organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1345-o1346

3-[(N-Methyl­anilino)meth­yl]-5-(thio­phen-2-yl)-1,3,4-oxa­diazole-2(3H)-thione

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 28 March 2012; accepted 3 April 2012; online 13 April 2012)

In the title compound, C14H13N3OS2, the thio­phene ring is disordered over two orientations by ca 180° about the C—C bond axis linking the ring to the rest of the mol­ecule, with a site-occupancy ratio of 0.651 (5):0.349 (5). The central 1,3,4-oxadiazole-2(3H)-thione ring forms dihedral angles of 9.2 (5), 4.6 (11) and 47.70 (7)° with the major and minor parts of the disordered thio­phene ring and the terminal phenyl ring, respectively. In the crystal, no significant inter­molecular hydrogen bonds are observed. The crystal packing is stabilized by ππ inter­actions [centroid–centroid distance = 3.589 (2) Å].

Related literature

For the biological activity of 1,3,4-oxadiazole derivatives, see: Navarrete-Vázquez et al. (2007[Navarrete-Vázquez, G., Molina-Salinas, G. M., Duarte-Fajardo, Z. V., Vargas-Villarreal, J., Estrada-Soto, S. & Gonzàlez-Salazar, F. (2007). Bioorg. Med. Chem. 15, 5502-5508.]); Kadi et al. (2007[Kadi, A. A., El-Brollosy, N. R., Al-Deeb, O. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2007). Eur. J. Med. Chem. 42, 235-242.]); Padmavathi et al. (2009[Padmavathi, V., Reddy, G. S., Padmaja, A., Kondaiah, P. & Shazia, A. (2009). Eur. J. Med. Chem. 44, 2106-2112.]); El-Emam et al. (2004[El-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. A. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107-5113.]); Al-Deeb et al. (2006[Al-Deeb, O. A., Al-Omar, M. A., El-Brollosy, N. R., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2006). Arzneim. Forsch. Drug. Res. 56, 40-47.]). For the synthesis of the title compound, see: Al-Omar (2010[Al-Omar, M. A. (2010). Molecules, 15, 502-514.]). For related 1,3,4-oxadiazole structures, see: Fun et al. (2011[Fun, H.-K., Arshad, S., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2011). Acta Cryst. E67, o3372.]); El-Emam et al. (2012[El-Emam, A. A., Kadi, A. A., El-Brollosy, N. R., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o795.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13N3OS2

  • Mr = 303.39

  • Monoclinic, P 21 /n

  • a = 11.9682 (8) Å

  • b = 7.4526 (5) Å

  • c = 17.0749 (14) Å

  • β = 108.072 (6)°

  • V = 1447.85 (18) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 3.32 mm−1

  • T = 296 K

  • 0.92 × 0.16 × 0.09 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.150, Tmax = 0.754

  • 10021 measured reflections

  • 2676 independent reflections

  • 1516 reflections with I > 2σ(I)

  • Rint = 0.066

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.156

  • S = 0.97

  • 2676 reflections

  • 220 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Considerable attention has been devoted to 1,3,4-oxadiazole derivatives which have long been known for their diverse chemotherapeutic properties as antiviral agents against the HIV-1 viruses (El-Emam et al., 2004), antibacterial agents (Navarrete-Vázquez et al., 2007; Padmavathi et al., 2009) and anti-inflammatory agents (Kadi et al., 2007; Al-Deeb et al., 2006). The title compound (I) was synthesized among a series of 2-thienyl-1,3,4-oxadiazoles and related derivatives as potential antimicrobial agents (Al-Omar, 2010).

The molecular structure of the title compound is shown in Fig. 1. The thiophene ring is disordered by ca. 180° rotation about the C2—C3 bond axis with a site-occupancy ratio of 0.651 (5):0.349 (5). The central 1,3,4-oxadiazole-2(3H)-thione ring (N1/N2/C1/O1/C2/S2; maximum deviation = 0.0157 (12) Å at atom S2) forms dihedral angles of 9.23 (51), 4.6 (11) and 47.70 (7)° with the major and minor parts of the disordered thiophene ring [S1/C3–C6: maximum deviation = 0.024 (11) Å at atom C4 and S1A/C3/C4A–C6A: maximum deviation = 0.04 (3) Å at atom C6A] and the terminal phenyl ring (C9–C14), respectively.

In the crystal packing, no significant intermolecular hydrogen bondings are observed. The crystal packing is stabilized by a ππ interaction with Cg2···Cg4 distance = 3.589 (2) Å (symmetry code: 3/2-x, -1/2+y, 3/2-z), where Cg2 and Cg4 are the centroids of O1/C1/C2/N1/N2 and C9–C14 rings, respectively.

Related literature top

For the biological activity of 1,3,4-oxadiazole derivatives, see: Navarrete-Vázquez et al. (2007); Kadi et al. (2007); Padmavathi et al. (2009); El-Emam et al. (2004); Al-Deeb et al. (2006). For the synthesis of the title compound, see: Al-Omar (2010). For related 1,3,4-oxadiazole structures, see: Fun et al. (2011); El-Emam et al. (2012).

Experimental top

N-Methylaniline (214 mg, 2 mmol) and 37% formaldehyde solution (0.5 ml) were added to a solution of 5-(thiophen-2-yl)-1,3,4-oxadiazole-2-thiol (369 mg, 2 mmol) in ethanol (8 ml). The mixture was stirred at room temperature for 2 h and allowed to stand overnight. The precipitated crude product was filtered, washed with cold ethanol, dried, and crystallized from ethanol to yield 558 mg (92%) of the title compound (I) as colorless needle crystals. M.p.: 112–114 °C. 1H NMR (CDCl3, 500.13 MHz): δ 3.28 (s, 3H, CH3), 5.64 (d, 2H, NCH2N), 6.83–7.36 (m, 6H, Ar—H & Thiophene-H), 7.55 (d, 1H, Thiophene-H, J = 5.0 Hz), 7.70 (d, 1H, Thiophene-H, J = 5.0 Hz). 13C NMR (CDCl3, 125.76 MHz): δ 39.54 (CH3), 66.80 (CH2), 113.72, 119.12, 123.65, 128.30, 129.36, 130.36, 131.07, 146.69 (Ar—C & Thiophene-C), 155.89 (Oxadiazole C-5), 176.32 (C=S).

Refinement top

All H atoms were positioned geometrically (C—H = 0.93, 0.96 or 0.97 Å) and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl group. Initially similarity and FLAT (only to the minor component) restraints were used. In the final refinement, these restraints were removed and the ratio of the refined site occupancies for the major and minor components of the disordered thiophene ring is 0.651 (5):0.349 (5).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels and 30% probability displacement ellipsoids. Atoms of the minor occupancy component are labelled with the suffix A.
3-[(N-Methylanilino)methyl]-5-(thiophen-2-yl)-1,3,4-oxadiazole- 2(3H)-thione top
Crystal data top
C14H13N3OS2F(000) = 632
Mr = 303.39Dx = 1.392 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ynCell parameters from 587 reflections
a = 11.9682 (8) Åθ = 4.0–45.3°
b = 7.4526 (5) ŵ = 3.32 mm1
c = 17.0749 (14) ÅT = 296 K
β = 108.072 (6)°Needle, colorless
V = 1447.85 (18) Å30.92 × 0.16 × 0.09 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2676 independent reflections
Radiation source: fine-focus sealed tube1516 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
ϕ and ω scansθmax = 69.5°, θmin = 4.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1414
Tmin = 0.150, Tmax = 0.754k = 87
10021 measured reflectionsl = 2018
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.156 w = 1/[σ2(Fo2) + (0.0811P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max = 0.001
2676 reflectionsΔρmax = 0.16 e Å3
220 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0019 (4)
Crystal data top
C14H13N3OS2V = 1447.85 (18) Å3
Mr = 303.39Z = 4
Monoclinic, P21/nCu Kα radiation
a = 11.9682 (8) ŵ = 3.32 mm1
b = 7.4526 (5) ÅT = 296 K
c = 17.0749 (14) Å0.92 × 0.16 × 0.09 mm
β = 108.072 (6)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2676 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1516 reflections with I > 2σ(I)
Tmin = 0.150, Tmax = 0.754Rint = 0.066
10021 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.156H-atom parameters constrained
S = 0.97Δρmax = 0.16 e Å3
2676 reflectionsΔρmin = 0.20 e Å3
220 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S20.86759 (10)0.22270 (15)1.02672 (6)0.0941 (4)
O10.6522 (2)0.3191 (3)0.93576 (13)0.0697 (6)
N10.6491 (2)0.2726 (3)0.80711 (15)0.0627 (7)
N20.7564 (2)0.2228 (3)0.86200 (15)0.0628 (6)
N30.8999 (2)0.2802 (4)0.79288 (16)0.0707 (7)
C10.7617 (3)0.2516 (4)0.94048 (19)0.0672 (8)
C20.5908 (3)0.3288 (4)0.85393 (19)0.0620 (8)
C30.4743 (3)0.4013 (4)0.8291 (2)0.0651 (8)
C40.413 (2)0.451 (3)0.8829 (15)0.093 (8)0.651 (5)
H4A0.43700.43400.93960.111*0.651 (5)
C50.2989 (18)0.542 (3)0.8296 (11)0.083 (5)0.651 (5)
H5A0.24360.59510.85030.100*0.651 (5)
C60.2904 (15)0.533 (2)0.7508 (13)0.092 (5)0.651 (5)
H6A0.22540.57680.70960.110*0.651 (5)
S10.4025 (5)0.4400 (7)0.7304 (4)0.0799 (9)0.651 (5)
S1A0.4022 (12)0.4715 (16)0.8908 (8)0.0785 (19)0.349 (5)
C6A0.293 (3)0.522 (6)0.825 (3)0.125 (17)0.349 (5)
H6AA0.22630.55920.83750.150*0.349 (5)
C5A0.292 (3)0.512 (4)0.745 (2)0.112 (13)0.349 (5)
H5AA0.23220.55080.69950.135*0.349 (5)
C4A0.416 (3)0.420 (5)0.745 (2)0.090 (13)0.349 (5)
H4AA0.44050.38780.70080.108*0.349 (5)
C70.8480 (3)0.1488 (4)0.83120 (19)0.0694 (8)
H7A0.90880.09530.87670.083*
H7B0.81430.05450.79180.083*
C80.9964 (3)0.3838 (6)0.8467 (2)0.0919 (12)
H8A0.99450.50350.82550.138*
H8B1.06970.32800.84920.138*
H8C0.98870.38830.90100.138*
C90.8762 (3)0.2882 (4)0.70804 (19)0.0638 (8)
C100.9562 (3)0.3627 (4)0.6735 (2)0.0806 (10)
H10A1.02800.40500.70730.097*
C110.9293 (5)0.3740 (6)0.5890 (3)0.1074 (15)
H11A0.98380.42490.56690.129*
C120.8256 (6)0.3131 (7)0.5371 (3)0.1167 (17)
H12A0.80900.32180.48030.140*
C130.7459 (4)0.2383 (5)0.5709 (3)0.0997 (14)
H13A0.67440.19650.53630.120*
C140.7697 (3)0.2240 (4)0.6550 (2)0.0766 (9)
H14A0.71500.17170.67640.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S20.0998 (8)0.1138 (8)0.0625 (6)0.0053 (5)0.0162 (5)0.0036 (5)
O10.0771 (16)0.0794 (14)0.0594 (13)0.0076 (10)0.0311 (12)0.0051 (9)
N10.0636 (17)0.0670 (14)0.0627 (15)0.0058 (12)0.0270 (14)0.0015 (11)
N20.0631 (18)0.0750 (15)0.0545 (14)0.0025 (12)0.0245 (14)0.0021 (11)
N30.0626 (17)0.0918 (18)0.0619 (16)0.0176 (12)0.0255 (14)0.0119 (13)
C10.071 (2)0.0719 (19)0.0627 (19)0.0063 (14)0.0268 (18)0.0024 (13)
C20.068 (2)0.0644 (18)0.0607 (18)0.0118 (14)0.0297 (17)0.0054 (13)
C30.063 (2)0.0739 (19)0.065 (2)0.0117 (14)0.030 (2)0.0079 (15)
C40.076 (11)0.096 (9)0.093 (13)0.001 (6)0.010 (8)0.011 (6)
C50.092 (12)0.080 (6)0.099 (9)0.013 (5)0.059 (9)0.012 (5)
C60.067 (9)0.082 (6)0.105 (11)0.002 (5)0.002 (7)0.002 (6)
S10.071 (2)0.1025 (17)0.0634 (11)0.0140 (14)0.0171 (11)0.0039 (14)
S1A0.082 (4)0.087 (3)0.082 (3)0.006 (3)0.049 (3)0.006 (3)
C6A0.044 (17)0.13 (3)0.20 (3)0.002 (14)0.03 (2)0.03 (2)
C5A0.077 (18)0.18 (3)0.09 (2)0.040 (14)0.050 (15)0.024 (17)
C4A0.044 (12)0.130 (18)0.11 (3)0.011 (9)0.041 (15)0.031 (12)
C70.070 (2)0.0747 (19)0.067 (2)0.0020 (15)0.0258 (17)0.0004 (15)
C80.077 (3)0.115 (3)0.080 (2)0.026 (2)0.020 (2)0.016 (2)
C90.065 (2)0.0672 (17)0.0646 (19)0.0082 (14)0.0283 (17)0.0042 (13)
C100.088 (3)0.078 (2)0.090 (3)0.0077 (17)0.048 (2)0.0057 (17)
C110.147 (4)0.096 (3)0.109 (4)0.034 (3)0.082 (3)0.026 (3)
C120.175 (5)0.110 (4)0.072 (3)0.050 (3)0.049 (3)0.013 (2)
C130.117 (4)0.099 (3)0.072 (2)0.027 (2)0.014 (3)0.010 (2)
C140.080 (2)0.080 (2)0.070 (2)0.0079 (17)0.024 (2)0.0098 (16)
Geometric parameters (Å, º) top
S2—C11.632 (3)C6A—C5A1.35 (6)
O1—C21.364 (3)C6A—H6AA0.9300
O1—C11.382 (4)C5A—C4A1.63 (5)
N1—C21.283 (4)C5A—H5AA0.9300
N1—N21.385 (3)C4A—H4AA0.9300
N2—C11.339 (4)C7—H7A0.9700
N2—C71.464 (4)C7—H7B0.9700
N3—C91.388 (4)C8—H8A0.9600
N3—C71.423 (4)C8—H8B0.9600
N3—C81.455 (4)C8—H8C0.9600
C2—C31.432 (4)C9—C101.386 (4)
C3—C41.388 (19)C9—C141.400 (5)
C3—C4A1.39 (3)C10—C111.379 (5)
C3—S1A1.641 (12)C10—H10A0.9300
C3—S11.663 (6)C11—C121.360 (6)
C4—C51.55 (3)C11—H11A0.9300
C4—H4A0.9300C12—C131.377 (6)
C5—C61.32 (3)C12—H12A0.9300
C5—H5A0.9300C13—C141.378 (5)
C6—S11.641 (19)C13—H13A0.9300
C6—H6A0.9300C14—H14A0.9300
S1A—C6A1.49 (5)
C2—O1—C1106.2 (2)C6A—C5A—C4A107 (3)
C2—N1—N2103.6 (2)C6A—C5A—H5AA126.3
C1—N2—N1112.3 (3)C4A—C5A—H5AA126.3
C1—N2—C7127.7 (3)C3—C4A—C5A102 (2)
N1—N2—C7119.9 (2)C3—C4A—H4AA128.9
C9—N3—C7122.2 (3)C5A—C4A—H4AA128.9
C9—N3—C8120.1 (3)N3—C7—N2112.9 (3)
C7—N3—C8116.7 (3)N3—C7—H7A109.0
N2—C1—O1104.5 (3)N2—C7—H7A109.0
N2—C1—S2131.6 (3)N3—C7—H7B109.0
O1—C1—S2123.9 (2)N2—C7—H7B109.0
N1—C2—O1113.4 (3)H7A—C7—H7B107.8
N1—C2—C3127.3 (3)N3—C8—H8A109.5
O1—C2—C3119.3 (3)N3—C8—H8B109.5
C4—C3—C4A116.9 (19)H8A—C8—H8B109.5
C4—C3—C2124.6 (12)N3—C8—H8C109.5
C4A—C3—C2118.5 (15)H8A—C8—H8C109.5
C4A—C3—S1A115.5 (15)H8B—C8—H8C109.5
C2—C3—S1A126.0 (6)C10—C9—N3121.1 (3)
C4—C3—S1114.3 (12)C10—C9—C14118.1 (3)
C2—C3—S1121.0 (3)N3—C9—C14120.7 (3)
S1A—C3—S1112.7 (6)C11—C10—C9120.1 (4)
C3—C4—C5106.2 (16)C11—C10—H10A119.9
C3—C4—H4A126.9C9—C10—H10A119.9
C5—C4—H4A126.9C12—C11—C10122.1 (4)
C6—C5—C4110.7 (15)C12—C11—H11A119.0
C6—C5—H5A124.7C10—C11—H11A119.0
C4—C5—H5A124.7C11—C12—C13118.2 (4)
C5—C6—S1115.3 (13)C11—C12—H12A120.9
C5—C6—H6A122.4C13—C12—H12A120.9
S1—C6—H6A122.4C12—C13—C14121.4 (5)
C6—S1—C393.3 (8)C12—C13—H13A119.3
C6A—S1A—C396.2 (18)C14—C13—H13A119.3
C5A—C6A—S1A118 (3)C13—C14—C9120.1 (4)
C5A—C6A—H6AA120.8C13—C14—H14A120.0
S1A—C6A—H6AA120.8C9—C14—H14A120.0
C2—N1—N2—C10.7 (3)C2—C3—S1—C6175.1 (6)
C2—N1—N2—C7179.4 (2)S1A—C3—S1—C60.3 (8)
N1—N2—C1—O11.3 (3)C4A—C3—S1A—C6A3 (3)
C7—N2—C1—O1178.9 (3)C2—C3—S1A—C6A179.0 (19)
N1—N2—C1—S2177.7 (2)S1—C3—S1A—C6A6 (2)
C7—N2—C1—S22.1 (5)C3—S1A—C6A—C5A6 (4)
C2—O1—C1—N21.3 (3)S1A—C6A—C5A—C4A7 (5)
C2—O1—C1—S2177.8 (2)C4—C3—C4A—C5A4 (3)
N2—N1—C2—O10.2 (3)C2—C3—C4A—C5A177.8 (14)
N2—N1—C2—C3178.2 (3)S1A—C3—C4A—C5A1 (3)
C1—O1—C2—N11.0 (3)S1—C3—C4A—C5A52 (19)
C1—O1—C2—C3177.6 (3)C6A—C5A—C4A—C34 (4)
N1—C2—C3—C4176.5 (11)C9—N3—C7—N2106.3 (3)
O1—C2—C3—C45.2 (11)C8—N3—C7—N285.5 (4)
N1—C2—C3—C4A2.0 (17)C1—N2—C7—N3107.6 (3)
O1—C2—C3—C4A176.4 (17)N1—N2—C7—N372.2 (3)
N1—C2—C3—S1A179.8 (5)C7—N3—C9—C10154.3 (3)
O1—C2—C3—S1A1.9 (6)C8—N3—C9—C1013.5 (4)
N1—C2—C3—S16.1 (5)C7—N3—C9—C1426.8 (4)
O1—C2—C3—S1172.2 (3)C8—N3—C9—C14165.3 (3)
C4A—C3—C4—C58 (2)N3—C9—C10—C11178.1 (3)
C2—C3—C4—C5173.5 (10)C14—C9—C10—C110.8 (5)
S1A—C3—C4—C555 (29)C9—C10—C11—C120.3 (6)
S1—C3—C4—C54.1 (17)C10—C11—C12—C130.1 (6)
C3—C4—C5—C64 (2)C11—C12—C13—C140.3 (6)
C4—C5—C6—S13 (2)C12—C13—C14—C90.8 (5)
C5—C6—S1—C30.2 (15)C10—C9—C14—C131.0 (5)
C4—C3—S1—C62.6 (12)N3—C9—C14—C13177.9 (3)
C4A—C3—S1—C6129 (20)

Experimental details

Crystal data
Chemical formulaC14H13N3OS2
Mr303.39
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)11.9682 (8), 7.4526 (5), 17.0749 (14)
β (°) 108.072 (6)
V3)1447.85 (18)
Z4
Radiation typeCu Kα
µ (mm1)3.32
Crystal size (mm)0.92 × 0.16 × 0.09
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.150, 0.754
No. of measured, independent and
observed [I > 2σ(I)] reflections
10021, 2676, 1516
Rint0.066
(sin θ/λ)max1)0.608
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.156, 0.97
No. of reflections2676
No. of parameters220
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.20

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

AAEE, MAAO and HAG thank the Deanship of Scientific Research and the Research Center of the College of Pharmacy, King Saud University, for financial support. HKF and TSC thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSC also thanks the Malaysian Government and USM for the award of a research fellowship.

References

First citationAl-Deeb, O. A., Al-Omar, M. A., El-Brollosy, N. R., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2006). Arzneim. Forsch. Drug. Res. 56, 40–47.  CAS Google Scholar
First citationAl-Omar, M. A. (2010). Molecules, 15, 502–514.  Web of Science CAS PubMed Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. A. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107–5113.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEl-Emam, A. A., Kadi, A. A., El-Brollosy, N. R., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o795.  CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Arshad, S., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2011). Acta Cryst. E67, o3372.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKadi, A. A., El-Brollosy, N. R., Al-Deeb, O. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2007). Eur. J. Med. Chem. 42, 235–242.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNavarrete-Vázquez, G., Molina-Salinas, G. M., Duarte-Fajardo, Z. V., Vargas-Villarreal, J., Estrada-Soto, S. & Gonzàlez-Salazar, F. (2007). Bioorg. Med. Chem. 15, 5502–5508.  Web of Science PubMed Google Scholar
First citationPadmavathi, V., Reddy, G. S., Padmaja, A., Kondaiah, P. & Shazia, A. (2009). Eur. J. Med. Chem. 44, 2106–2112.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1345-o1346
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds