organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1436-o1437

3-[(1-Hy­dr­oxy-1-phenyl­propan-2-yl)amino]-5,5-di­methyl­cyclo­hex-2-enone

aMedicinal, Aromatic and Poisonous Plants Research Center (MAPPRC), College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia, bDepartment of Pharmacognosy, College of Pharmacy, King Saud University, Saudi Arabia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 4 April 2012; accepted 11 April 2012; online 18 April 2012)

The asymmetric unit of the title compound, C17H23NO2, consists of two crystallographically independent mol­ecules (A and B). The cyclo­hexene rings in both mol­ecules adopt an envelope conformation. In the crystal, independent mol­ecules, A and B, are each linked by inter­molecular bifurcated (N,O)—H⋯O hydrogen bonds, generating R21(7) ring motifs and forming infinite chains along the b axis.

Related literature

For cyclo­hex-2-enone derivatives and their biological activity, see: Ghorab et al. (2009[Ghorab, M. M., Ragab, F. A. & Hamed, M. M. (2009). Eur. J. Med. Chem. 44, 4211-4217.], 2010[Ghorab, M. M., Ragab, F. A., Heiba, H. I., Arafa, R. K. & El-Hossary, E. M. (2010). Eur. J. Med. Chem. 45, 3677-3684.]); Ghorab, Al-Said & El-Hossary (2011[Ghorab, M. M., Al-Said, M. S. & El-Hossary, E. M. (2011). J. Heterocycl. Chem. 48, 563-571.]); Aghil et al. (1992[Aghil, O., Bibby, M. C., Carrington, S. J., Douglas, K. T., Phillips, R. M. & Shing, T. K. M. (1992). Anti-Cancer Drug Des. 7, 67-82.]); Li & Strobel (2001[Li, J. Y. & Strobel, G. A. (2001). Phytochemistry, 57, 261-265.]). For the biological activity of phenyl­propan-2-yl­amino, see: Zhang et al. (2011[Zhang, X., Zhang, J., Zhang, L., Feng, J., Xu, Y., Yuan, Y., Fang, H. & Xu, W. (2011). Bioorg. Med. Chem. 19, 6015-6025.]). For the synthesis of biologically active heterocyclic compounds, see: Ghorab et al. (2012[Ghorab, M. M., Ragab, F. A., Heiba, H. I., Agha, H. M. & Nissan, Y. M. (2012). Arch. Pharm. Res. 35, 59-68.]); Ghorab, Ragab et al. (2011[Ghorab, M. M., Ragab, F. A., Heiba, H. I., El-Gazzar, M. G. & El-Gazzar, M. G. (2011). Acta Pharm. 61, 415-425.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C17H23NO2

  • Mr = 273.36

  • Monoclinic, P 21

  • a = 10.4357 (6) Å

  • b = 12.4953 (8) Å

  • c = 12.8706 (5) Å

  • β = 107.019 (3)°

  • V = 1604.79 (15) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.58 mm−1

  • T = 296 K

  • 0.80 × 0.59 × 0.03 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.654, Tmax = 0.983

  • 8364 measured reflections

  • 3114 independent reflections

  • 2426 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.150

  • S = 1.08

  • 3114 reflections

  • 379 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1B—H1NB⋯O1Bi 0.82 (6) 2.12 (6) 2.874 (4) 155 (5)
O2B—H1OB⋯O1Bi 0.96 (7) 1.75 (7) 2.701 (4) 170 (6)
N1A—H1NA⋯O1Aii 0.85 (6) 2.04 (6) 2.853 (4) 160 (5)
O2A—H1OA⋯O1Aii 0.91 (7) 1.88 (7) 2.724 (4) 155 (6)
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z]; (ii) [-x+1, y-{\script{1\over 2}}, -z+2].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

From literature survey it was found that cyclohex-2-enone derivatives are useful in the synthesis of heterocyclic compounds, especially quinoline derivatives (Ghorab et al., 2009, 2010; Ghorab, Al-Said & El-Hossary, 2011). Cyclohex-2-enone derivatives also exhibit a wide range of biological activities such as anticancer (Aghil et al., 1992) and antimicrobial (Li & Strobel, 2001) activities. On the other hand, compounds having the phenylpropan-2-ylamino moiety are also known to possess a wide range of biological and pharmacological activities, especially anticancer activity (Zhang et al., 2011). In the light of these facts and as a continuation of our efforts towards synthesizing biologically active heterocyclic compounds (Ghorab, Ragab et al., 2011; Ghorab et al., 2012), we prepared a novel cyclohex-2-enone carrying a biologically active phenylpropan-2-ylamino moiety to evaluate its anticancer activity.

The asymmetric unit of the title compound consists of two crystallographically independent molecules (A and B) as shown in Fig. 1. In both molecules, the cyclohexene rings adopt an envelope conformation with puckering parameters (Cremer & Pople, 1975), Q = 0.436 (5) Å, θ = 128.6 (7)° and ϕ = 45.0 (8)° in molecule A [Q = 0.448 (4) Å, θ = 124.1 (5)° and ϕ = 54.4 (6)° in molecule B]. The distance of atom C5 from the mean plane of C1–C4/C6 is 0.5989 (68) Å in molecule A, whereas in molecule B, the corresponding distance is 0.6264 (51) Å. In molecule A, the mean plane of O1/C1–C4/C6 [maximum deviation = 0.0704 (30) Å at atom C6] forms dihedral angle of 61.13 (18)° with the terminal C9–C14 benzene ring, whereas in molecule B, the corresponding maximum deviation and dihedral angle are 0.0261 (27) Å at atom C1 and 56.20 (16)°, respectively.

In the crystal (Fig. 2), molecules are linked by intermolecular bifurcated N1A—H1NA···O1A, N1B—H1NB···O1B, O2A—H1OA···O1A and O2B—H1OB···O1B hydrogen bonds (Table 1), generating R21(7) ring motifs (Bernstein et al., 1995) and forming infinite chains along the b axis.

Related literature top

For cyclohex-2-enone derivatives and their biological activity, see: Ghorab et al. (2009, 2010); Ghorab, Al-Said & El-Hossary (2011); Aghil et al. (1992); Li & Strobel (2001). For the biological activity of phenylpropan-2-ylamino, see: Zhang et al. (2011). For the synthesis of biologically active heterocyclic compounds, see: Ghorab et al. (2012); Ghorab, Ragab et al. (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995). For ring conformations, see: Cremer & Pople (1975).

Experimental top

A mixture of 5,5-dimethylcyclohexane-1,3-dione (1.4 g, 0.01 mole) and 2-amino-1-phenylpropan-1-ol (1.51 g, 0.01 mole) in dry dimethylformamide (10 ml) containing triethylamine (3 drops) as catalyst was refluxed for 8 h. The obtained solid was recrystallized from ethanol to give the title compound. Single crystals which are suitable for an X-ray structural analysis were obtained by slow evaporation from ethanol at room temperature.

Refinement top

Atoms H1NA, H1NB, H1OA and H1OB were located from difference fourier map and refined using a riding model with Uiso(H) = 1.5Ueq(N or O), [N—H = 0.82 (6) and 0.85 (6) Å; O—H = 0.96 (6) and 0.91 (7) Å]. The remaining H atoms were positioned geometrically (C—H = 0.93, 0.96, 0.97 and 0.98 Å) and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl groups. An outliner (1 0 0) was omitted. The absolute configuration cannot be determined because the anomalous dispersions are insufficient although Cu radiation was used. The crystal is not an inversion twin. In the final refinement, 1395 Friedel pairs were merged.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A part of crystal packing of the title compound. The dashed lines represent the hydrogen bonds.
3-[(1-Hydroxy-1-phenylpropan-2-yl)amino]-5,5-dimethylcyclohex-2-enone top
Crystal data top
C17H23NO2F(000) = 592
Mr = 273.36Dx = 1.131 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ybCell parameters from 877 reflections
a = 10.4357 (6) Åθ = 3.6–67.1°
b = 12.4953 (8) ŵ = 0.58 mm1
c = 12.8706 (5) ÅT = 296 K
β = 107.019 (3)°Plate, colourless
V = 1604.79 (15) Å30.80 × 0.59 × 0.03 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3114 independent reflections
Radiation source: fine-focus sealed tube2426 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ϕ and ω scansθmax = 70.0°, θmin = 3.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1212
Tmin = 0.654, Tmax = 0.983k = 1413
8364 measured reflectionsl = 1514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0759P)2 + 0.0565P]
where P = (Fo2 + 2Fc2)/3
3114 reflections(Δ/σ)max < 0.001
379 parametersΔρmax = 0.18 e Å3
1 restraintΔρmin = 0.17 e Å3
Crystal data top
C17H23NO2V = 1604.79 (15) Å3
Mr = 273.36Z = 4
Monoclinic, P21Cu Kα radiation
a = 10.4357 (6) ŵ = 0.58 mm1
b = 12.4953 (8) ÅT = 296 K
c = 12.8706 (5) Å0.80 × 0.59 × 0.03 mm
β = 107.019 (3)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3114 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2426 reflections with I > 2σ(I)
Tmin = 0.654, Tmax = 0.983Rint = 0.051
8364 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0521 restraint
wR(F2) = 0.150H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.18 e Å3
3114 reflectionsΔρmin = 0.17 e Å3
379 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N1B0.9656 (3)0.7034 (2)0.0647 (2)0.0564 (7)
H1NB0.952 (5)0.639 (5)0.063 (4)0.085*
O1B1.0743 (4)0.9891 (2)0.1303 (2)0.0837 (9)
O2B0.8674 (3)0.6373 (2)0.2624 (2)0.0846 (9)
H1OB0.878 (6)0.582 (6)0.214 (5)0.127*
C1B0.9999 (4)0.7436 (2)0.0189 (2)0.0520 (7)
C2B1.0122 (4)0.8512 (3)0.0350 (3)0.0606 (9)
H2BA0.98900.89930.01160.073*
C3B1.0586 (4)0.8914 (3)0.1194 (3)0.0594 (8)
C4B1.0952 (4)0.8145 (3)0.1963 (3)0.0619 (8)
H4BA1.19040.79910.16960.074*
H4BB1.07850.84860.26680.074*
C5B1.0176 (3)0.7093 (3)0.2104 (2)0.0542 (7)
C6B1.0283 (4)0.6640 (3)0.0971 (3)0.0591 (8)
H6BA0.96620.60470.10510.071*
H6BB1.11800.63580.06590.071*
C7B0.9421 (4)0.7699 (3)0.1507 (2)0.0562 (8)
H7BA1.00480.83010.16190.067*
C8B0.9730 (4)0.7088 (3)0.2587 (3)0.0586 (8)
H8BA1.05520.66710.26800.070*
C9B0.9958 (4)0.7881 (3)0.3519 (2)0.0629 (9)
C10B1.1185 (5)0.8390 (4)0.3883 (3)0.0864 (12)
H10A1.18680.82010.35890.104*
C11B1.1415 (7)0.9165 (5)0.4665 (4)0.117 (2)
H11A1.22440.95040.48910.141*
C12B1.0439 (9)0.9441 (4)0.5110 (4)0.123 (3)
H12A1.05990.99670.56440.147*
C13B0.9188 (8)0.8938 (4)0.4771 (4)0.1056 (19)
H13A0.85150.91320.50730.127*
C14B0.8957 (5)0.8144 (3)0.3974 (3)0.0809 (12)
H14A0.81350.77950.37520.097*
C15B0.8015 (5)0.8165 (4)0.1162 (3)0.0850 (12)
H15A0.78450.84880.04580.127*
H15B0.79360.86960.16790.127*
H15C0.73750.76050.11310.127*
C16B1.0812 (5)0.6296 (4)0.2715 (4)0.0860 (13)
H16A1.07240.65620.34320.129*
H16B1.03660.56180.27650.129*
H16C1.17440.62090.23300.129*
C17B0.8726 (4)0.7259 (4)0.2740 (3)0.0769 (11)
H17A0.86730.75340.34470.115*
H17B0.83230.77600.23640.115*
H17C0.82580.65890.28130.115*
N1A0.4987 (3)0.9812 (3)0.9032 (2)0.0639 (8)
H1NA0.475 (5)0.916 (5)0.895 (4)0.096*
O1A0.5349 (4)1.2606 (2)1.1557 (2)0.0891 (10)
O2A0.5582 (4)0.8861 (2)0.7091 (2)0.0911 (10)
H1OA0.544 (6)0.830 (6)0.749 (5)0.137*
C1A0.4810 (4)1.0239 (3)0.9930 (3)0.0608 (8)
C2A0.5195 (4)1.1260 (3)1.0280 (3)0.0654 (9)
H2AA0.56311.16750.98870.078*
C3A0.4953 (5)1.1699 (3)1.1210 (3)0.0691 (10)
C4A0.4101 (5)1.1066 (3)1.1752 (4)0.0796 (12)
H4AA0.31671.12351.14040.095*
H4AB0.43131.12871.25060.095*
C5A0.4293 (4)0.9850 (3)1.1710 (3)0.0636 (9)
C6A0.4110 (5)0.9530 (3)1.0537 (3)0.0801 (11)
H6AA0.44360.88041.05260.096*
H6AB0.31590.95281.01540.096*
C7A0.5487 (4)1.0387 (3)0.8248 (3)0.0602 (8)
H7AA0.51301.11170.81910.072*
C8A0.4965 (4)0.9862 (3)0.7130 (3)0.0634 (9)
H8AA0.39970.97530.69680.076*
C9A0.5223 (4)1.0579 (3)0.6266 (3)0.0666 (10)
C10A0.4390 (6)1.1427 (4)0.5867 (4)0.0984 (14)
H10B0.36291.15360.60900.118*
C11A0.4696 (9)1.2140 (5)0.5108 (5)0.123 (2)
H11B0.41341.27150.48320.148*
C12A0.5814 (8)1.1977 (5)0.4787 (4)0.110 (2)
H12B0.60271.24510.43060.132*
C13A0.6602 (7)1.1139 (5)0.5162 (4)0.1065 (17)
H13B0.73521.10230.49270.128*
C14A0.6318 (6)1.0442 (4)0.5895 (3)0.0844 (12)
H14B0.68840.98620.61450.101*
C15A0.7007 (5)1.0462 (6)0.8609 (3)0.0994 (17)
H15E0.73171.05990.93760.149*
H15F0.72851.10340.82260.149*
H15G0.73790.98000.84530.149*
C16A0.5681 (5)0.9551 (4)1.2415 (4)0.0882 (12)
H16E0.58110.87941.23670.132*
H16F0.57710.97401.31560.132*
H16G0.63400.99281.21710.132*
C17A0.3260 (6)0.9282 (5)1.2138 (4)0.1088 (17)
H17E0.33200.85241.20420.163*
H17F0.23780.95251.17460.163*
H17D0.34290.94391.28960.163*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N1B0.084 (2)0.0409 (13)0.0474 (13)0.0020 (14)0.0233 (13)0.0002 (11)
O1B0.140 (3)0.0443 (14)0.0780 (16)0.0080 (15)0.0496 (17)0.0045 (12)
O2B0.138 (3)0.0543 (15)0.0801 (17)0.0153 (16)0.0614 (18)0.0080 (13)
C1B0.071 (2)0.0410 (15)0.0446 (14)0.0053 (15)0.0182 (14)0.0010 (13)
C2B0.094 (3)0.0399 (16)0.0526 (15)0.0081 (16)0.0291 (17)0.0021 (13)
C3B0.081 (2)0.0441 (17)0.0542 (16)0.0001 (16)0.0215 (16)0.0040 (14)
C4B0.078 (2)0.0589 (19)0.0542 (16)0.0002 (18)0.0268 (15)0.0031 (15)
C5B0.070 (2)0.0502 (16)0.0457 (14)0.0033 (16)0.0220 (14)0.0029 (13)
C6B0.082 (2)0.0437 (16)0.0536 (16)0.0120 (16)0.0234 (16)0.0020 (14)
C7B0.077 (2)0.0489 (17)0.0471 (15)0.0067 (16)0.0255 (15)0.0002 (13)
C8B0.078 (2)0.0496 (17)0.0538 (16)0.0051 (17)0.0286 (15)0.0057 (14)
C9B0.093 (3)0.0532 (18)0.0451 (15)0.0101 (19)0.0241 (16)0.0061 (14)
C10B0.094 (3)0.093 (3)0.065 (2)0.004 (3)0.012 (2)0.002 (2)
C11B0.166 (6)0.101 (4)0.065 (3)0.023 (4)0.004 (3)0.012 (3)
C12B0.228 (8)0.069 (3)0.051 (2)0.004 (4)0.010 (3)0.006 (2)
C13B0.191 (6)0.075 (3)0.072 (3)0.026 (4)0.071 (3)0.001 (2)
C14B0.125 (3)0.064 (2)0.070 (2)0.000 (2)0.054 (2)0.0018 (18)
C15B0.095 (3)0.093 (3)0.070 (2)0.030 (3)0.029 (2)0.010 (2)
C16B0.123 (4)0.075 (3)0.075 (2)0.000 (3)0.053 (2)0.015 (2)
C17B0.085 (3)0.083 (3)0.0574 (18)0.011 (2)0.0126 (17)0.0062 (19)
N1A0.093 (2)0.0469 (15)0.0562 (14)0.0041 (15)0.0290 (15)0.0062 (13)
O1A0.155 (3)0.0436 (14)0.0788 (16)0.0037 (16)0.0493 (18)0.0087 (12)
O2A0.169 (3)0.0426 (13)0.0803 (17)0.0055 (16)0.066 (2)0.0000 (12)
C1A0.081 (2)0.0493 (18)0.0541 (16)0.0017 (17)0.0226 (16)0.0055 (15)
C2A0.097 (3)0.0447 (17)0.0619 (19)0.0023 (18)0.0343 (18)0.0022 (14)
C3A0.103 (3)0.0435 (18)0.0631 (19)0.0125 (18)0.0273 (19)0.0019 (15)
C4A0.099 (3)0.073 (3)0.076 (2)0.011 (2)0.041 (2)0.0087 (19)
C5A0.072 (2)0.060 (2)0.0662 (19)0.0035 (18)0.0331 (18)0.0025 (16)
C6A0.105 (3)0.067 (2)0.077 (2)0.021 (2)0.041 (2)0.012 (2)
C7A0.082 (2)0.0480 (18)0.0529 (16)0.0019 (17)0.0239 (16)0.0034 (14)
C8A0.086 (2)0.0529 (18)0.0518 (16)0.0053 (18)0.0214 (16)0.0061 (15)
C9A0.095 (3)0.0534 (19)0.0435 (14)0.0072 (19)0.0079 (16)0.0027 (14)
C10A0.106 (3)0.083 (3)0.086 (3)0.012 (3)0.002 (3)0.018 (3)
C11A0.144 (6)0.081 (3)0.104 (4)0.000 (4)0.027 (4)0.032 (3)
C12A0.161 (6)0.085 (4)0.070 (3)0.027 (4)0.012 (3)0.018 (2)
C13A0.164 (5)0.088 (3)0.077 (3)0.025 (4)0.049 (3)0.005 (3)
C14A0.132 (4)0.067 (2)0.0611 (19)0.001 (2)0.040 (2)0.0031 (18)
C15A0.084 (3)0.155 (5)0.0532 (18)0.022 (3)0.0101 (18)0.007 (3)
C16A0.104 (3)0.080 (3)0.087 (3)0.009 (3)0.037 (2)0.012 (2)
C17A0.126 (4)0.115 (4)0.107 (3)0.027 (4)0.066 (3)0.010 (3)
Geometric parameters (Å, º) top
N1B—C1B1.327 (4)N1A—C1A1.334 (4)
N1B—C7B1.461 (4)N1A—C7A1.454 (4)
N1B—H1NB0.82 (6)N1A—H1NA0.85 (6)
O1B—C3B1.245 (4)O1A—C3A1.245 (5)
O2B—C8B1.430 (5)O2A—C8A1.414 (5)
O2B—H1OB0.96 (6)O2A—H1OA0.91 (7)
C1B—C2B1.373 (5)C1A—C2A1.374 (5)
C1B—C6B1.505 (4)C1A—C6A1.504 (5)
C2B—C3B1.406 (4)C2A—C3A1.405 (5)
C2B—H2BA0.9300C2A—H2AA0.9300
C3B—C4B1.506 (5)C3A—C4A1.505 (6)
C4B—C5B1.527 (5)C4A—C5A1.536 (6)
C4B—H4BA0.9700C4A—H4AA0.9700
C4B—H4BB0.9700C4A—H4AB0.9700
C5B—C17B1.510 (6)C5A—C16A1.514 (6)
C5B—C16B1.536 (5)C5A—C6A1.519 (5)
C5B—C6B1.538 (4)C5A—C17A1.522 (6)
C6B—H6BA0.9700C6A—H6AA0.9700
C6B—H6BB0.9700C6A—H6AB0.9700
C7B—C15B1.519 (6)C7A—C15A1.519 (6)
C7B—C8B1.535 (4)C7A—C8A1.530 (4)
C7B—H7BA0.9800C7A—H7AA0.9800
C8B—C9B1.520 (5)C8A—C9A1.512 (5)
C8B—H8BA0.9800C8A—H8AA0.9800
C9B—C14B1.378 (5)C9A—C10A1.371 (7)
C9B—C10B1.383 (6)C9A—C14A1.372 (6)
C10B—C11B1.367 (7)C10A—C11A1.426 (9)
C10B—H10A0.9300C10A—H10B0.9300
C11B—C12B1.351 (10)C11A—C12A1.362 (10)
C11B—H11A0.9300C11A—H11B0.9300
C12B—C13B1.398 (9)C12A—C13A1.331 (9)
C12B—H12A0.9300C12A—H12B0.9300
C13B—C14B1.397 (7)C13A—C14A1.379 (6)
C13B—H13A0.9300C13A—H13B0.9300
C14B—H14A0.9300C14A—H14B0.9300
C15B—H15A0.9600C15A—H15E0.9600
C15B—H15B0.9600C15A—H15F0.9600
C15B—H15C0.9600C15A—H15G0.9600
C16B—H16A0.9600C16A—H16E0.9600
C16B—H16B0.9600C16A—H16F0.9600
C16B—H16C0.9600C16A—H16G0.9600
C17B—H17A0.9600C17A—H17E0.9600
C17B—H17B0.9600C17A—H17F0.9600
C17B—H17C0.9600C17A—H17D0.9600
C1B—N1B—C7B123.0 (3)C1A—N1A—C7A125.0 (3)
C1B—N1B—H1NB116 (3)C1A—N1A—H1NA112 (3)
C7B—N1B—H1NB121 (3)C7A—N1A—H1NA123 (3)
C8B—O2B—H1OB101 (4)C8A—O2A—H1OA121 (4)
N1B—C1B—C2B123.5 (3)N1A—C1A—C2A123.6 (3)
N1B—C1B—C6B116.4 (3)N1A—C1A—C6A115.2 (3)
C2B—C1B—C6B120.1 (3)C2A—C1A—C6A121.1 (3)
C1B—C2B—C3B122.4 (3)C1A—C2A—C3A122.2 (3)
C1B—C2B—H2BA118.8C1A—C2A—H2AA118.9
C3B—C2B—H2BA118.8C3A—C2A—H2AA118.9
O1B—C3B—C2B121.6 (3)O1A—C3A—C2A122.6 (4)
O1B—C3B—C4B119.0 (3)O1A—C3A—C4A119.4 (3)
C2B—C3B—C4B119.4 (3)C2A—C3A—C4A117.9 (3)
C3B—C4B—C5B113.5 (3)C3A—C4A—C5A113.7 (3)
C3B—C4B—H4BA108.9C3A—C4A—H4AA108.8
C5B—C4B—H4BA108.9C5A—C4A—H4AA108.8
C3B—C4B—H4BB108.9C3A—C4A—H4AB108.8
C5B—C4B—H4BB108.9C5A—C4A—H4AB108.8
H4BA—C4B—H4BB107.7H4AA—C4A—H4AB107.7
C17B—C5B—C4B111.0 (3)C16A—C5A—C6A110.6 (4)
C17B—C5B—C16B109.0 (3)C16A—C5A—C17A108.8 (4)
C4B—C5B—C16B109.0 (3)C6A—C5A—C17A109.9 (4)
C17B—C5B—C6B110.4 (3)C16A—C5A—C4A109.5 (4)
C4B—C5B—C6B108.4 (3)C6A—C5A—C4A108.4 (3)
C16B—C5B—C6B108.9 (3)C17A—C5A—C4A109.6 (4)
C1B—C6B—C5B114.6 (3)C1A—C6A—C5A115.0 (3)
C1B—C6B—H6BA108.6C1A—C6A—H6AA108.5
C5B—C6B—H6BA108.6C5A—C6A—H6AA108.5
C1B—C6B—H6BB108.6C1A—C6A—H6AB108.5
C5B—C6B—H6BB108.6C5A—C6A—H6AB108.5
H6BA—C6B—H6BB107.6H6AA—C6A—H6AB107.5
N1B—C7B—C15B111.0 (3)N1A—C7A—C15A111.9 (3)
N1B—C7B—C8B111.5 (3)N1A—C7A—C8A109.8 (3)
C15B—C7B—C8B112.6 (3)C15A—C7A—C8A111.5 (3)
N1B—C7B—H7BA107.2N1A—C7A—H7AA107.8
C15B—C7B—H7BA107.2C15A—C7A—H7AA107.8
C8B—C7B—H7BA107.2C8A—C7A—H7AA107.8
O2B—C8B—C9B108.9 (3)O2A—C8A—C9A108.5 (3)
O2B—C8B—C7B112.4 (3)O2A—C8A—C7A111.9 (3)
C9B—C8B—C7B109.4 (3)C9A—C8A—C7A110.2 (3)
O2B—C8B—H8BA108.7O2A—C8A—H8AA108.7
C9B—C8B—H8BA108.7C9A—C8A—H8AA108.7
C7B—C8B—H8BA108.7C7A—C8A—H8AA108.7
C14B—C9B—C10B119.2 (4)C10A—C9A—C14A117.9 (4)
C14B—C9B—C8B121.8 (4)C10A—C9A—C8A120.3 (4)
C10B—C9B—C8B118.8 (3)C14A—C9A—C8A121.8 (4)
C11B—C10B—C9B121.4 (5)C9A—C10A—C11A119.6 (6)
C11B—C10B—H10A119.3C9A—C10A—H10B120.2
C9B—C10B—H10A119.3C11A—C10A—H10B120.2
C12B—C11B—C10B120.1 (6)C12A—C11A—C10A119.9 (6)
C12B—C11B—H11A119.9C12A—C11A—H11B120.1
C10B—C11B—H11A119.9C10A—C11A—H11B120.1
C11B—C12B—C13B120.2 (5)C13A—C12A—C11A120.1 (5)
C11B—C12B—H12A119.9C13A—C12A—H12B120.0
C13B—C12B—H12A119.9C11A—C12A—H12B120.0
C14B—C13B—C12B119.6 (5)C12A—C13A—C14A120.8 (6)
C14B—C13B—H13A120.2C12A—C13A—H13B119.6
C12B—C13B—H13A120.2C14A—C13A—H13B119.6
C9B—C14B—C13B119.5 (5)C9A—C14A—C13A121.8 (5)
C9B—C14B—H14A120.3C9A—C14A—H14B119.1
C13B—C14B—H14A120.3C13A—C14A—H14B119.1
C7B—C15B—H15A109.5C7A—C15A—H15E109.5
C7B—C15B—H15B109.5C7A—C15A—H15F109.5
H15A—C15B—H15B109.5H15E—C15A—H15F109.5
C7B—C15B—H15C109.5C7A—C15A—H15G109.5
H15A—C15B—H15C109.5H15E—C15A—H15G109.5
H15B—C15B—H15C109.5H15F—C15A—H15G109.5
C5B—C16B—H16A109.5C5A—C16A—H16E109.5
C5B—C16B—H16B109.5C5A—C16A—H16F109.5
H16A—C16B—H16B109.5H16E—C16A—H16F109.5
C5B—C16B—H16C109.5C5A—C16A—H16G109.5
H16A—C16B—H16C109.5H16E—C16A—H16G109.5
H16B—C16B—H16C109.5H16F—C16A—H16G109.5
C5B—C17B—H17A109.5C5A—C17A—H17E109.5
C5B—C17B—H17B109.5C5A—C17A—H17F109.5
H17A—C17B—H17B109.5H17E—C17A—H17F109.5
C5B—C17B—H17C109.5C5A—C17A—H17D109.5
H17A—C17B—H17C109.5H17E—C17A—H17D109.5
H17B—C17B—H17C109.5H17F—C17A—H17D109.5
C7B—N1B—C1B—C2B2.3 (6)C7A—N1A—C1A—C2A6.1 (6)
C7B—N1B—C1B—C6B176.5 (3)C7A—N1A—C1A—C6A172.2 (4)
N1B—C1B—C2B—C3B175.0 (4)N1A—C1A—C2A—C3A177.8 (4)
C6B—C1B—C2B—C3B3.8 (6)C6A—C1A—C2A—C3A0.4 (6)
C1B—C2B—C3B—O1B177.1 (4)C1A—C2A—C3A—O1A176.9 (4)
C1B—C2B—C3B—C4B0.6 (6)C1A—C2A—C3A—C4A7.3 (6)
O1B—C3B—C4B—C5B153.9 (4)O1A—C3A—C4A—C5A149.1 (4)
C2B—C3B—C4B—C5B28.3 (5)C2A—C3A—C4A—C5A35.0 (6)
C3B—C4B—C5B—C17B70.8 (4)C3A—C4A—C5A—C16A68.4 (4)
C3B—C4B—C5B—C16B169.0 (3)C3A—C4A—C5A—C6A52.3 (5)
C3B—C4B—C5B—C6B50.6 (4)C3A—C4A—C5A—C17A172.3 (4)
N1B—C1B—C6B—C5B159.0 (3)N1A—C1A—C6A—C5A161.5 (4)
C2B—C1B—C6B—C5B22.1 (5)C2A—C1A—C6A—C5A20.2 (6)
C17B—C5B—C6B—C1B73.9 (4)C16A—C5A—C6A—C1A75.3 (5)
C4B—C5B—C6B—C1B47.9 (4)C17A—C5A—C6A—C1A164.6 (4)
C16B—C5B—C6B—C1B166.4 (3)C4A—C5A—C6A—C1A44.8 (5)
C1B—N1B—C7B—C15B81.9 (4)C1A—N1A—C7A—C15A82.0 (5)
C1B—N1B—C7B—C8B151.7 (3)C1A—N1A—C7A—C8A153.6 (4)
N1B—C7B—C8B—O2B78.8 (4)N1A—C7A—C8A—O2A71.3 (4)
C15B—C7B—C8B—O2B46.7 (4)C15A—C7A—C8A—O2A53.3 (4)
N1B—C7B—C8B—C9B160.0 (3)N1A—C7A—C8A—C9A167.8 (3)
C15B—C7B—C8B—C9B74.5 (4)C15A—C7A—C8A—C9A67.6 (5)
O2B—C8B—C9B—C14B25.7 (5)O2A—C8A—C9A—C10A157.2 (4)
C7B—C8B—C9B—C14B97.6 (4)C7A—C8A—C9A—C10A80.0 (5)
O2B—C8B—C9B—C10B157.6 (4)O2A—C8A—C9A—C14A26.0 (5)
C7B—C8B—C9B—C10B79.2 (4)C7A—C8A—C9A—C14A96.9 (4)
C14B—C9B—C10B—C11B1.5 (7)C14A—C9A—C10A—C11A1.3 (7)
C8B—C9B—C10B—C11B175.3 (4)C8A—C9A—C10A—C11A175.7 (4)
C9B—C10B—C11B—C12B0.8 (8)C9A—C10A—C11A—C12A0.2 (8)
C10B—C11B—C12B—C13B0.2 (8)C10A—C11A—C12A—C13A1.6 (9)
C11B—C12B—C13B—C14B0.5 (8)C11A—C12A—C13A—C14A1.5 (9)
C10B—C9B—C14B—C13B1.7 (6)C10A—C9A—C14A—C13A1.4 (7)
C8B—C9B—C14B—C13B175.0 (4)C8A—C9A—C14A—C13A175.5 (4)
C12B—C13B—C14B—C9B1.2 (7)C12A—C13A—C14A—C9A0.0 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1B—H1NB···O1Bi0.82 (6)2.12 (6)2.874 (4)155 (5)
O2B—H1OB···O1Bi0.96 (7)1.75 (7)2.701 (4)170 (6)
N1A—H1NA···O1Aii0.85 (6)2.04 (6)2.853 (4)160 (5)
O2A—H1OA···O1Aii0.91 (7)1.88 (7)2.724 (4)155 (6)
Symmetry codes: (i) x+2, y1/2, z; (ii) x+1, y1/2, z+2.

Experimental details

Crystal data
Chemical formulaC17H23NO2
Mr273.36
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)10.4357 (6), 12.4953 (8), 12.8706 (5)
β (°) 107.019 (3)
V3)1604.79 (15)
Z4
Radiation typeCu Kα
µ (mm1)0.58
Crystal size (mm)0.80 × 0.59 × 0.03
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.654, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
8364, 3114, 2426
Rint0.051
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.150, 1.08
No. of reflections3114
No. of parameters379
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.17

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1B—H1NB···O1Bi0.82 (6)2.12 (6)2.874 (4)155 (5)
O2B—H1OB···O1Bi0.96 (7)1.75 (7)2.701 (4)170 (6)
N1A—H1NA···O1Aii0.85 (6)2.04 (6)2.853 (4)160 (5)
O2A—H1OA···O1Aii0.91 (7)1.88 (7)2.724 (4)155 (6)
Symmetry codes: (i) x+2, y1/2, z; (ii) x+1, y1/2, z+2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

MMG, MSAS and SIA are grateful for the sponsorship of the Research Center, College of Pharmacy and the Deanship of Scientific Research, King Saud University, Riyadh, Saudia Arabia. HKF and TSC thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSC also thanks the Malaysian Government and USM for the award of research fellowship.

References

First citationAghil, O., Bibby, M. C., Carrington, S. J., Douglas, K. T., Phillips, R. M. & Shing, T. K. M. (1992). Anti-Cancer Drug Des. 7, 67–82.  PubMed CAS Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationGhorab, M. M., Al-Said, M. S. & El-Hossary, E. M. (2011). J. Heterocycl. Chem. 48, 563–571.  Web of Science CrossRef CAS Google Scholar
First citationGhorab, M. M., Ragab, F. A. & Hamed, M. M. (2009). Eur. J. Med. Chem. 44, 4211–4217.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGhorab, M. M., Ragab, F. A., Heiba, H. I., Agha, H. M. & Nissan, Y. M. (2012). Arch. Pharm. Res. 35, 59–68.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGhorab, M. M., Ragab, F. A., Heiba, H. I., Arafa, R. K. & El-Hossary, E. M. (2010). Eur. J. Med. Chem. 45, 3677–3684.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGhorab, M. M., Ragab, F. A., Heiba, H. I., El-Gazzar, M. G. & El-Gazzar, M. G. (2011). Acta Pharm. 61, 415–425.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLi, J. Y. & Strobel, G. A. (2001). Phytochemistry, 57, 261–265.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, X., Zhang, J., Zhang, L., Feng, J., Xu, Y., Yuan, Y., Fang, H. & Xu, W. (2011). Bioorg. Med. Chem. 19, 6015–6025.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1436-o1437
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds