organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1275

N-p-Tolyl­pyrrolidine-1-carboxamide

aMicroscale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: liyufeng8111@163.com

(Received 23 March 2012; accepted 29 March 2012; online 4 April 2012)

In the title mol­ecule, C12H16N2O, the pyrrolidine ring has a half-chair conformation. In the crystal, mol­ecules are linked into C(4) chains along [001] by N—H⋯O hydrogen bonds.

Related literature

For the medicinal properties of pyrrolidine compounds, see: Yang et al. (1997[Yang, D., Soulier, J. L., Sicsic, S., Mathe-Allainmat, M., Bremont, B., Croci, T., Cardamone, R., Aureggi, G. & Langlois, M. (1997). J. Med. Chem. 40, 608-621.]). For related structures, see: Köhn et al. (2004[Köhn, U., Günther, W., Görls, H. & Anders, E. (2004). Tetrahedron Asymmetry, 15, 1419-1426.]); Li (2011[Li, Y.-F. (2011). Acta Cryst. E67, o1792.]).

[Scheme 1]

Experimental

Crystal data
  • C12H16N2O

  • Mr = 204.27

  • Monoclinic, P 21 /c

  • a = 10.264 (2) Å

  • b = 10.803 (2) Å

  • c = 10.168 (2) Å

  • β = 98.61 (3)°

  • V = 1114.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.19 mm

Data collection
  • Bruker SMART CCD diffractometer

  • 10539 measured reflections

  • 2553 independent reflections

  • 1897 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.183

  • S = 1.14

  • 2553 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1i 0.86 2.11 2.9301 (17) 160
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pyrrolidine compounds have been shown to have medicinal properties (Yang et al., 1997). The crystal structure of the title compound is presented herein. The molecular structure of the title compound is shown in Fig. 1. The pyrrolidine ring has a half-chair conformation with atoms C10 and C11 forming the twist. In the crystal, the molecules are linked into chains along [001] by intermoecular N—H···O hydrogen bonds. The structures of related compounds have already been determined (Köhn et al., 2004; Li, 2011).

Related literature top

For the medicinal properties of pyrrolidine compounds, see: Yang et al. (1997). For related structures, see: Köhn et al. (2004); Li (2011).

Experimental top

A mixture of pyrrolidine (0.1 mol), and p-tolylcarbamic chloride (0.1 mol) was stirred in refluxing ethanol (20 ml) for 4 h to afford the title compound (0.068 mol, yield 68%). Colourless blocks of the title compound were obtained by recrystallization of a solution of the title compound in ethanol at room temperature.

Refinement top

H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H distances = 0.93–0.97 Å; N—H = 0.86 Å and with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(Cmethyl).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids.
N-p-Tolylpyrrolidine-1-carboxamide top
Crystal data top
C12H16N2OF(000) = 440
Mr = 204.27Dx = 1.217 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1897 reflections
a = 10.264 (2) Åθ = 3.2–27.5°
b = 10.803 (2) ŵ = 0.08 mm1
c = 10.168 (2) ÅT = 293 K
β = 98.61 (3)°Block, colorless
V = 1114.7 (4) Å30.25 × 0.22 × 0.19 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
1897 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.028
Graphite monochromatorθmax = 27.5°, θmin = 3.2°
ϕ and ω scansh = 1313
10539 measured reflectionsk = 1413
2553 independent reflectionsl = 1113
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.183H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0942P)2 + 0.2108P]
where P = (Fo2 + 2Fc2)/3
2553 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C12H16N2OV = 1114.7 (4) Å3
Mr = 204.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.264 (2) ŵ = 0.08 mm1
b = 10.803 (2) ÅT = 293 K
c = 10.168 (2) Å0.25 × 0.22 × 0.19 mm
β = 98.61 (3)°
Data collection top
Bruker SMART CCD
diffractometer
1897 reflections with I > 2σ(I)
10539 measured reflectionsRint = 0.028
2553 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.183H-atom parameters constrained
S = 1.14Δρmax = 0.28 e Å3
2553 reflectionsΔρmin = 0.23 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.56448 (13)0.21960 (13)0.00416 (12)0.0472 (4)
H2A0.54040.23250.08770.057*
O10.53582 (13)0.27916 (14)0.20476 (11)0.0635 (4)
C80.50216 (15)0.28509 (16)0.08300 (14)0.0448 (4)
N10.40218 (14)0.35882 (14)0.02833 (13)0.0503 (4)
C50.66558 (15)0.13221 (15)0.03298 (14)0.0429 (4)
C40.66667 (17)0.02489 (17)0.04178 (16)0.0509 (4)
H4A0.60070.01160.11370.061*
C60.76598 (17)0.15035 (17)0.13941 (17)0.0530 (4)
H6A0.76790.22190.19050.064*
C70.86316 (17)0.06128 (18)0.16900 (18)0.0562 (5)
H7A0.92950.07460.24050.067*
C20.86506 (17)0.04686 (16)0.09602 (19)0.0533 (4)
C30.76466 (18)0.06224 (17)0.01046 (19)0.0562 (5)
H3A0.76340.13330.06220.067*
C90.34923 (18)0.36700 (19)0.11286 (16)0.0563 (5)
H9A0.31010.28900.14550.068*
H9B0.41760.38920.16480.068*
C10.9702 (2)0.1433 (2)0.1322 (3)0.0733 (6)
H1A1.02990.11610.20860.110*
H1B1.01770.15540.05880.110*
H1C0.93000.21980.15250.110*
C120.3266 (2)0.4321 (2)0.1112 (2)0.0659 (5)
H12A0.37830.50090.15200.079*
H12B0.29810.38160.18050.079*
C100.2464 (2)0.4672 (2)0.1194 (2)0.0706 (6)
H10A0.28140.54510.14610.085*
H10B0.16970.44550.18300.085*
C110.2112 (3)0.4770 (3)0.0157 (2)0.0874 (8)
H11A0.13420.42690.02290.105*
H11B0.19150.56230.03510.105*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0509 (8)0.0620 (9)0.0274 (6)0.0059 (6)0.0014 (5)0.0021 (6)
O10.0667 (8)0.0948 (11)0.0277 (6)0.0111 (7)0.0033 (5)0.0012 (6)
C80.0460 (8)0.0563 (9)0.0314 (7)0.0047 (7)0.0039 (6)0.0000 (6)
N10.0524 (8)0.0602 (8)0.0374 (7)0.0059 (6)0.0038 (6)0.0029 (6)
C50.0433 (8)0.0521 (9)0.0326 (7)0.0033 (6)0.0040 (6)0.0049 (6)
C40.0504 (9)0.0588 (10)0.0412 (8)0.0037 (7)0.0007 (7)0.0032 (7)
C60.0500 (9)0.0587 (10)0.0465 (9)0.0045 (7)0.0045 (7)0.0035 (8)
C70.0458 (9)0.0646 (11)0.0536 (10)0.0048 (8)0.0073 (7)0.0047 (8)
C20.0461 (9)0.0530 (9)0.0609 (10)0.0048 (7)0.0080 (7)0.0134 (8)
C30.0567 (10)0.0528 (10)0.0585 (10)0.0036 (8)0.0069 (8)0.0011 (8)
C90.0544 (10)0.0718 (12)0.0407 (8)0.0055 (8)0.0005 (7)0.0075 (8)
C10.0562 (11)0.0650 (12)0.0964 (16)0.0038 (9)0.0036 (11)0.0148 (11)
C120.0646 (12)0.0769 (13)0.0567 (11)0.0122 (10)0.0108 (9)0.0096 (9)
C100.0653 (12)0.0741 (13)0.0680 (13)0.0141 (10)0.0041 (10)0.0060 (10)
C110.0789 (15)0.1071 (19)0.0773 (15)0.0339 (14)0.0155 (12)0.0033 (14)
Geometric parameters (Å, º) top
N2—C81.366 (2)C2—C11.505 (3)
N2—C51.412 (2)C3—H3A0.9300
N2—H2A0.8600C9—C101.506 (3)
O1—C81.2362 (18)C9—H9A0.9700
C8—N11.351 (2)C9—H9B0.9700
N1—C91.460 (2)C1—H1A0.9600
N1—C121.461 (2)C1—H1B0.9600
C5—C41.387 (2)C1—H1C0.9600
C5—C61.392 (2)C12—C111.496 (3)
C4—C31.379 (3)C12—H12A0.9700
C4—H4A0.9300C12—H12B0.9700
C6—C71.386 (2)C10—C111.477 (3)
C6—H6A0.9300C10—H10A0.9700
C7—C21.386 (3)C10—H10B0.9700
C7—H7A0.9300C11—H11A0.9700
C2—C31.388 (3)C11—H11B0.9700
C8—N2—C5124.74 (13)C10—C9—H9A110.9
C8—N2—H2A117.6N1—C9—H9B110.9
C5—N2—H2A117.6C10—C9—H9B110.9
O1—C8—N1121.58 (15)H9A—C9—H9B109.0
O1—C8—N2122.36 (15)C2—C1—H1A109.5
N1—C8—N2116.05 (13)C2—C1—H1B109.5
C8—N1—C9126.04 (14)H1A—C1—H1B109.5
C8—N1—C12121.21 (14)C2—C1—H1C109.5
C9—N1—C12112.52 (14)H1A—C1—H1C109.5
C4—C5—C6118.55 (15)H1B—C1—H1C109.5
C4—C5—N2118.57 (14)N1—C12—C11103.79 (16)
C6—C5—N2122.87 (15)N1—C12—H12A111.0
C3—C4—C5120.61 (15)C11—C12—H12A111.0
C3—C4—H4A119.7N1—C12—H12B111.0
C5—C4—H4A119.7C11—C12—H12B111.0
C7—C6—C5119.73 (16)H12A—C12—H12B109.0
C7—C6—H6A120.1C11—C10—C9106.14 (17)
C5—C6—H6A120.1C11—C10—H10A110.5
C2—C7—C6122.44 (16)C9—C10—H10A110.5
C2—C7—H7A118.8C11—C10—H10B110.5
C6—C7—H7A118.8C9—C10—H10B110.5
C7—C2—C3116.75 (16)H10A—C10—H10B108.7
C7—C2—C1121.30 (17)C10—C11—C12107.49 (19)
C3—C2—C1121.95 (18)C10—C11—H11A110.2
C4—C3—C2121.92 (17)C12—C11—H11A110.2
C4—C3—H3A119.0C10—C11—H11B110.2
C2—C3—H3A119.0C12—C11—H11B110.2
N1—C9—C10104.03 (16)H11A—C11—H11B108.5
N1—C9—H9A110.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.862.112.9301 (17)160
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC12H16N2O
Mr204.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.264 (2), 10.803 (2), 10.168 (2)
β (°) 98.61 (3)
V3)1114.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.25 × 0.22 × 0.19
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10539, 2553, 1897
Rint0.028
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.183, 1.14
No. of reflections2553
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.23

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.862.112.9301 (17)160.0
Symmetry code: (i) x, y+1/2, z1/2.
 

References

First citationBruker (1997). SMART and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKöhn, U., Günther, W., Görls, H. & Anders, E. (2004). Tetrahedron Asymmetry, 15, 1419–1426.  Google Scholar
First citationLi, Y.-F. (2011). Acta Cryst. E67, o1792.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, D., Soulier, J. L., Sicsic, S., Mathe-Allainmat, M., Bremont, B., Croci, T., Cardamone, R., Aureggi, G. & Langlois, M. (1997). J. Med. Chem. 40, 608–621.  CSD CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1275
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds