organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1502

[2-(1H-Indol-4-yl)eth­yl]di­propyl­amine

aState Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: dc_wang@hotmail.com

(Received 19 March 2012; accepted 10 April 2012; online 21 April 2012)

In the title compound, C16H24N2, the aliphatic amine substituent is rotated almost orthogonally [C—C—C—C torsion angle = 75.7 (3)°] out of the plane of the indole unit. The amine N atom has a pyramidal configuration deviating by 0.380 (3) Å from the plane of the adjacent C atoms. All of the aliphatic groups are in extended transoid conformations. In the crystal, mol­ecules form chains along the a axis via N—H⋯N hydrogen bonds.

Related literature

For the synthesis and applications of the title compound, see: Srivastava et al. (1999[Srivastava, S. K., Chauhan, P. M. S. & Bhaduri, A. P. (1999). Synth. Commun. 29, 2085-2091.]).

[Scheme 1]

Experimental

Crystal data
  • C16H24N2

  • Mr = 244.37

  • Orthorhombic, P b c a

  • a = 12.1100 (9) Å

  • b = 15.5996 (12) Å

  • c = 16.0253 (12) Å

  • V = 3027.4 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.06 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.981, Tmax = 0.994

  • 2757 measured reflections

  • 2757 independent reflections

  • 1294 reflections with I > 2σ(I)

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.122

  • S = 1.00

  • 2757 reflections

  • 163 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N2i 0.86 2.10 2.945 (3) 166
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius. Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound is an important organic intermediate for the synthesis of 4-[2-(dipropylamino)ethyl]indol-2-one, an important compound for stimulating presynaptic dopamine autoreceptors in mammals (Srivastava et al., 1999). In the process of synthesis, we obtained the crystal of the intermediate and we report its crystal structure.

Related literature top

For the synthesis and applications of the title compound, see: Srivastava et al. (1999).

Experimental top

The title compound was synthesized according to the published procedure (Srivastava et al., 1999). A mixture of 4-[(2-amino)ethyl]indole (3.0 g, 18.72 mmol), 1-bromopropane (4.61 g, 37.44 mmol), K2CO3 (1 g, 7.25 mmol) in toluene (40 ml) was stirred at reflux temperature until the reaction completion is checked by thin layer silica gel (60–80 mesh) plates. When the mixture reached room temperature, it was filtered and the filtrate was poured in water and extracted with chloroform. The combined extract is washed with 10% brine solution, dried over Na2S04 and concentrated to afford the crude product, which was filtered through column. The obtained material was distilled to afford the pure product 3.62 g with a 79% yield. The product (0.3 g) was crystallized from methanol (15 ml) at room temperature to give colorless crystals that were used for data collection.

Refinement top

Carbon- and nitrogen-bound H atoms were placed in calculated positions and were treated as riding on the parent C and N atoms with C—H = 0.96 (methyl), 0.97 (methylene) and N—H = 0.86 Å, Uiso(H) = 1.2 or 1.5 Ueq(C,N). The hydrogen atoms for methyl groups were placed in staggered positions. Rigid body restrains were applied to atoms N2, C11, C12 and C13 because of their excessive thermal motion

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atomic numbering scheme. Non-H atoms are shown with 30% probability displacement ellipsoids.
[2-(1H-Indol-4-yl)ethyl]dipropylamine top
Crystal data top
C16H24N2F(000) = 1072
Mr = 244.37Dx = 1.072 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 25 reflections
a = 12.1100 (9) Åθ = 9–13°
b = 15.5996 (12) ŵ = 0.06 mm1
c = 16.0253 (12) ÅT = 293 K
V = 3027.4 (4) Å3Block, white
Z = 80.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1294 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 25.4°, θmin = 2.5°
ω/2θ scansh = 014
Absorption correction: ψ scan
(North et al., 1968)
k = 018
Tmin = 0.981, Tmax = 0.994l = 019
2757 measured reflections3 standard reflections every 200 reflections
2757 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.039P)2]
where P = (Fo2 + 2Fc2)/3
2757 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.22 e Å3
2 restraintsΔρmin = 0.12 e Å3
Crystal data top
C16H24N2V = 3027.4 (4) Å3
Mr = 244.37Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.1100 (9) ŵ = 0.06 mm1
b = 15.5996 (12) ÅT = 293 K
c = 16.0253 (12) Å0.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1294 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.000
Tmin = 0.981, Tmax = 0.9943 standard reflections every 200 reflections
2757 measured reflections intensity decay: 1%
2757 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0602 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.00Δρmax = 0.22 e Å3
2757 reflectionsΔρmin = 0.12 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.69898 (17)0.17493 (14)0.51171 (13)0.0529 (6)
N10.80610 (17)0.26448 (12)0.58576 (12)0.0672 (6)
H1A0.86000.28520.61440.081*
N20.46143 (14)0.14524 (11)0.30351 (11)0.0570 (5)
C20.64447 (19)0.25584 (16)0.51942 (15)0.0661 (7)
H2A0.57560.27050.49810.079*
C30.7130 (2)0.30703 (15)0.56402 (16)0.0719 (7)
H3A0.69800.36380.57780.086*
C40.79988 (18)0.18272 (15)0.55438 (14)0.0572 (6)
C50.87487 (19)0.11580 (17)0.55988 (17)0.0738 (8)
H5A0.94180.12200.58770.089*
C60.8458 (2)0.04041 (16)0.52256 (17)0.0809 (8)
H6A0.89420.00580.52520.097*
C70.7459 (2)0.03062 (15)0.48071 (16)0.0736 (7)
H7A0.72940.02190.45630.088*
C80.67057 (17)0.09681 (14)0.47445 (13)0.0562 (6)
C90.56340 (17)0.08773 (14)0.42753 (14)0.0611 (6)
H9A0.50430.11330.45990.073*
H9B0.54670.02740.42040.073*
C100.56870 (18)0.13063 (14)0.34234 (13)0.0608 (6)
H10A0.60610.18530.34820.073*
H10B0.61280.09520.30540.073*
C110.3925 (2)0.06598 (15)0.29295 (17)0.0822 (8)
H11A0.38300.04010.34750.099*
H11B0.32000.08350.27370.099*
C120.4330 (2)0.00010 (17)0.2365 (2)0.1074 (10)
H12A0.50530.01950.25430.129*
H12B0.43960.02310.18040.129*
C130.3492 (3)0.07629 (16)0.2374 (2)0.1313 (13)
H13A0.37390.12010.19960.197*
H13B0.27770.05620.22030.197*
H13C0.34450.09940.29280.197*
C140.4724 (2)0.19861 (16)0.22911 (15)0.0805 (8)
H14A0.50790.16470.18600.097*
H14B0.52150.24590.24230.097*
C150.3695 (2)0.2346 (2)0.1942 (2)0.1199 (11)
H15A0.32440.25550.23980.144*
H15B0.32890.18880.16700.144*
C160.3850 (2)0.30558 (17)0.13303 (18)0.1030 (10)
H16A0.31410.32580.11460.155*
H16B0.42620.28500.08600.155*
H16C0.42450.35170.15910.155*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0514 (12)0.0586 (14)0.0488 (14)0.0011 (12)0.0021 (12)0.0050 (12)
N10.0656 (13)0.0724 (14)0.0634 (14)0.0148 (11)0.0121 (11)0.0002 (11)
N20.0528 (11)0.0663 (11)0.0520 (12)0.0045 (9)0.0036 (10)0.0009 (10)
C20.0560 (14)0.0747 (16)0.0675 (18)0.0034 (13)0.0038 (14)0.0044 (15)
C30.0754 (17)0.0649 (16)0.0755 (19)0.0011 (15)0.0004 (15)0.0017 (15)
C40.0540 (14)0.0626 (16)0.0549 (15)0.0124 (13)0.0051 (13)0.0077 (13)
C50.0543 (15)0.0775 (18)0.090 (2)0.0078 (14)0.0185 (14)0.0184 (16)
C60.0620 (17)0.0649 (17)0.116 (2)0.0074 (13)0.0148 (17)0.0109 (17)
C70.0730 (17)0.0570 (15)0.091 (2)0.0010 (14)0.0053 (16)0.0016 (14)
C80.0528 (14)0.0616 (15)0.0542 (15)0.0063 (12)0.0022 (12)0.0056 (13)
C90.0570 (14)0.0686 (15)0.0575 (15)0.0113 (12)0.0067 (13)0.0029 (13)
C100.0523 (14)0.0735 (16)0.0567 (16)0.0031 (12)0.0003 (13)0.0031 (13)
C110.0859 (19)0.0750 (16)0.086 (2)0.0045 (12)0.0250 (16)0.0099 (16)
C120.110 (2)0.098 (2)0.115 (3)0.0031 (16)0.004 (2)0.015 (2)
C130.142 (3)0.086 (2)0.166 (3)0.0158 (17)0.045 (2)0.032 (2)
C140.0766 (18)0.099 (2)0.065 (2)0.0077 (15)0.0086 (15)0.0167 (16)
C150.090 (2)0.170 (3)0.100 (3)0.013 (2)0.010 (2)0.046 (2)
C160.125 (2)0.101 (2)0.083 (2)0.0286 (19)0.0048 (19)0.0154 (19)
Geometric parameters (Å, º) top
C1—C81.400 (3)C9—H9B0.9700
C1—C41.405 (3)C10—H10A0.9700
C1—C21.430 (3)C10—H10B0.9700
N1—C31.354 (3)C11—C121.455 (3)
N1—C41.373 (2)C11—H11A0.9700
N1—H1A0.8600C11—H11B0.9700
N2—C101.458 (2)C12—C131.566 (3)
N2—C141.460 (3)C12—H12A0.9700
N2—C111.501 (2)C12—H12B0.9700
C2—C31.355 (3)C13—H13A0.9600
C2—H2A0.9300C13—H13B0.9600
C3—H3A0.9300C13—H13C0.9600
C4—C51.386 (3)C14—C151.477 (3)
C5—C61.366 (3)C14—H14A0.9700
C5—H5A0.9300C14—H14B0.9700
C6—C71.391 (3)C15—C161.490 (3)
C6—H6A0.9300C15—H15A0.9700
C7—C81.381 (3)C15—H15B0.9700
C7—H7A0.9300C16—H16A0.9600
C8—C91.507 (3)C16—H16B0.9600
C9—C101.522 (3)C16—H16C0.9600
C9—H9A0.9700
C8—C1—C4119.8 (2)N2—C10—H10B108.6
C8—C1—C2133.8 (2)C9—C10—H10B108.6
C4—C1—C2106.4 (2)H10A—C10—H10B107.6
C3—N1—C4108.38 (19)C12—C11—N2117.7 (2)
C3—N1—H1A125.8C12—C11—H11A107.9
C4—N1—H1A125.8N2—C11—H11A107.9
C10—N2—C14110.90 (17)C12—C11—H11B107.9
C10—N2—C11114.50 (17)N2—C11—H11B107.9
C14—N2—C11115.34 (19)H11A—C11—H11B107.2
C3—C2—C1106.4 (2)C11—C12—C13108.2 (2)
C3—C2—H2A126.8C11—C12—H12A110.0
C1—C2—H2A126.8C13—C12—H12A110.0
N1—C3—C2110.9 (2)C11—C12—H12B110.0
N1—C3—H3A124.6C13—C12—H12B110.0
C2—C3—H3A124.6H12A—C12—H12B108.4
N1—C4—C5129.8 (2)C12—C13—H13A109.5
N1—C4—C1107.8 (2)C12—C13—H13B109.5
C5—C4—C1122.4 (2)H13A—C13—H13B109.5
C6—C5—C4116.8 (2)C12—C13—H13C109.5
C6—C5—H5A121.6H13A—C13—H13C109.5
C4—C5—H5A121.6H13B—C13—H13C109.5
C5—C6—C7122.0 (2)N2—C14—C15116.7 (2)
C5—C6—H6A119.0N2—C14—H14A108.1
C7—C6—H6A119.0C15—C14—H14A108.1
C8—C7—C6121.8 (2)N2—C14—H14B108.1
C8—C7—H7A119.1C15—C14—H14B108.1
C6—C7—H7A119.1H14A—C14—H14B107.3
C7—C8—C1117.2 (2)C14—C15—C16115.2 (3)
C7—C8—C9122.3 (2)C14—C15—H15A108.5
C1—C8—C9120.4 (2)C16—C15—H15A108.5
C8—C9—C10111.72 (17)C14—C15—H15B108.5
C8—C9—H9A109.3C16—C15—H15B108.5
C10—C9—H9A109.3H15A—C15—H15B107.5
C8—C9—H9B109.3C15—C16—H16A109.5
C10—C9—H9B109.3C15—C16—H16B109.5
H9A—C9—H9B107.9H16A—C16—H16B109.5
N2—C10—C9114.46 (18)C15—C16—H16C109.5
N2—C10—H10A108.6H16A—C16—H16C109.5
C9—C10—H10A108.6H16B—C16—H16C109.5
C8—C1—C2—C3178.9 (2)C4—C1—C8—C71.0 (3)
C4—C1—C2—C30.6 (2)C2—C1—C8—C7179.2 (2)
C4—N1—C3—C20.4 (3)C4—C1—C8—C9179.20 (19)
C1—C2—C3—N10.6 (3)C2—C1—C8—C92.7 (4)
C3—N1—C4—C5179.7 (2)C7—C8—C9—C10102.4 (2)
C3—N1—C4—C10.0 (2)C1—C8—C9—C1075.7 (3)
C8—C1—C4—N1178.98 (19)C14—N2—C10—C9170.78 (18)
C2—C1—C4—N10.4 (2)C11—N2—C10—C956.6 (3)
C8—C1—C4—C51.4 (3)C8—C9—C10—N2163.88 (18)
C2—C1—C4—C5180.0 (2)C10—N2—C11—C1265.2 (3)
N1—C4—C5—C6179.5 (2)C14—N2—C11—C1265.3 (3)
C1—C4—C5—C60.9 (4)N2—C11—C12—C13178.8 (2)
C4—C5—C6—C70.1 (4)C10—N2—C14—C15166.8 (2)
C5—C6—C7—C80.1 (4)C11—N2—C14—C1561.0 (3)
C6—C7—C8—C10.3 (4)N2—C14—C15—C16164.9 (2)
C6—C7—C8—C9178.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.862.102.945 (3)166
Symmetry code: (i) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC16H24N2
Mr244.37
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)12.1100 (9), 15.5996 (12), 16.0253 (12)
V3)3027.4 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.06
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.981, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
2757, 2757, 1294
Rint0.000
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.122, 1.00
No. of reflections2757
No. of parameters163
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.12

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.862.102.945 (3)166.0
Symmetry code: (i) x+1/2, y+1/2, z+1.
 

Acknowledgements

The work was supported by the center of Testing and Analysis, Nanjing University.

References

First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius. Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrivastava, S. K., Chauhan, P. M. S. & Bhaduri, A. P. (1999). Synth. Commun. 29, 2085–2091.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1502
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds