organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1516

3-(3,4-Di­hydroxyphenyl)-1-meth­oxy-1-oxopropan-2-aminium chloride

aCollege of Sciences, Hebei University of Science & Technology, Shijiazhuang 050018, People's Republic of China, bCollege of Chemical & Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang 050018, People's Republic of China, and cCollege of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 211816, People's Republic of China
*Correspondence e-mail: han_jianrong@126.com

(Received 13 April 2012; accepted 18 April 2012; online 25 April 2012)

In the title compound, C10H14NO4+·Cl, the benzene ring makes a dihedral angle of 64.68 (4)° with the methyl­amino­propano­ate unit, which is bonded to the catechol ring via a methyl­ene C atom. A strong intra­molecular O—H⋯O hydrogen bond occurs. In the crystal, O—H⋯O, N—H⋯Cl and O—H⋯Cl hydrogen bonds and weak C—H⋯O inter­actions link the mol­ecules into a three-dimensional network.

Related literature

For medicinal applications of the title compound, see: Cooper et al. (1984[Cooper, D. R., Marrel, C., Testa, B., van de Waterbeemd, H., Quinn, N., Jenner, P. & Marsden, C. D. (1984). Clin. Neuropharmacol. 7, 89-98.]). For a related structure, see: Naicker et al. (2012[Naicker, T., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2012). Acta Cryst. E68, o177.])

[Scheme 1]

Experimental

Crystal data
  • C10H14NO4+·Cl

  • Mr = 247.67

  • Orthorhombic, P 21 21 21

  • a = 4.9969 (15) Å

  • b = 14.498 (4) Å

  • c = 16.109 (5) Å

  • V = 1167.1 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 113 K

  • 0.20 × 0.18 × 0.12 mm

Data collection
  • Rigaku Saturn724 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) Tmin = 0.938, Tmax = 0.962

  • 12293 measured reflections

  • 2796 independent reflections

  • 2054 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.061

  • S = 0.93

  • 2796 reflections

  • 164 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1117 Friedel pairs

  • Flack parameter: −0.03 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯Cl1i 0.96 (2) 2.29 (2) 3.209 (2) 161 (2)
N1—H1B⋯Cl1 0.92 (2) 2.49 (2) 3.178 (2) 132 (1)
N1—H1A⋯Cl1ii 1.01 (2) 2.13 (2) 3.112 (2) 163 (2)
O2—H2⋯Cl1iii 0.84 (2) 2.26 (2) 3.086 (2) 167 (2)
O1—H1⋯O2 0.83 (2) 2.27 (2) 2.698 (2) 113 (2)
O1—H1⋯O3iv 0.83 (2) 2.26 (2) 3.029 (2) 155 (2)
C8—H8⋯O3ii 1.00 2.44 3.300 (2) 144
C10—H10C⋯O1v 0.98 2.47 3.137 (3) 125
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) x-1, y, z; (iii) [-x+{\script{3\over 2}}, -y+1, z+{\script{1\over 2}}]; (iv) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

A systemic or subcutaneous infusion of L-Dopa methyl ester to patients suffering from Parkinson's disease who experience response fluctuations may provide a means of maintaining mobility (Cooper et al., 1984). In this article, we report the synthesis and crystal strucure of L-Dopa methyl ester hydrochloride.

In the title compound (Fig. 1), benzene ring makes a dihedral angle of 64.68 (4)° with the methylaminopropanoate moiety (N1/C8–C10/O3/O4) bonded to the catechol ring via a methylene C7 atom. The torsion angles in the chain connected with the aromatic ring (C6/C7—C8/N1) and (C6/C7—C8/C9) are 71.39 (19) and -50.5 (2)°, respectively. The crystal packing is stabilized by strong intermolecular O—H···O, N—H···Cl and O—H···Cl hydrogen bonds and further consolidated by weak C—H···O interactions; all the interactions link the molecules into an infinite network (Table 1 and Fig. 2).

The bond distances and bond angles in the title compound are in agreement with the corresponding bond legths and bond angles reported in the crystal structure of a closely related compound (Naicker et al., 2012).

Related literature top

For medicinal applications of the title compound, see: Cooper et al. (1984). For a related structure, see: Naicker et al. (2012)

Experimental top

SOCl2 (10 ml) was added into MeOH (60 ml) in a reaction flake at 273 K and L-3,4-dihydroxyphenylalanine (5.0 g, 25 mmol) was gradually added to this mixture. The temprature was increased to room temperature. After 24 h. the solvent was removed in Vacuo, to yield a white solid. The solid product was recrystallized from ethyl acetate by slow evaporation in the form of colorless single crystals of the title compound suitable for X-ray analysis.

Refinement top

An absolute structure was determined by the Flack (1983) method using 1117 Friedel pairs of reflections which were not merged. The H atoms bonded to N and O-atoms were located from a difference Fourier map and were allowed to refine freely. The H atoms bonded to C-atoms were positioned geometrically and refined using in riding mode, with C—H = 0.95, 0.98, 0.99 and 1.00 Å, for aryl, methyl, methylene and methyne H-atoms, respectively; the Uiso(H) were allowed at 1.5Ueq(C methyl) or 1.2Ueq(C non-methyl).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the unit cell showing partial packing of the title compound; hydrogen bonds are shown as dotted lines.
3-(3,4-Dihydroxyphenyl)-1-methoxy-1-oxopropan-2-aminium chloride top
Crystal data top
C10H14NO4+·ClF(000) = 520
Mr = 247.67Dx = 1.410 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3847 reflections
a = 4.9969 (15) Åθ = 1.9–27.9°
b = 14.498 (4) ŵ = 0.33 mm1
c = 16.109 (5) ÅT = 113 K
V = 1167.1 (6) Å3Prism, colourless
Z = 40.20 × 0.18 × 0.12 mm
Data collection top
Rigaku Saturn724 CCD
diffractometer
2796 independent reflections
Radiation source: rotating anode2054 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.051
Detector resolution: 14.22 pixels mm-1θmax = 27.9°, θmin = 1.9°
ω and ϕ scansh = 66
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 1819
Tmin = 0.938, Tmax = 0.962l = 2121
12293 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.061 w = 1/[σ2(Fo2) + (0.0218P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.93(Δ/σ)max = 0.001
2796 reflectionsΔρmax = 0.18 e Å3
164 parametersΔρmin = 0.23 e Å3
0 restraintsAbsolute structure: Flack (1983), 1117 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (5)
Crystal data top
C10H14NO4+·ClV = 1167.1 (6) Å3
Mr = 247.67Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.9969 (15) ŵ = 0.33 mm1
b = 14.498 (4) ÅT = 113 K
c = 16.109 (5) Å0.20 × 0.18 × 0.12 mm
Data collection top
Rigaku Saturn724 CCD
diffractometer
2796 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
2054 reflections with I > 2σ(I)
Tmin = 0.938, Tmax = 0.962Rint = 0.051
12293 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.061Δρmax = 0.18 e Å3
S = 0.93Δρmin = 0.23 e Å3
2796 reflectionsAbsolute structure: Flack (1983), 1117 Friedel pairs
164 parametersAbsolute structure parameter: 0.03 (5)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.0416 (3)0.23597 (8)0.63923 (7)0.0197 (3)
H11.079 (4)0.2226 (12)0.6879 (12)0.029*
O20.8286 (3)0.30070 (8)0.78169 (8)0.0217 (3)
H20.756 (4)0.3261 (12)0.8230 (13)0.033*
O30.6921 (2)0.64877 (8)0.71119 (8)0.0195 (3)
O40.3362 (2)0.59134 (8)0.77989 (8)0.0178 (3)
N10.4423 (3)0.63903 (10)0.56253 (9)0.0161 (3)
C10.5531 (3)0.39895 (10)0.55641 (11)0.0181 (3)
H1D0.49560.42100.50380.022*
C20.7537 (3)0.33268 (10)0.56033 (12)0.0179 (4)
H2A0.82850.30860.51060.022*
C30.8447 (3)0.30165 (11)0.63657 (11)0.0147 (4)
C40.7284 (3)0.33587 (10)0.70898 (11)0.0148 (4)
C50.5249 (3)0.39978 (10)0.70502 (11)0.0162 (4)
H50.44430.42130.75480.019*
C60.4353 (3)0.43341 (10)0.62813 (10)0.0146 (4)
C70.2087 (3)0.50298 (11)0.62467 (11)0.0171 (4)
H7A0.07650.48710.66810.020*
H7B0.11810.49720.57030.020*
C80.2934 (3)0.60417 (11)0.63659 (11)0.0140 (4)
H80.12780.64220.64330.017*
C90.4670 (3)0.61855 (10)0.71259 (10)0.0143 (3)
C100.4845 (4)0.59408 (12)0.85779 (10)0.0236 (4)
H10A0.65480.56140.85110.035*
H10B0.37900.56440.90150.035*
H10C0.51950.65840.87310.035*
H1A0.310 (4)0.6414 (16)0.5153 (14)0.058 (7)*
H1B0.598 (3)0.6084 (11)0.5497 (12)0.021 (5)*
H1C0.480 (4)0.7033 (14)0.5694 (12)0.046 (6)*
Cl10.95062 (9)0.63979 (3)0.44397 (3)0.01993 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0229 (7)0.0200 (7)0.0162 (7)0.0064 (6)0.0009 (6)0.0022 (5)
O20.0319 (8)0.0208 (7)0.0125 (7)0.0098 (6)0.0014 (6)0.0004 (6)
O30.0163 (6)0.0236 (6)0.0187 (7)0.0039 (5)0.0014 (6)0.0012 (6)
O40.0203 (6)0.0207 (6)0.0123 (7)0.0020 (5)0.0007 (5)0.0007 (5)
N10.0176 (7)0.0152 (7)0.0157 (7)0.0011 (8)0.0012 (8)0.0011 (8)
C10.0241 (8)0.0171 (8)0.0130 (8)0.0048 (8)0.0022 (9)0.0019 (8)
C20.0224 (9)0.0175 (8)0.0139 (9)0.0022 (7)0.0019 (9)0.0013 (8)
C30.0158 (9)0.0114 (8)0.0169 (10)0.0020 (7)0.0008 (8)0.0009 (8)
C40.0197 (9)0.0122 (8)0.0125 (9)0.0017 (7)0.0013 (8)0.0014 (7)
C50.0221 (10)0.0114 (8)0.0152 (9)0.0004 (7)0.0016 (8)0.0025 (7)
C60.0162 (8)0.0096 (7)0.0180 (9)0.0041 (7)0.0017 (8)0.0002 (7)
C70.0174 (9)0.0148 (8)0.0191 (10)0.0023 (7)0.0032 (8)0.0004 (8)
C80.0131 (9)0.0147 (8)0.0141 (10)0.0004 (7)0.0006 (7)0.0015 (7)
C90.0179 (9)0.0089 (8)0.0161 (9)0.0023 (7)0.0008 (8)0.0006 (7)
C100.0315 (12)0.0255 (10)0.0138 (10)0.0007 (9)0.0035 (9)0.0022 (8)
Cl10.0227 (2)0.0207 (2)0.0164 (2)0.00256 (19)0.0024 (2)0.0008 (2)
Geometric parameters (Å, º) top
O1—C31.370 (2)C2—H2A0.9500
O1—H10.83 (2)C3—C41.395 (2)
O2—C41.372 (2)C4—C51.377 (2)
O2—H20.84 (2)C5—C61.404 (2)
O3—C91.207 (2)C5—H50.9500
O4—C91.326 (2)C6—C71.517 (2)
O4—C101.458 (2)C7—C81.539 (2)
N1—C81.494 (2)C7—H7A0.9900
N1—H1A1.01 (2)C7—H7B0.9900
N1—H1B0.92 (2)C8—C91.515 (2)
N1—H1C0.96 (2)C8—H81.0000
C1—C61.390 (2)C10—H10A0.9800
C1—C21.390 (2)C10—H10B0.9800
C1—H1D0.9500C10—H10C0.9800
C2—C31.385 (2)
C3—O1—H1110.8 (13)C1—C6—C5118.26 (16)
C4—O2—H2110.8 (14)C1—C6—C7121.64 (15)
C9—O4—C10116.42 (13)C5—C6—C7120.06 (15)
C8—N1—H1A106.7 (12)C6—C7—C8115.09 (13)
C8—N1—H1B116.0 (11)C6—C7—H7A108.5
H1A—N1—H1B113.7 (16)C8—C7—H7A108.5
C8—N1—H1C109.5 (12)C6—C7—H7B108.5
H1A—N1—H1C100.5 (16)C8—C7—H7B108.5
H1B—N1—H1C109.3 (16)H7A—C7—H7B107.5
C6—C1—C2121.08 (17)N1—C8—C9108.29 (14)
C6—C1—H1D119.5N1—C8—C7111.08 (14)
C2—C1—H1D119.5C9—C8—C7112.92 (13)
C3—C2—C1120.11 (17)N1—C8—H8108.1
C3—C2—H2A119.9C9—C8—H8108.1
C1—C2—H2A119.9C7—C8—H8108.1
O1—C3—C2119.30 (16)O3—C9—O4125.64 (16)
O1—C3—C4121.36 (15)O3—C9—C8124.63 (16)
C2—C3—C4119.31 (16)O4—C9—C8109.72 (14)
O2—C4—C5123.99 (16)O4—C10—H10A109.5
O2—C4—C3115.46 (14)O4—C10—H10B109.5
C5—C4—C3120.55 (16)H10A—C10—H10B109.5
C4—C5—C6120.65 (16)O4—C10—H10C109.5
C4—C5—H5119.7H10A—C10—H10C109.5
C6—C5—H5119.7H10B—C10—H10C109.5
C6—C1—C2—C31.7 (2)C4—C5—C6—C7179.30 (14)
C1—C2—C3—O1179.68 (13)C1—C6—C7—C898.02 (19)
C1—C2—C3—C41.6 (2)C5—C6—C7—C884.2 (2)
O1—C3—C4—O21.3 (2)C6—C7—C8—N171.39 (19)
C2—C3—C4—O2179.33 (14)C6—C7—C8—C950.5 (2)
O1—C3—C4—C5177.96 (14)C10—O4—C9—O33.4 (2)
C2—C3—C4—C50.1 (2)C10—O4—C9—C8175.40 (12)
O2—C4—C5—C6179.21 (15)N1—C8—C9—O33.5 (2)
C3—C4—C5—C61.6 (2)C7—C8—C9—O3119.97 (17)
C2—C1—C6—C50.2 (2)N1—C8—C9—O4177.71 (12)
C2—C1—C6—C7177.58 (14)C7—C8—C9—O458.84 (18)
C4—C5—C6—C11.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···Cl1i0.96 (2)2.29 (2)3.209 (2)161 (2)
N1—H1B···Cl10.92 (2)2.49 (2)3.178 (2)132 (1)
N1—H1A···Cl1ii1.01 (2)2.13 (2)3.112 (2)163 (2)
O2—H2···Cl1iii0.84 (2)2.26 (2)3.086 (2)167 (2)
O1—H1···O20.83 (2)2.27 (2)2.698 (2)113 (2)
O1—H1···O3iv0.83 (2)2.26 (2)3.029 (2)155 (2)
C8—H8···O3ii1.002.443.300 (2)144
C10—H10C···O1v0.982.473.137 (3)125
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x1, y, z; (iii) x+3/2, y+1, z+1/2; (iv) x+2, y1/2, z+3/2; (v) x+2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC10H14NO4+·Cl
Mr247.67
Crystal system, space groupOrthorhombic, P212121
Temperature (K)113
a, b, c (Å)4.9969 (15), 14.498 (4), 16.109 (5)
V3)1167.1 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.20 × 0.18 × 0.12
Data collection
DiffractometerRigaku Saturn724 CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.938, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
12293, 2796, 2054
Rint0.051
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.061, 0.93
No. of reflections2796
No. of parameters164
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.23
Absolute structureFlack (1983), 1117 Friedel pairs
Absolute structure parameter0.03 (5)

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···Cl1i0.96 (2)2.29 (2)3.209 (2)161 (2)
N1—H1B···Cl10.92 (2)2.49 (2)3.178 (2)132 (1)
N1—H1A···Cl1ii1.01 (2)2.13 (2)3.112 (2)163 (2)
O2—H2···Cl1iii0.84 (2)2.26 (2)3.086 (2)167 (2)
O1—H1···O20.83 (2)2.27 (2)2.698 (2)113 (2)
O1—H1···O3iv0.83 (2)2.26 (2)3.029 (2)155 (2)
C8—H8···O3ii1.002.443.300 (2)144
C10—H10C···O1v0.982.473.137 (3)125
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x1, y, z; (iii) x+3/2, y+1, z+1/2; (iv) x+2, y1/2, z+3/2; (v) x+2, y+1/2, z+3/2.
 

Acknowledgements

We are grateful for financial support from the Hebei Natural Science Fundation (No. B2010000836) and the Foundation of the Education Department of Hebei Province (grant No. ZD2010109)

References

First citationCooper, D. R., Marrel, C., Testa, B., van de Waterbeemd, H., Quinn, N., Jenner, P. & Marsden, C. D. (1984). Clin. Neuropharmacol. 7, 89–98.  CrossRef CAS PubMed Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNaicker, T., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2012). Acta Cryst. E68, o177.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1516
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds