organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1543

1,4-Bis[4-(tert-butyl­sulfan­yl)phen­yl]buta-1,3-diyne

aInstitut für Organische Chemie, TU Bergakademie Freiberg, Leipziger Strasse 29, D-09596 Freiberg/Sachsen, Germany
*Correspondence e-mail: edwin.weber@chemie.tu-freiberg.de

(Received 2 April 2012; accepted 20 April 2012; online 28 April 2012)

The asymmetric unit of the title compound, C24H26S2, consits of one half-mol­ecule, which is located on a center of inversion. The two benzene rings are exactly coplanar while the tert-butyl group is oriented nearly perpendicular to the ring plane [C—S—C—C = −81.14 (11)°].

Related literature

For background to this work, see: Pearson & Tour (1997[Pearson, D. L. & Tour, J. M. (1997). J. Org. Chem. 62, 1376-1387.]); Kergueris et al. (1999[Kergueris, C., Bourgoin, J.-P., Palacin, S., Esteve, D., Urbina, C., Magoga, M. & Joachim, C. (1999). Phys. Rev. B, 59, 12505-12513.]). For related structures, see: Kergueris et al. (1999[Kergueris, C., Bourgoin, J.-P., Palacin, S., Esteve, D., Urbina, C., Magoga, M. & Joachim, C. (1999). Phys. Rev. B, 59, 12505-12513.]); Mayor et al. (2003[Mayor, M., Weber, H. B., Reichert, J., Elbing, M., Hänisch, C., Beckmann, D. & Fischer, M. (2003). Angew. Chem. Int. Ed. 42, 5834-5838.]). For the synthetic procedure, see: van Dijk et al. (2006[Dijk, E. H. van, Myles, D. J. T., van der Veen, M. H. & Hummelen, J. C. (2006). Org. Lett. 8, 2333-2336.]). For the unsubstituted 1,4-diphenyl­buta-1,3-diyne, see: Hori et al. (1987[Hori, K., Yamabe, T., Kenichi, F., Kobayashi, S. & Taniguchi, H. (1987). J. Mol. Struct. (THEOCHEM), 153, 295-305.]).

[Scheme 1]

Experimental

Crystal data
  • C24H26S2

  • Mr = 378.57

  • Monoclinic, P 21 /n

  • a = 13.6286 (5) Å

  • b = 6.4269 (2) Å

  • c = 14.1290 (5) Å

  • β = 116.937 (2)°

  • V = 1103.29 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 153 K

  • 0.53 × 0.20 × 0.05 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.881, Tmax = 0.989

  • 11825 measured reflections

  • 3028 independent reflections

  • 2450 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.091

  • S = 1.04

  • 3028 reflections

  • 121 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Rod-type oligo(phenyleneethynylene)s are important representatives of conjugated molecular wires (Pearson et al., 1997). Molecular rods consisting protected terminal thiol anchor groups have been embedded as passive elements in Molecular Break-Junctions (Kergueris et al., 1999). As a part of our ongoing project on the synthesis of corresponding structures, the title compound was obtained as a by-product and was identified by single-crystal X-ray diffraction. It crystallizes with one half of the molecule in the unit cell, i.e. the molecule adopts inversion symmetry. The molecule features an almost planar geometry except for the tert-butyl groups which are slightly twisted out of the plane (C(7)—S(1)—C(1)—C(2) 81.15 (14) °, C(1)—S(1)—C(7)—C(10) -67.57 (12) °). Compared with the unsubstituted 1,4-diphenylbuta-1,3-diyne (Hori et al., 1987), the position of atoms shows marginal differences. Bond distances of the ring are in the range 1.38–1.40 Å, the shortest being C(5)—C(6)=1.383 (19) Å. The angles in the ring are between 119.01 (12) and 120.47 (13) °. The C—S distance is in good agreement with the literature data [S(1)—C(1) 1.7747 (14) Å, S(1)—C(7) 1.8514 (17) Å] (Mayor et al., 2003).

Related literature top

For background to this work, see: Pearson & Tour (1997); Kergueris et al. (1999). For related structures, see: Kergueris et al. (1999); Mayor et al. (2003). For the synthetic procedure, see: van Dijk et al. (2006). For the unsubstituted 1,4-diphenylbuta-1,3-diyne, see: Hori et al. (1987).

Experimental top

The title compound has been obtained as a by-product during attempted Sonogashira cross coupling reaction of tert-butyl-(4-ethynylphenyl)sulfane with 2,6-dibromoanthra-9,10-quinone in diisopropylamine. For the synthetic procedure, see: van Dijk et al., (2006). The plate shaped crystals are colourless and stable in the air.

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective parent atoms, with C—H = 0.95 Å.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of the title compound with labelling showing 50% probability displacement ellipsoids for the non-H atoms. Symmetry code: i = -x+2, -y, -z+2.
1,4-Bis[4-(tert-butylsulfanyl)phenyl]buta-1,3-diyne top
Crystal data top
C24H26S2F(000) = 404
Mr = 378.57Dx = 1.140 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 13.6286 (5) ÅCell parameters from 4805 reflections
b = 6.4269 (2) Åθ = 2.8–30.5°
c = 14.1290 (5) ŵ = 0.25 mm1
β = 116.937 (2)°T = 153 K
V = 1103.29 (7) Å3Plate, colourless
Z = 20.53 × 0.20 × 0.05 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3028 independent reflections
Radiation source: fine-focus sealed tube2450 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
phi and ω scansθmax = 29.4°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1718
Tmin = 0.881, Tmax = 0.989k = 88
11825 measured reflectionsl = 1917
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0415P)2 + 0.3498P]
where P = (Fo2 + 2Fc2)/3
3028 reflections(Δ/σ)max < 0.001
121 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C24H26S2V = 1103.29 (7) Å3
Mr = 378.57Z = 2
Monoclinic, P21/nMo Kα radiation
a = 13.6286 (5) ŵ = 0.25 mm1
b = 6.4269 (2) ÅT = 153 K
c = 14.1290 (5) Å0.53 × 0.20 × 0.05 mm
β = 116.937 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3028 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2450 reflections with I > 2σ(I)
Tmin = 0.881, Tmax = 0.989Rint = 0.025
11825 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.04Δρmax = 0.35 e Å3
3028 reflectionsΔρmin = 0.20 e Å3
121 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.93054 (2)0.80456 (5)0.55276 (2)0.02231 (10)
C10.93335 (10)0.62309 (18)0.64857 (9)0.0206 (2)
C20.90994 (11)0.68270 (19)0.73135 (10)0.0250 (3)
H20.88740.82140.73430.030*
C30.91924 (11)0.5417 (2)0.80912 (10)0.0261 (3)
H30.90190.58320.86430.031*
C40.95429 (10)0.33764 (19)0.80637 (10)0.0234 (3)
C50.97762 (11)0.2782 (2)0.72369 (10)0.0257 (3)
H51.00130.14020.72120.031*
C60.96658 (11)0.41878 (19)0.64538 (10)0.0247 (3)
H60.98170.37600.58900.030*
C70.78266 (11)0.8255 (2)0.45814 (11)0.0308 (3)
C80.73566 (15)0.6125 (3)0.41517 (14)0.0523 (5)
H8A0.77860.54820.38310.078*
H8B0.65890.62710.36140.078*
H8C0.73910.52470.47330.078*
C90.78203 (13)0.9643 (3)0.37009 (13)0.0467 (4)
H9A0.70600.98600.31590.070*
H9B0.82410.89720.33780.070*
H9C0.81551.09890.40010.070*
C100.72009 (13)0.9298 (3)0.51159 (14)0.0480 (4)
H10A0.72370.84160.56970.072*
H10B0.64300.94920.45950.072*
H10C0.75341.06530.53990.072*
C110.97122 (11)0.1931 (2)0.88969 (10)0.0259 (3)
C120.98954 (11)0.0698 (2)0.95990 (10)0.0265 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02344 (15)0.02417 (15)0.02180 (16)0.00002 (11)0.01242 (12)0.00352 (11)
C10.0213 (5)0.0224 (5)0.0181 (6)0.0005 (4)0.0090 (5)0.0011 (4)
C20.0327 (7)0.0210 (6)0.0255 (6)0.0017 (5)0.0169 (5)0.0000 (5)
C30.0347 (7)0.0264 (6)0.0222 (6)0.0008 (5)0.0173 (5)0.0011 (5)
C40.0267 (6)0.0230 (6)0.0205 (6)0.0010 (5)0.0107 (5)0.0013 (4)
C50.0330 (7)0.0218 (6)0.0237 (6)0.0030 (5)0.0141 (5)0.0002 (5)
C60.0307 (6)0.0257 (6)0.0212 (6)0.0022 (5)0.0148 (5)0.0005 (5)
C70.0244 (6)0.0385 (7)0.0259 (7)0.0009 (5)0.0083 (5)0.0080 (6)
C80.0453 (9)0.0535 (10)0.0391 (9)0.0178 (8)0.0026 (8)0.0021 (8)
C90.0375 (8)0.0616 (11)0.0362 (8)0.0078 (7)0.0125 (7)0.0244 (8)
C100.0305 (8)0.0661 (11)0.0508 (10)0.0153 (8)0.0215 (7)0.0150 (9)
C110.0321 (6)0.0246 (6)0.0235 (6)0.0000 (5)0.0147 (5)0.0011 (5)
C120.0340 (7)0.0246 (6)0.0246 (6)0.0015 (5)0.0167 (6)0.0007 (5)
Geometric parameters (Å, º) top
S1—C11.7740 (12)C7—C91.528 (2)
S1—C71.8509 (13)C7—C101.526 (2)
C1—C21.3980 (17)C8—H8A0.9800
C1—C61.3964 (17)C8—H8B0.9800
C2—C31.3852 (17)C8—H8C0.9800
C2—H20.9500C9—H9A0.9800
C3—C41.4022 (17)C9—H9B0.9800
C3—H30.9500C9—H9C0.9800
C4—C51.3957 (17)C10—H10A0.9800
C4—C111.4339 (17)C10—H10B0.9800
C5—C61.3828 (17)C10—H10C0.9800
C5—H50.9500C11—C121.2042 (18)
C6—H60.9500C12—C12i1.370 (3)
C7—C81.517 (2)
C1—S1—C7103.83 (6)C9—C7—S1103.49 (10)
C2—C1—C6119.01 (11)C10—C7—S1110.13 (10)
C2—C1—S1121.60 (9)C7—C8—H8A109.5
C6—C1—S1119.27 (9)C7—C8—H8B109.5
C3—C2—C1120.72 (11)H8A—C8—H8B109.5
C3—C2—H2119.6C7—C8—H8C109.5
C1—C2—H2119.6H8A—C8—H8C109.5
C2—C3—C4119.99 (12)H8B—C8—H8C109.5
C2—C3—H3120.0C7—C9—H9A109.5
C4—C3—H3120.0C7—C9—H9B109.5
C5—C4—C3119.25 (11)H9A—C9—H9B109.5
C5—C4—C11119.79 (11)C7—C9—H9C109.5
C3—C4—C11120.89 (11)H9A—C9—H9C109.5
C6—C5—C4120.49 (11)H9B—C9—H9C109.5
C6—C5—H5119.8C7—C10—H10A109.5
C4—C5—H5119.8C7—C10—H10B109.5
C5—C6—C1120.52 (11)H10A—C10—H10B109.5
C5—C6—H6119.7C7—C10—H10C109.5
C1—C6—H6119.7H10A—C10—H10C109.5
C8—C7—C9110.82 (14)H10B—C10—H10C109.5
C8—C7—C10111.40 (14)C12—C11—C4177.35 (14)
C9—C7—C10110.38 (13)C11—C12—C12i179.74 (18)
C8—C7—S1110.35 (11)
C7—S1—C1—C281.14 (11)C11—C4—C5—C6177.00 (12)
C7—S1—C1—C6103.04 (11)C4—C5—C6—C10.9 (2)
C6—C1—C2—C30.12 (19)C2—C1—C6—C50.87 (19)
S1—C1—C2—C3175.95 (10)S1—C1—C6—C5175.06 (10)
C1—C2—C3—C41.1 (2)C1—S1—C7—C855.80 (12)
C2—C3—C4—C51.11 (19)C1—S1—C7—C9174.41 (11)
C2—C3—C4—C11175.99 (12)C1—S1—C7—C1067.60 (12)
C3—C4—C5—C60.13 (19)
Symmetry code: (i) x+2, y, z+2.

Experimental details

Crystal data
Chemical formulaC24H26S2
Mr378.57
Crystal system, space groupMonoclinic, P21/n
Temperature (K)153
a, b, c (Å)13.6286 (5), 6.4269 (2), 14.1290 (5)
β (°) 116.937 (2)
V3)1103.29 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.53 × 0.20 × 0.05
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.881, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
11825, 3028, 2450
Rint0.025
(sin θ/λ)max1)0.691
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.091, 1.04
No. of reflections3028
No. of parameters121
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.20

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was performed within the Cluster of Excellence "Structure Design of Novel High-Performance Materials via Atomic Design and Defect Engineering (ADDE)" that is financially supported by the European Union (European Regional Development Fund) and by the Ministry of Science and Art of Saxony (SMWK).

References

First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDijk, E. H. van, Myles, D. J. T., van der Veen, M. H. & Hummelen, J. C. (2006). Org. Lett. 8, 2333–2336.  Web of Science PubMed Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHori, K., Yamabe, T., Kenichi, F., Kobayashi, S. & Taniguchi, H. (1987). J. Mol. Struct. (THEOCHEM), 153, 295–305.  CrossRef Google Scholar
First citationKergueris, C., Bourgoin, J.-P., Palacin, S., Esteve, D., Urbina, C., Magoga, M. & Joachim, C. (1999). Phys. Rev. B, 59, 12505–12513.  Web of Science CrossRef CAS Google Scholar
First citationMayor, M., Weber, H. B., Reichert, J., Elbing, M., Hänisch, C., Beckmann, D. & Fischer, M. (2003). Angew. Chem. Int. Ed. 42, 5834–5838.  Web of Science CSD CrossRef CAS Google Scholar
First citationPearson, D. L. & Tour, J. M. (1997). J. Org. Chem. 62, 1376–1387.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1543
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds