organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1352

4-Hy­dr­oxy-N′-(3-nitro­benzyl­­idene)benzohydrazide

aCollege of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, People's Republic of China
*Correspondence e-mail: houjinlong09@163.com

(Received 29 March 2012; accepted 4 April 2012; online 13 April 2012)

The title compound, C14H11N3O4, was obtained by a condensation reaction between 3-nitro­benzaldehyde and 4-hy­droxy­benzohydrazide. The whole mol­ecule is approximately planar, with a dihedral angle of 9.2 (3)° between the benzene rings. The mol­ecule displays an E conformation about the C=N bond. In the crystal, mol­ecules are linked via N—H⋯O, O—H⋯O and O—H⋯N hydrogen bonds, generating sheets parallel to the bc plane.

Related literature

For the biological properties of hydrazone compounds, see: Cukurovali et al. (2006[Cukurovali, A., Yilmaz, I., Gur, S. & Kazaz, C. (2006). Eur. J. Med. Chem. 41, 201-207.]); Karthikeyan et al. (2006[Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482-7489.]); Kucukguzel et al. (2006[Kucukguzel, G., Kocatepe, A., De Clercq, E., Sahi, F. & Gulluce, M. (2006). Eur. J. Med. Chem. 41, 353-359.]). For related hydrazone compounds, see: Hou (2009[Hou, J.-L. (2009). Acta Cryst. E65, o851.]); Mohd Lair et al. (2009[Mohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o189.]); Fun et al. (2008[Fun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707.]); Zhang et al. (2009[Zhang, M.-J., Yin, L.-Z., Wang, D.-C., Deng, X.-M. & Liu, J.-B. (2009). Acta Cryst. E65, o508.]); Khaledi et al. (2008[Khaledi, H., Mohd Ali, H. & Ng, S. W. (2008). Acta Cryst. E64, o2481.]). For standard bond lengths, see: Allen et al. (1987)[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.].

[Scheme 1]

Experimental

Crystal data
  • C14H11N3O4

  • Mr = 285.26

  • Monoclinic, P 21 /n

  • a = 8.018 (2) Å

  • b = 11.156 (2) Å

  • c = 14.389 (2) Å

  • β = 91.773 (2)°

  • V = 1286.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.21 × 0.20 × 0.17 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.977, Tmax = 0.981

  • 9218 measured reflections

  • 2386 independent reflections

  • 2020 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.108

  • S = 1.10

  • 2386 reflections

  • 194 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1i 0.90 (1) 2.49 (2) 3.0406 (18) 120 (1)
N2—H2A⋯O4ii 0.90 (1) 2.32 (1) 3.0360 (17) 137 (2)
O4—H4⋯N1iii 0.82 2.63 3.0495 (17) 114
O4—H4⋯O3iii 0.82 2.08 2.8929 (16) 173
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hydrazones derived from the condensation reactions of hydrazides with aldehydes show excellent biological properties (Cukurovali et al., 2006; Karthikeyan et al., 2006; Kucukguzel et al., 2006). In the last few years, a great deal of hydrazone compounds have been reported for their crystal structures see (Hou, 2009; Mohd Lair et al., 2009; Fun et al., 2008; Zhang et al., 2009; Khaledi et al., 2008). In this paper, the title new compound, derived from the condensation reaction of 3-nitrobenzaldehyde and 4-hydroxybenzohydrazide was synthesized and structurally characterized.

The molecular structure of the compound is shown in Fig. 1. The whole molecule of the compound is approximately coplanar, with the dihedral angle between the mean planes through the two benzene rings of 9.2 (3)°. The molecule displays an E configuration about the C=N bond. All the bond lengths are within normal ranges (Allen et al., 1987). In the crystal, molecules are linked via N–H···O hydrogen bonds (Table 1), generating two-dimensional sheets (Fig. 2).

Related literature top

For the biological properties of hydrazone compounds, see: Cukurovali et al. (2006); Karthikeyan et al. (2006); Kucukguzel et al. (2006). For related hydrazone compounds, see: Hou (2009); Mohd Lair et al. (2009); Fun et al. (2008); Zhang et al. (2009); Khaledi et al. (2008). For standard bond lengths, see: Allen et al. (1987).

Experimental top

3-Nitrobenzaldehyde (1.0 mmol, 151 mg) and 4-hydroxybenzohydrazide (1.0 mmol, 152 mg) were mixed and refluxed with stirring for two hours. Yellow single crystals were formed after slow evaporation of the solution in air for a week.

Refinement top

H2A was located in a difference Fourier map and refined isotropically, with the N–H distance restrained to 0.90 (1) Å. The other H atoms were placed in idealized positions and constrained to ride on their parent atoms with C–H distances of 0.93 Å, O–H distance of 0.82 Å, and with Uiso(H) set at 1.2Ueq(C) and 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure with displacement ellipsoids drawn at 30% probability for non-H atoms.
[Figure 2] Fig. 2. Molecular packing diagram, viewed along the b axis. Hydrogen bonds are shown as dashed lines.
4-Hydroxy-N'-(3-nitrobenzylidene)benzohydrazide top
Crystal data top
C14H11N3O4F(000) = 592
Mr = 285.26Dx = 1.473 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.018 (2) ÅCell parameters from 4759 reflections
b = 11.156 (2) Åθ = 2.8–27.0°
c = 14.389 (2) ŵ = 0.11 mm1
β = 91.773 (2)°T = 298 K
V = 1286.4 (5) Å3Block, yellow
Z = 40.21 × 0.20 × 0.17 mm
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2386 independent reflections
Radiation source: fine-focus sealed tube2020 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω scansθmax = 25.5°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.977, Tmax = 0.981k = 1313
9218 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0549P)2 + 0.347P]
where P = (Fo2 + 2Fc2)/3
2386 reflections(Δ/σ)max < 0.001
194 parametersΔρmax = 0.13 e Å3
1 restraintΔρmin = 0.23 e Å3
Crystal data top
C14H11N3O4V = 1286.4 (5) Å3
Mr = 285.26Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.018 (2) ŵ = 0.11 mm1
b = 11.156 (2) ÅT = 298 K
c = 14.389 (2) Å0.21 × 0.20 × 0.17 mm
β = 91.773 (2)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2386 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2020 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.981Rint = 0.018
9218 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0351 restraint
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.13 e Å3
2386 reflectionsΔρmin = 0.23 e Å3
194 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.18378 (15)0.04393 (11)0.44521 (8)0.0361 (3)
N20.21274 (16)0.03537 (12)0.51683 (8)0.0372 (3)
N30.02101 (16)0.30324 (12)0.15979 (9)0.0405 (3)
O10.00751 (15)0.39126 (11)0.11049 (8)0.0533 (3)
O20.01799 (18)0.20157 (11)0.13697 (9)0.0610 (4)
O30.14307 (14)0.19871 (10)0.43108 (7)0.0420 (3)
O40.43051 (15)0.43925 (11)0.80509 (8)0.0477 (3)
H40.49810.40320.83860.072*
C10.18748 (18)0.24891 (14)0.39868 (10)0.0357 (3)
C20.11420 (18)0.22848 (13)0.31117 (10)0.0348 (3)
H20.07330.15320.29460.042*
C30.10429 (18)0.32288 (13)0.25017 (10)0.0349 (3)
C40.1649 (2)0.43600 (15)0.27064 (12)0.0435 (4)
H4A0.15760.49740.22700.052*
C50.2364 (2)0.45524 (15)0.35766 (13)0.0499 (4)
H50.27800.53060.37350.060*
C60.2463 (2)0.36266 (15)0.42129 (12)0.0453 (4)
H60.29300.37670.48020.054*
C70.20456 (19)0.15322 (14)0.46738 (10)0.0379 (4)
H70.23130.17270.52890.045*
C80.20226 (17)0.15485 (14)0.50337 (9)0.0329 (3)
C90.26711 (17)0.22804 (13)0.58334 (9)0.0331 (3)
C100.22900 (19)0.34905 (14)0.58765 (10)0.0389 (4)
H100.16490.38390.53990.047*
C110.2843 (2)0.41868 (14)0.66141 (11)0.0415 (4)
H110.25740.49970.66330.050*
C120.38050 (18)0.36750 (14)0.73294 (10)0.0358 (3)
C130.4214 (2)0.24795 (15)0.72935 (11)0.0447 (4)
H130.48620.21350.77700.054*
C140.3661 (2)0.17939 (15)0.65496 (11)0.0446 (4)
H140.39560.09890.65260.054*
H2A0.231 (2)0.0045 (16)0.5739 (8)0.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0422 (7)0.0365 (7)0.0290 (6)0.0028 (5)0.0068 (5)0.0051 (5)
N20.0512 (7)0.0345 (7)0.0253 (6)0.0020 (6)0.0102 (5)0.0017 (5)
N30.0406 (7)0.0410 (8)0.0394 (7)0.0042 (6)0.0070 (5)0.0063 (6)
O10.0567 (7)0.0501 (7)0.0519 (7)0.0071 (6)0.0149 (6)0.0157 (6)
O20.0864 (10)0.0441 (8)0.0509 (7)0.0059 (7)0.0252 (7)0.0004 (6)
O30.0542 (7)0.0405 (6)0.0304 (5)0.0024 (5)0.0128 (5)0.0017 (5)
O40.0570 (7)0.0467 (7)0.0386 (6)0.0020 (5)0.0126 (5)0.0146 (5)
C10.0363 (7)0.0347 (8)0.0357 (8)0.0015 (6)0.0037 (6)0.0021 (6)
C20.0366 (7)0.0302 (8)0.0372 (8)0.0014 (6)0.0036 (6)0.0014 (6)
C30.0345 (7)0.0347 (8)0.0353 (8)0.0033 (6)0.0031 (6)0.0026 (6)
C40.0497 (9)0.0354 (9)0.0453 (9)0.0014 (7)0.0030 (7)0.0089 (7)
C50.0612 (10)0.0340 (9)0.0541 (10)0.0117 (8)0.0063 (8)0.0002 (8)
C60.0522 (9)0.0416 (9)0.0415 (9)0.0062 (7)0.0093 (7)0.0016 (7)
C70.0423 (8)0.0382 (9)0.0324 (8)0.0004 (6)0.0091 (6)0.0006 (6)
C80.0339 (7)0.0373 (8)0.0273 (7)0.0000 (6)0.0033 (5)0.0007 (6)
C90.0352 (7)0.0359 (8)0.0278 (7)0.0013 (6)0.0038 (6)0.0013 (6)
C100.0455 (8)0.0364 (9)0.0340 (8)0.0002 (6)0.0085 (6)0.0039 (6)
C110.0511 (9)0.0313 (8)0.0415 (9)0.0017 (7)0.0064 (7)0.0029 (7)
C120.0374 (7)0.0392 (9)0.0305 (7)0.0042 (6)0.0019 (6)0.0068 (6)
C130.0524 (9)0.0422 (9)0.0382 (8)0.0051 (7)0.0178 (7)0.0033 (7)
C140.0545 (9)0.0357 (9)0.0424 (9)0.0079 (7)0.0183 (7)0.0062 (7)
Geometric parameters (Å, º) top
N1—C71.270 (2)C4—H4A0.9300
N1—N21.3725 (17)C5—C61.381 (2)
N2—C81.349 (2)C5—H50.9300
N2—H2A0.898 (9)C6—H60.9300
N3—O21.2188 (18)C7—H70.9300
N3—O11.2286 (17)C8—C91.491 (2)
N3—C31.460 (2)C9—C101.386 (2)
O3—C81.2312 (17)C9—C141.392 (2)
O4—C121.3614 (17)C10—C111.377 (2)
O4—H40.8200C10—H100.9300
C1—C61.389 (2)C11—C121.390 (2)
C1—C21.392 (2)C11—H110.9300
C1—C71.458 (2)C12—C131.375 (2)
C2—C31.372 (2)C13—C141.378 (2)
C2—H20.9300C13—H130.9300
C3—C41.381 (2)C14—H140.9300
C4—C51.378 (2)
C7—N1—N2114.35 (12)C1—C6—H6119.5
C8—N2—N1121.38 (12)N1—C7—C1121.57 (14)
C8—N2—H2A121.2 (12)N1—C7—H7119.2
N1—N2—H2A117.3 (13)C1—C7—H7119.2
O2—N3—O1123.13 (14)O3—C8—N2122.31 (13)
O2—N3—C3119.08 (13)O3—C8—C9123.39 (14)
O1—N3—C3117.79 (13)N2—C8—C9114.30 (12)
C12—O4—H4109.5C10—C9—C14117.92 (14)
C6—C1—C2119.49 (14)C10—C9—C8119.72 (13)
C6—C1—C7119.08 (14)C14—C9—C8122.36 (14)
C2—C1—C7121.44 (14)C11—C10—C9121.17 (14)
C3—C2—C1117.89 (14)C11—C10—H10119.4
C3—C2—H2121.1C9—C10—H10119.4
C1—C2—H2121.1C10—C11—C12119.81 (15)
C2—C3—C4123.52 (14)C10—C11—H11120.1
C2—C3—N3118.08 (14)C12—C11—H11120.1
C4—C3—N3118.38 (13)O4—C12—C13122.28 (14)
C5—C4—C3118.04 (15)O4—C12—C11117.83 (14)
C5—C4—H4A121.0C13—C12—C11119.89 (14)
C3—C4—H4A121.0C12—C13—C14119.76 (15)
C4—C5—C6119.98 (16)C12—C13—H13120.1
C4—C5—H5120.0C14—C13—H13120.1
C6—C5—H5120.0C13—C14—C9121.43 (15)
C5—C6—C1121.07 (15)C13—C14—H14119.3
C5—C6—H6119.5C9—C14—H14119.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.90 (1)2.49 (2)3.0406 (18)120 (1)
N2—H2A···O4ii0.90 (1)2.32 (1)3.0360 (17)137 (2)
O4—H4···N1iii0.822.633.0495 (17)114
O4—H4···O3iii0.822.082.8929 (16)173
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+3/2; (iii) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H11N3O4
Mr285.26
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)8.018 (2), 11.156 (2), 14.389 (2)
β (°) 91.773 (2)
V3)1286.4 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.21 × 0.20 × 0.17
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.977, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
9218, 2386, 2020
Rint0.018
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.108, 1.10
No. of reflections2386
No. of parameters194
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.13, 0.23

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.898 (9)2.489 (17)3.0406 (18)120.1 (14)
N2—H2A···O4ii0.898 (9)2.321 (14)3.0360 (17)136.5 (15)
O4—H4···N1iii0.822.633.0495 (17)113.7
O4—H4···O3iii0.822.082.8929 (16)172.6
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+3/2; (iii) x+1/2, y1/2, z+1/2.
 

Acknowledgements

This project was supported by the Research Foundation of the Education Bureau of Heilongjiang Province, China (grant No. 11521312).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCukurovali, A., Yilmaz, I., Gur, S. & Kazaz, C. (2006). Eur. J. Med. Chem. 41, 201–207.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHou, J.-L. (2009). Acta Cryst. E65, o851.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKarthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482–7489.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhaledi, H., Mohd Ali, H. & Ng, S. W. (2008). Acta Cryst. E64, o2481.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKucukguzel, G., Kocatepe, A., De Clercq, E., Sahi, F. & Gulluce, M. (2006). Eur. J. Med. Chem. 41, 353–359.  Web of Science CrossRef PubMed Google Scholar
First citationMohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o189.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, M.-J., Yin, L.-Z., Wang, D.-C., Deng, X.-M. & Liu, J.-B. (2009). Acta Cryst. E65, o508.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1352
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds