.0138 (2)
C190.14246 (15)0.86913 (13)0.57282 (10)0.0204 (2)
H19A0.24270.83220.59320.024*
H19B0.13860.95830.58620.024*
C200.00580 (16)0.81475 (14)0.64767 (11)0.0240 (3)
H20A0.00820.83520.73040.036*
H20B0.09240.84840.62330.036*
H20C0.01450.72600.63700.036*
C210.25953 (15)0.70438 (12)0.11096 (10)0.0185 (2)
H21A0.18510.64760.13150.028*
H21B0.25920.77390.16370.028*
H21C0.36380.66260.11870.028*
C220.34816 (14)1.03355 (11)0.14701 (11)0.0170 (2)
H22A0.32851.07220.22500.026*
H22B0.46021.01520.12600.026*
H22C0.30861.08890.08950.026*
H1N10.424 (2)0.9115 (16)0.3055 (16)0.024 (4)*
H1N30.283 (2)0.9163 (17)0.0293 (17)0.028 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02373 (16)0.03297 (19)0.02383 (16)0.00309 (12)0.00125 (11)0.01615 (13)
O10.0259 (5)0.0178 (4)0.0280 (5)0.0062 (4)0.0099 (4)0.0029 (4)
O20.0228 (4)0.0133 (4)0.0165 (4)0.0005 (3)0.0031 (3)0.0010 (3)
O30.0169 (4)0.0239 (4)0.0101 (4)0.0046 (3)0.0008 (3)0.0005 (3)
O40.0135 (4)0.0216 (4)0.0182 (4)0.0023 (3)0.0025 (3)0.0019 (3)
N10.0114 (4)0.0169 (5)0.0144 (4)0.0002 (3)0.0002 (3)0.0025 (3)
N20.0139 (4)0.0187 (5)0.0157 (4)0.0008 (4)0.0009 (3)0.0051 (4)
N30.0151 (4)0.0149 (5)0.0123 (4)0.0010 (3)0.0002 (3)0.0033 (3)
C10.0162 (5)0.0192 (5)0.0146 (5)0.0001 (4)0.0001 (4)0.0015 (4)
C20.0170 (5)0.0265 (6)0.0145 (5)0.0001 (4)0.0020 (4)0.0033 (4)
C30.0170 (5)0.0244 (6)0.0164 (5)0.0043 (4)0.0013 (4)0.0089 (4)
C40.0204 (6)0.0190 (6)0.0230 (6)0.0005 (4)0.0023 (4)0.0058 (5)
C50.0182 (5)0.0178 (5)0.0179 (5)0.0009 (4)0.0026 (4)0.0023 (4)
C60.0129 (5)0.0173 (5)0.0117 (5)0.0029 (4)0.0014 (4)0.0019 (4)
C70.0120 (5)0.0138 (5)0.0120 (5)0.0012 (4)0.0009 (4)0.0006 (4)
C80.0132 (5)0.0183 (5)0.0148 (5)0.0010 (4)0.0002 (4)0.0038 (4)
C90.0125 (5)0.0138 (5)0.0116 (5)0.0016 (4)0.0006 (4)0.0006 (4)
C100.0119 (4)0.0132 (5)0.0112 (4)0.0006 (4)0.0004 (3)0.0008 (4)
C110.0111 (4)0.0138 (5)0.0130 (5)0.0003 (4)0.0011 (4)0.0000 (4)
C120.0100 (4)0.0137 (5)0.0146 (5)0.0007 (4)0.0007 (4)0.0009 (4)
C130.0136 (5)0.0159 (5)0.0132 (5)0.0007 (4)0.0010 (4)0.0002 (4)
C140.0127 (5)0.0139 (5)0.0127 (5)0.0000 (4)0.0008 (4)0.0006 (4)
C150.0147 (5)0.0165 (5)0.0154 (5)0.0007 (4)0.0014 (4)0.0020 (4)
C160.0239 (6)0.0130 (5)0.0197 (5)0.0011 (4)0.0017 (4)0.0010 (4)
C170.0238 (6)0.0172 (6)0.0205 (6)0.0001 (4)0.0015 (4)0.0022 (4)
C180.0125 (5)0.0144 (5)0.0137 (5)0.0016 (4)0.0005 (4)0.0003 (4)
C190.0195 (5)0.0311 (7)0.0110 (5)0.0035 (5)0.0025 (4)0.0025 (4)
C200.0230 (6)0.0344 (7)0.0138 (5)0.0035 (5)0.0013 (4)0.0006 (5)
C210.0226 (6)0.0200 (6)0.0121 (5)0.0006 (4)0.0001 (4)0.0009 (4)
C220.0161 (5)0.0163 (5)0.0187 (5)0.0035 (4)0.0009 (4)0.0033 (4)
Geometric parameters (Å, º) top
Cl1—C31.7387 (12)C9—C101.5169 (15)
O1—C151.2117 (14)C10—C111.5233 (15)
O2—C151.3430 (14)C10—C141.5241 (15)
O2—C161.4467 (14)C10—H10A0.9800
O3—C181.3440 (13)C11—C121.3611 (15)
O3—C191.4519 (14)C11—C181.4625 (15)
O4—C181.2233 (14)C12—C221.4977 (16)
N1—N21.3556 (13)C13—C141.3552 (15)
N1—C71.3628 (15)C13—C211.5042 (16)
N1—H1N10.859 (18)C14—C151.4707 (16)
N2—C81.3313 (15)C16—C171.5060 (17)
N3—C121.3814 (15)C16—H16A0.9700
N3—C131.3888 (15)C16—H16B0.9700
N3—H1N30.909 (19)C17—H17A0.9600
C1—C21.3915 (16)C17—H17B0.9600
C1—C61.4021 (15)C17—H17C0.9600
C1—H1A0.9300C19—C201.5075 (18)
C2—C31.3819 (19)C19—H19A0.9700
C2—H2A0.9300C19—H19B0.9700
C3—C41.3862 (17)C20—H20A0.9600
C4—C51.3940 (16)C20—H20B0.9600
C4—H4A0.9300C20—H20C0.9600
C5—C61.3974 (17)C21—H21A0.9600
C5—H5A0.9300C21—H21B0.9600
C6—C71.4670 (15)C21—H21C0.9600
C7—C91.3965 (14)C22—H22A0.9600
C8—C91.4108 (16)C22—H22B0.9600
C8—H8A0.9300C22—H22C0.9600
C15—O2—C16116.30 (9)C14—C13—N3118.15 (10)
C18—O3—C19116.69 (9)C14—C13—C21128.07 (11)
N2—N1—C7112.89 (9)N3—C13—C21113.78 (10)
N2—N1—H1N1116.7 (12)C13—C14—C15123.77 (10)
C7—N1—H1N1130.0 (12)C13—C14—C10119.60 (10)
C8—N2—N1104.07 (9)C15—C14—C10116.55 (9)
C12—N3—C13121.59 (9)O1—C15—O2122.63 (11)
C12—N3—H1N3118.7 (11)O1—C15—C14124.73 (11)
C13—N3—H1N3117.8 (11)O2—C15—C14112.54 (10)
C2—C1—C6120.24 (11)O2—C16—C17105.52 (10)
C2—C1—H1A119.9O2—C16—H16A110.6
C6—C1—H1A119.9C17—C16—H16A110.6
C3—C2—C1119.54 (11)O2—C16—H16B110.6
C3—C2—H2A120.2C17—C16—H16B110.6
C1—C2—H2A120.2H16A—C16—H16B108.8
C2—C3—C4121.43 (11)C16—C17—H17A109.5
C2—C3—Cl1119.55 (9)C16—C17—H17B109.5
C4—C3—Cl1119.01 (10)H17A—C17—H17B109.5
C3—C4—C5118.96 (12)C16—C17—H17C109.5
C3—C4—H4A120.5H17A—C17—H17C109.5
C5—C4—H4A120.5H17B—C17—H17C109.5
C4—C5—C6120.71 (11)O4—C18—O3122.26 (10)
C4—C5—H5A119.6O4—C18—C11126.36 (10)
C6—C5—H5A119.6O3—C18—C11111.38 (9)
C5—C6—C1119.10 (10)O3—C19—C20106.57 (10)
C5—C6—C7120.83 (10)O3—C19—H19A110.4
C1—C6—C7120.03 (10)C20—C19—H19A110.4
N1—C7—C9106.36 (9)O3—C19—H19B110.4
N1—C7—C6120.39 (10)C20—C19—H19B110.4
C9—C7—C6133.25 (10)H19A—C19—H19B108.6
N2—C8—C9112.86 (10)C19—C20—H20A109.5
N2—C8—H8A123.6C19—C20—H20B109.5
C9—C8—H8A123.6H20A—C20—H20B109.5
C7—C9—C8103.82 (10)C19—C20—H20C109.5
C7—C9—C10131.02 (10)H20A—C20—H20C109.5
C8—C9—C10124.80 (10)H20B—C20—H20C109.5
C9—C10—C11109.34 (9)C13—C21—H21A109.5
C9—C10—C14113.54 (9)C13—C21—H21B109.5
C11—C10—C14107.27 (8)H21A—C21—H21B109.5
C9—C10—H10A108.9C13—C21—H21C109.5
C11—C10—H10A108.9H21A—C21—H21C109.5
C14—C10—H10A108.9H21B—C21—H21C109.5
C12—C11—C18121.40 (10)C12—C22—H22A109.5
C12—C11—C10118.82 (10)C12—C22—H22B109.5
C18—C11—C10119.51 (9)H22A—C22—H22B109.5
C11—C12—N3118.42 (10)C12—C22—H22C109.5
C11—C12—C22127.72 (10)H22A—C22—H22C109.5
N3—C12—C22113.79 (9)H22B—C22—H22C109.5
C7—N1—N2—C80.62 (13)C14—C10—C11—C18146.53 (10)
C6—C1—C2—C30.41 (19)C18—C11—C12—N3172.34 (10)
C1—C2—C3—C40.9 (2)C10—C11—C12—N313.70 (15)
C1—C2—C3—Cl1178.92 (10)C18—C11—C12—C2210.73 (18)
C2—C3—C4—C51.7 (2)C10—C11—C12—C22163.24 (11)
Cl1—C3—C4—C5178.15 (10)C13—N3—C12—C1119.94 (16)
C3—C4—C5—C61.14 (19)C13—N3—C12—C22162.71 (10)
C4—C5—C6—C10.12 (18)C12—N3—C13—C1422.38 (16)
C4—C5—C6—C7177.48 (11)C12—N3—C13—C21157.22 (10)
C2—C1—C6—C50.91 (18)N3—C13—C14—C15167.42 (10)
C2—C1—C6—C7176.72 (11)C21—C13—C14—C1512.11 (19)
N2—N1—C7—C90.39 (13)N3—C13—C14—C109.08 (16)
N2—N1—C7—C6178.92 (10)C21—C13—C14—C10171.38 (11)
C5—C6—C7—N1145.13 (11)C9—C10—C14—C1383.80 (13)
C1—C6—C7—N132.45 (16)C11—C10—C14—C1337.11 (14)
C5—C6—C7—C933.95 (19)C9—C10—C14—C1599.45 (12)
C1—C6—C7—C9148.47 (13)C11—C10—C14—C15139.64 (10)
N1—N2—C8—C90.62 (13)C16—O2—C15—O13.64 (18)
N1—C7—C9—C80.00 (12)C16—O2—C15—C14172.93 (10)
C6—C7—C9—C8179.18 (12)C13—C14—C15—O1162.09 (13)
N1—C7—C9—C10173.26 (11)C10—C14—C15—O121.31 (17)
C6—C7—C9—C107.6 (2)C13—C14—C15—O221.42 (16)
N2—C8—C9—C70.40 (13)C10—C14—C15—O2155.18 (10)
N2—C8—C9—C10174.21 (10)C15—O2—C16—C17176.01 (10)
C7—C9—C10—C11116.66 (13)C19—O3—C18—O41.74 (17)
C8—C9—C10—C1155.36 (14)C19—O3—C18—C11178.61 (10)
C7—C9—C10—C14123.60 (12)C12—C11—C18—O420.74 (18)
C8—C9—C10—C1464.38 (14)C10—C11—C18—O4165.33 (11)
C9—C10—C11—C1284.14 (12)C12—C11—C18—O3159.62 (10)
C14—C10—C11—C1239.39 (13)C10—C11—C18—O314.30 (14)
C9—C10—C11—C1889.94 (12)C18—O3—C19—C20178.84 (11)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/N2/C7–C9 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O4i0.857 (17)2.078 (17)2.9291 (14)172.2 (17)
N3—H1N3···N2ii0.908 (19)2.184 (19)3.0427 (14)157.5 (15)
C5—H5A···O10.932.273.1988 (16)177
C8—H8A···N30.932.613.2546 (15)127
C22—H22B···N2iii0.962.503.3741 (16)151
C19—H19B···Cg1iv0.962.793.5562 (14)137
Symmetry codes: (i) x+1, y, z; (ii) x, y+2, z; (iii) x1, y, z; (iv) x, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC22H24ClN3O4
Mr429.89
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.5210 (5), 10.7809 (6), 11.2707 (7)
α, β, γ (°)90.411 (1), 97.205 (1), 94.210 (1)
V3)1024.28 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.38 × 0.18 × 0.17
Data collection
DiffractometerBruker SMART APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.921, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
17114, 5885, 5038
Rint0.027
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.107, 1.04
No. of reflections5885
No. of parameters283
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.29

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/N2/C7–C9 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O4i0.857 (17)2.078 (17)2.9291 (14)172.2 (17)
N3—H1N3···N2ii0.908 (19)2.184 (19)3.0427 (14)157.5 (15)
C5—H5A···O10.932.273.1988 (16)177
C8—H8A···N30.932.613.2546 (15)127
C22—H22B···N2iii0.962.503.3741 (16)151
C19—H19B···Cg1iv0.962.793.5562 (14)137
Symmetry codes: (i) x+1, y, z; (ii) x, y+2, z; (iii) x1, y, z; (iv) x, y+2, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: C-7581-2009.

Additional address: SeQuent Scientific Ltd, No. 120 A & B Industrial Area, Baikampady, New Mangalore 575 011, Karnataka, India.

Acknowledgements

HKF and WSL thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). WSL also thanks the Malaysian Government and USM for the award of the post of Research Officer under the Research University Grant (1001/PFIZIK/811160). AMI thanks the Department of Atomic Energy, Board for Research in Nuclear Sciences, Government of India for the Young Scientist award. AMV is thankful to Dr Arulmoli, Vice President (R&D) and the management, SeQuent Scientific Ltd, New Mangalore, India, for their invaluable support and allocation of resources for this work.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBoecker, R. H. & Guengerich, F. P. (1986). J. Med. Chem. 29, 1596–1603.  CrossRef CAS PubMed Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuhler, F. R. & Kiowski, W. (1987). J. Hypertens. 5, S3–S10.  CrossRef CAS Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFun, H.-K., Arshad, S., Malladi, S., Shivananda, K. N. & Isloor, A. M. (2012). Acta Cryst. E68, o922–o923.  CSD CrossRef IUCr Journals Google Scholar
First citationGordeev, M. F., Patel, D. V. & Gordon, E. M. (1996). J. Org. Chem. 61, 924–928.  CrossRef CAS Web of Science Google Scholar
First citationJanis, R. A. & Triggle, D. J. (1983). J. Med. Chem. 26, 775–785.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVo, D., Matowe, W. C., Ramesh, M., Iqbal, N., Wolowyk, M. W., Howlett, S. E. & Knaus, E. E. (1995). J. Med. Chem. 38, 2851–2859.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1289-o1290
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds