organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1517

(E)-N′-[3-(4-Chloro­benzo­yl­oxy)benzyl­­idene]pyridine-4-carbohydrazide acetic acid monosolvate monohydrate

aCollege of Sciences, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
*Correspondence e-mail: zhifan@tust.edu.cn

(Received 10 April 2012; accepted 19 April 2012; online 25 April 2012)

In the Schiff base mol­ecule of the title compound, C20H14ClN3O3·CH3COOH·H2O, the central benzene ring makes dihedral angles of 36.26 (7) and 27.59 (8)°, respectively, with the terminal chloro­phenyl and pyridine rings. In the crystal, the three components are linked by O—H⋯O, N—H⋯O, O—H⋯N and C—H⋯O hydrogen bonds into a double-tape structure along the a axis.

Related literature

For general background to the use of Schiff base derivatives in the development of protein and enzyme mimics, see: Santos et al. (2001[Santos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838-844.]). For closely related crystal structures, see: Diao et al. (2007[Diao, C.-H., Fan, Z. & Chen, X. (2007). Acta Cryst. C63, o717-o719.]); Peralta et al. (2007[Peralta, M. A., Souza, M. N. V. de, Wardell, S. M. S. V., Wardell, J. L., Low, J. N. & Glidewell, C. (2007). Acta Cryst. C63, o68-o72.]); de Souza et al. (2007[Souza, M. V. N. de, Wardell, S. M. S. V., Wardell, J. L., Low, J. N. & Glidewell, C. (2007). Acta Cryst. C63, o166-o168.]); Wardell et al. (2005[Wardell, S. M. S. V., Souza, M. V. N. de, Wardell, J. L., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o683-o689.]). For reference bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C20H14ClN3O3·C2H4O2·H2O

  • Mr = 457.86

  • Triclinic, [P \overline 1]

  • a = 6.6666 (15) Å

  • b = 7.5437 (17) Å

  • c = 24.781 (6) Å

  • α = 81.526 (4)°

  • β = 82.969 (4)°

  • γ = 66.632 (4)°

  • V = 1128.7 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 294 K

  • 0.18 × 0.16 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.928, Tmax = 0.979

  • 5755 measured reflections

  • 3936 independent reflections

  • 2501 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.119

  • S = 1.03

  • 3936 reflections

  • 298 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6A⋯O3 0.86 (3) 2.00 (3) 2.843 (2) 166 (2)
O6—H6B⋯O4i 0.86 (2) 1.98 (2) 2.812 (3) 165 (3)
O5—H5A⋯N3ii 0.82 1.85 2.646 (3) 164
N2—H2⋯O6iii 0.86 2.04 2.879 (2) 164
C14—H14⋯O6iii 0.93 2.59 3.367 (4) 141
C17—H17⋯O6iii 0.93 2.50 3.331 (3) 149
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) x, y, z-1; (iii) x+1, y, z.

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Many Schiff base derivatives have been synthesized and found to exhibit important pharmacological properties, such as antibacterial, antitumor and antitoxic activities (Santos et al., 2001). Among the large number of the compounds, isonicotinohydrazide forms a variety of Schiff bases with aldehydes, and the synthesis and crystal structures of some of them have been reported (Wardell et al., 2005; Peralta et al., 2007; de Souza et al., 2007).

In order to obtain more detailed information on the structural conformation of the molecule that may be of value in structure-activity analysis, we report here the synthesis and structure of the title compound, (I), as part of our study of isonicotinoylhydrazones (Diao et al., 2007).

In (I) (Fig. 1), the central benzene ring (C8–C14/O2) is nearly planar, with an r.m.s. deviation for fitted atoms of 0.0255 Å. This plane makes dihedral angles of 27.59 (8) and 36.26 (7)° with the pyridine ring (C16–C20/N3) and the terminal benzene ring (C1–C6),respectively. The dihedral angle between the pyridine ring and the benzene ring is 26.03 (7)°. All bond lengths are within normal ranges (Allen et al., 1987).

The acetic acid molecule and the water molecule are effectively tethered to the Schiff base component by a combination of independent hydrogen bonds, two O—H···O, one N—H···O, one O—H···N and one C—H···O types (Fig. 2 and Table 2).

Related literature top

For general background to the use of Schiff base derivatives in the development of protein and enzyme mimics, see: Santos et al. (2001). For closely related crystal structures, see: Diao et al. (2007); Peralta et al. (2007); de Souza et al. (2007); Wardell et al. (2005). For reference bond-length data, see: Allen et al. (1987).

Experimental top

An anhydrous ethanol solution (50 ml) of 3-formylphenyl 4-chlorobenzoate (2.61 g, 10 mmol) was added to an anhydrous ethanol solution (50 ml) of isonicotinohydrazide (1.37 g, 10 mmol) and the mixture stirred at 350 K for 5 h under N2, giving a white precipitate. The product was isolated, recrystallized from ethanol, and then dried in a vacuum to give pure compound (I) in 72% yield. Colorless single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of a solution of ethanol and acetic acid (80:20 v/v).

Refinement top

The H atoms of the water molecules were located in a difference Fourier map and refined, with distance restraints of O—H = 0.85 (1) and H···H = 1.45 (1) Å, and with Uiso(H) = 1.5Ueq(O). Other H atoms were included in calculated positions and refined using a riding model approximation. Constrained C—H and N—H bond lengths and Uiso(H) values: 0.93 Å and 1.2Ueq(C) for Csp2—H; 0.97 Å and 1.2Ueq(C) for methylene C—H; 0.82 Å and 1.5Ueq(O) for hydroxyl O—H; 0.86 Å and 1.2Ueq(N) for imino N—H.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with displacement ellipsoids for non-H atoms drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram for the title compound with the hydrogen bonds drawn as dashed lines. H atoms not involved in the hydrogen bonds have been omitted.
(E)-N'-[3-(4-Chlorobenzoyloxy)benzylidene]pyridine-4- carbohydrazide acetic acid monosolvate monohydrate top
Crystal data top
C20H14ClN3O3·C2H4O2·H2OZ = 2
Mr = 457.86F(000) = 476
Triclinic, P1Dx = 1.347 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.6666 (15) ÅCell parameters from 1984 reflections
b = 7.5437 (17) Åθ = 2.5–25.2°
c = 24.781 (6) ŵ = 0.21 mm1
α = 81.526 (4)°T = 294 K
β = 82.969 (4)°Block, colorless
γ = 66.632 (4)°0.18 × 0.16 × 0.10 mm
V = 1128.7 (5) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3936 independent reflections
Radiation source: fine-focus sealed tube2501 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 67
Tmin = 0.928, Tmax = 0.979k = 88
5755 measured reflectionsl = 2729
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0473P)2 + 0.2041P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3936 reflectionsΔρmax = 0.15 e Å3
298 parametersΔρmin = 0.17 e Å3
3 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0070 (17)
Crystal data top
C20H14ClN3O3·C2H4O2·H2Oγ = 66.632 (4)°
Mr = 457.86V = 1128.7 (5) Å3
Triclinic, P1Z = 2
a = 6.6666 (15) ÅMo Kα radiation
b = 7.5437 (17) ŵ = 0.21 mm1
c = 24.781 (6) ÅT = 294 K
α = 81.526 (4)°0.18 × 0.16 × 0.10 mm
β = 82.969 (4)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3936 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2501 reflections with I > 2σ(I)
Tmin = 0.928, Tmax = 0.979Rint = 0.019
5755 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0433 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.15 e Å3
3936 reflectionsΔρmin = 0.17 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.33537 (13)0.76087 (12)0.41389 (3)0.0905 (3)
O10.5002 (3)0.8179 (3)0.59922 (8)0.0951 (7)
O20.7889 (3)0.6503 (3)0.64925 (7)0.0686 (5)
O30.3270 (2)0.7186 (2)0.98573 (7)0.0608 (5)
N10.5560 (3)0.6798 (3)0.88899 (8)0.0524 (5)
N20.6335 (3)0.7116 (3)0.93397 (7)0.0534 (5)
H20.75810.72210.93190.064*
N30.7533 (4)0.8006 (3)1.12485 (8)0.0626 (6)
C10.7913 (5)0.7979 (5)0.50434 (12)0.0820 (9)
H10.64430.83410.49870.098*
C20.9364 (5)0.8039 (4)0.46046 (11)0.0809 (9)
H2A0.88820.84450.42540.097*
C31.1507 (4)0.7501 (4)0.46886 (10)0.0628 (7)
C41.2231 (5)0.6916 (5)0.52037 (11)0.0822 (9)
H41.37020.65590.52580.099*
C51.0767 (4)0.6859 (4)0.56408 (11)0.0742 (8)
H51.12580.64540.59910.089*
C60.8596 (4)0.7392 (3)0.55674 (10)0.0563 (6)
C70.6938 (4)0.7422 (4)0.60230 (11)0.0643 (7)
C80.6574 (4)0.6336 (4)0.69716 (10)0.0573 (6)
C90.4946 (4)0.5648 (4)0.69816 (11)0.0669 (7)
H90.46090.53480.66620.080*
C100.3821 (4)0.5412 (4)0.74740 (11)0.0659 (7)
H100.27050.49580.74860.079*
C110.4328 (4)0.5838 (3)0.79477 (10)0.0580 (6)
H110.35400.56910.82760.070*
C120.6014 (4)0.6488 (3)0.79379 (9)0.0511 (6)
C130.7122 (4)0.6747 (4)0.74412 (10)0.0573 (6)
H130.82390.72010.74260.069*
C140.6656 (4)0.6871 (4)0.84357 (10)0.0581 (6)
H140.78870.71730.84210.070*
C150.5077 (4)0.7258 (3)0.98161 (9)0.0474 (6)
C160.6030 (3)0.7529 (3)1.03005 (9)0.0450 (5)
C170.8176 (4)0.7278 (4)1.03257 (10)0.0626 (7)
H170.91650.69511.00220.075*
C180.8846 (4)0.7516 (4)1.08031 (11)0.0713 (8)
H181.03090.73211.08140.086*
C190.5476 (4)0.8251 (4)1.12229 (10)0.0636 (7)
H190.45210.85901.15320.076*
C200.4667 (4)0.8032 (4)1.07641 (10)0.0594 (7)
H200.31990.82251.07670.071*
O41.0439 (3)0.9861 (3)0.19590 (9)0.0936 (7)
O50.8367 (4)0.8213 (3)0.22488 (7)0.0878 (6)
H5A0.82970.82340.19200.132*
C210.9595 (5)0.9109 (4)0.23256 (11)0.0660 (7)
C220.9809 (6)0.9134 (5)0.29172 (12)0.1010 (11)
H22A1.11280.93140.29580.151*
H22B0.98670.79240.31160.151*
H22C0.85701.01810.30580.151*
O60.0290 (3)0.7824 (3)0.90528 (8)0.0777 (6)
H6A0.134 (4)0.765 (4)0.9249 (10)0.117*
H6B0.018 (5)0.864 (4)0.8768 (8)0.117*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0937 (6)0.1030 (6)0.0582 (5)0.0225 (5)0.0095 (4)0.0146 (4)
O10.0563 (12)0.1292 (18)0.0847 (15)0.0278 (12)0.0173 (10)0.0215 (12)
O20.0556 (10)0.0987 (13)0.0469 (10)0.0248 (10)0.0071 (8)0.0053 (9)
O30.0446 (9)0.0839 (12)0.0618 (11)0.0325 (9)0.0085 (8)0.0052 (9)
N10.0542 (12)0.0602 (12)0.0502 (12)0.0289 (10)0.0117 (10)0.0023 (9)
N20.0512 (11)0.0751 (13)0.0467 (12)0.0376 (10)0.0089 (9)0.0021 (9)
N30.0690 (14)0.0746 (14)0.0544 (13)0.0382 (12)0.0109 (11)0.0031 (10)
C10.0660 (18)0.117 (3)0.0624 (19)0.0361 (17)0.0226 (15)0.0082 (16)
C20.083 (2)0.104 (2)0.0537 (18)0.0337 (18)0.0217 (16)0.0064 (15)
C30.0722 (17)0.0602 (15)0.0519 (15)0.0195 (14)0.0023 (13)0.0129 (12)
C40.0588 (17)0.123 (3)0.0561 (18)0.0247 (17)0.0066 (14)0.0115 (16)
C50.0655 (17)0.107 (2)0.0449 (15)0.0256 (16)0.0122 (13)0.0066 (14)
C60.0581 (15)0.0588 (15)0.0527 (15)0.0211 (12)0.0122 (12)0.0056 (11)
C70.0613 (17)0.0715 (17)0.0618 (17)0.0257 (14)0.0178 (14)0.0013 (13)
C80.0514 (14)0.0650 (16)0.0524 (15)0.0184 (13)0.0058 (12)0.0071 (12)
C90.0721 (17)0.0750 (18)0.0613 (17)0.0312 (15)0.0091 (14)0.0189 (13)
C100.0687 (17)0.0780 (18)0.0680 (18)0.0430 (15)0.0068 (14)0.0153 (14)
C110.0581 (15)0.0636 (16)0.0588 (16)0.0295 (13)0.0036 (12)0.0091 (12)
C120.0498 (13)0.0557 (14)0.0495 (14)0.0215 (11)0.0086 (11)0.0039 (11)
C130.0500 (14)0.0720 (17)0.0562 (16)0.0297 (13)0.0100 (12)0.0034 (12)
C140.0566 (15)0.0740 (17)0.0550 (16)0.0373 (13)0.0093 (12)0.0025 (12)
C150.0464 (13)0.0474 (13)0.0507 (14)0.0217 (11)0.0097 (11)0.0034 (10)
C160.0433 (12)0.0474 (13)0.0475 (13)0.0231 (10)0.0060 (10)0.0033 (10)
C170.0501 (14)0.0955 (19)0.0517 (15)0.0379 (14)0.0007 (11)0.0106 (13)
C180.0582 (16)0.108 (2)0.0625 (18)0.0458 (16)0.0087 (14)0.0108 (16)
C190.0685 (17)0.0755 (18)0.0487 (15)0.0307 (15)0.0001 (12)0.0076 (12)
C200.0481 (14)0.0770 (17)0.0574 (16)0.0305 (13)0.0008 (12)0.0045 (13)
O40.0878 (14)0.1262 (18)0.0788 (14)0.0620 (14)0.0170 (11)0.0218 (12)
O50.1197 (17)0.1169 (16)0.0548 (12)0.0778 (15)0.0107 (12)0.0026 (12)
C210.0703 (18)0.0653 (17)0.0599 (17)0.0235 (15)0.0166 (14)0.0033 (13)
C220.146 (3)0.096 (2)0.068 (2)0.049 (2)0.040 (2)0.0006 (17)
O60.0587 (11)0.1268 (17)0.0607 (12)0.0549 (12)0.0152 (9)0.0147 (11)
Geometric parameters (Å, º) top
Cl1—C31.736 (3)C10—C111.375 (3)
O1—C71.194 (3)C10—H100.9300
O2—C71.353 (3)C11—C121.389 (3)
O2—C81.408 (3)C11—H110.9300
O3—C151.218 (2)C12—C131.385 (3)
N1—C141.271 (3)C12—C141.456 (3)
N1—N21.373 (2)C13—H130.9300
N2—C151.353 (3)C14—H140.9300
N2—H20.8600C15—C161.499 (3)
N3—C191.317 (3)C16—C201.374 (3)
N3—C181.322 (3)C16—C171.375 (3)
C1—C21.372 (4)C17—C181.374 (3)
C1—C61.380 (3)C17—H170.9300
C1—H10.9300C18—H180.9300
C2—C31.356 (4)C19—C201.373 (3)
C2—H2A0.9300C19—H190.9300
C3—C41.368 (3)C20—H200.9300
C4—C51.374 (4)O4—C211.200 (3)
C4—H40.9300O5—C211.295 (3)
C5—C61.368 (3)O5—H5A0.8200
C5—H50.9300C21—C221.494 (4)
C6—C71.476 (4)C22—H22A0.9600
C8—C91.372 (3)C22—H22B0.9600
C8—C131.373 (3)C22—H22C0.9600
C9—C101.379 (3)O6—H6A0.854 (10)
C9—H90.9300O6—H6B0.852 (10)
C7—O2—C8119.8 (2)C13—C12—C11118.7 (2)
C14—N1—N2116.74 (19)C13—C12—C14119.7 (2)
C15—N2—N1117.92 (19)C11—C12—C14121.6 (2)
C15—N2—H2121.0C8—C13—C12120.2 (2)
N1—N2—H2121.0C8—C13—H13119.9
C19—N3—C18116.7 (2)C12—C13—H13119.9
C2—C1—C6121.2 (3)N1—C14—C12121.0 (2)
C2—C1—H1119.4N1—C14—H14119.5
C6—C1—H1119.4C12—C14—H14119.5
C3—C2—C1119.2 (3)O3—C15—N2123.0 (2)
C3—C2—H2A120.4O3—C15—C16121.0 (2)
C1—C2—H2A120.4N2—C15—C16116.0 (2)
C2—C3—C4120.9 (3)C20—C16—C17116.8 (2)
C2—C3—Cl1119.7 (2)C20—C16—C15117.7 (2)
C4—C3—Cl1119.4 (2)C17—C16—C15125.5 (2)
C3—C4—C5119.5 (3)C18—C17—C16119.4 (2)
C3—C4—H4120.2C18—C17—H17120.3
C5—C4—H4120.2C16—C17—H17120.3
C6—C5—C4120.8 (2)N3—C18—C17123.8 (2)
C6—C5—H5119.6N3—C18—H18118.1
C4—C5—H5119.6C17—C18—H18118.1
C5—C6—C1118.4 (3)N3—C19—C20123.4 (2)
C5—C6—C7123.2 (2)N3—C19—H19118.3
C1—C6—C7118.4 (2)C20—C19—H19118.3
O1—C7—O2123.4 (3)C19—C20—C16119.9 (2)
O1—C7—C6125.3 (2)C19—C20—H20120.0
O2—C7—C6111.3 (2)C16—C20—H20120.0
C9—C8—C13121.3 (2)C21—O5—H5A109.5
C9—C8—O2122.2 (2)O4—C21—O5123.3 (3)
C13—C8—O2116.3 (2)O4—C21—C22123.9 (3)
C8—C9—C10118.7 (2)O5—C21—C22112.8 (3)
C8—C9—H9120.6C21—C22—H22A109.5
C10—C9—H9120.6C21—C22—H22B109.5
C11—C10—C9120.8 (2)H22A—C22—H22B109.5
C11—C10—H10119.6C21—C22—H22C109.5
C9—C10—H10119.6H22A—C22—H22C109.5
C10—C11—C12120.3 (2)H22B—C22—H22C109.5
C10—C11—H11119.9H6A—O6—H6B115.3 (17)
C12—C11—H11119.9
C14—N1—N2—C15172.9 (2)C10—C11—C12—C131.8 (3)
C6—C1—C2—C30.4 (5)C10—C11—C12—C14177.3 (2)
C1—C2—C3—C40.5 (5)C9—C8—C13—C120.6 (4)
C1—C2—C3—Cl1178.9 (2)O2—C8—C13—C12175.4 (2)
C2—C3—C4—C50.5 (5)C11—C12—C13—C81.0 (3)
Cl1—C3—C4—C5178.9 (2)C14—C12—C13—C8178.0 (2)
C3—C4—C5—C60.4 (5)N2—N1—C14—C12177.86 (19)
C4—C5—C6—C10.3 (4)C13—C12—C14—N1174.2 (2)
C4—C5—C6—C7177.9 (3)C11—C12—C14—N16.7 (4)
C2—C1—C6—C50.3 (5)N1—N2—C15—O32.7 (3)
C2—C1—C6—C7178.1 (3)N1—N2—C15—C16177.73 (18)
C8—O2—C7—O12.7 (4)O3—C15—C16—C2011.2 (3)
C8—O2—C7—C6178.4 (2)N2—C15—C16—C20168.4 (2)
C5—C6—C7—O1166.5 (3)O3—C15—C16—C17167.4 (2)
C1—C6—C7—O111.8 (4)N2—C15—C16—C1713.0 (3)
C5—C6—C7—O212.4 (4)C20—C16—C17—C180.7 (4)
C1—C6—C7—O2169.4 (2)C15—C16—C17—C18178.0 (2)
C7—O2—C8—C950.5 (3)C19—N3—C18—C170.7 (4)
C7—O2—C8—C13134.6 (2)C16—C17—C18—N31.0 (4)
C13—C8—C9—C101.4 (4)C18—N3—C19—C200.3 (4)
O2—C8—C9—C10176.0 (2)N3—C19—C20—C160.1 (4)
C8—C9—C10—C110.6 (4)C17—C16—C20—C190.3 (3)
C9—C10—C11—C121.0 (4)C15—C16—C20—C19178.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O30.86 (3)2.00 (3)2.843 (2)166 (2)
O6—H6B···O4i0.86 (2)1.98 (2)2.812 (3)165 (3)
O5—H5A···N3ii0.821.852.646 (3)164
N2—H2···O6iii0.862.042.879 (2)164
C14—H14···O6iii0.932.593.367 (4)141
C17—H17···O6iii0.932.503.331 (3)149
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y, z1; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC20H14ClN3O3·C2H4O2·H2O
Mr457.86
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)6.6666 (15), 7.5437 (17), 24.781 (6)
α, β, γ (°)81.526 (4), 82.969 (4), 66.632 (4)
V3)1128.7 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.18 × 0.16 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.928, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
5755, 3936, 2501
Rint0.019
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.119, 1.03
No. of reflections3936
No. of parameters298
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.17

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O30.86 (3)2.00 (3)2.843 (2)166 (2)
O6—H6B···O4i0.86 (2)1.98 (2)2.812 (3)165 (3)
O5—H5A···N3ii0.821.852.646 (3)164
N2—H2···O6iii0.862.042.879 (2)164
C14—H14···O6iii0.932.593.367 (4)141
C17—H17···O6iii0.932.503.331 (3)149
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y, z1; (iii) x+1, y, z.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDiao, C.-H., Fan, Z. & Chen, X. (2007). Acta Cryst. C63, o717–o719.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPeralta, M. A., Souza, M. N. V. de, Wardell, S. M. S. V., Wardell, J. L., Low, J. N. & Glidewell, C. (2007). Acta Cryst. C63, o68–o72.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSantos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838–844.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSouza, M. V. N. de, Wardell, S. M. S. V., Wardell, J. L., Low, J. N. & Glidewell, C. (2007). Acta Cryst. C63, o166–o168.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWardell, S. M. S. V., Souza, M. V. N. de, Wardell, J. L., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o683–o689.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1517
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds